
Higher-Order RK Formulas

An s-stage explicit Runge-Kutta formula uses s derivative evaluations and
has the form:

yj = yj−1 + h(ω1k1 + ω2k2 · · · + ωsks),

where

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + α2h, yj−1 + hβ21k1),

...
...

ks = f(xj−1 + αsh, yj−1 + h
s−1∑

r=1

βsrkr).
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Higher-Order RK Formulas (cont)

This formula is represented by the tableau,

- -

α2 β21 -
...

...

αs βs1 βs2 . . . βs−1,s -

ω1 ω2 . . . ωs

These s(s−1)
2 + (s − 1) + s parameters are usually chosen to maximise the

order of the formula.
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Higher-Order RK Formulas (cont)
The maximum attainable order for an s-stage Runge-Kutta formula is
given by the following table:

s 1 2 3 4 5 6

max order 1 2 3 4 4 5

Note that the derivations of these maximal order formulas can be very
messy and tedious, but essentially they follow (as outlined above for the
case s = 2) by expanding each of the kr in a Taylor series.
An Example – Runge’s 4th order Formula(1895)

- -

1/2 1/2 -

1/2 0 1/2 -

1 0 0 1 -

1/6 1/3 1/3 1/6
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Error Estimates for RK Methods
Ideally a method would estimate a bound on the global error and
adjust the stepsize, h, to keep the magnitude of the global error less
than a tolerance. Such computable bounds are possible but are
usually pessimistic and inefficient to implement.

On the other hand, local errors can be reliably controlled. Consider a
method which keeps the magnitude of the local error less than h TOL

on each step.
That is, if zj(x) is the local solution on step j,

z
′

j = f(x, zj), zj(xj−1) = yj−1,

then a method will adjust h = xj − xj−1 to ensure that
|zj(xj) − yj | ≤ h TOL, for j = 1, 2 · · ·NTOL.
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Error Control
With this type of error control one can show that, for the resulting
approximate solution

(xj , yj)
NT OL
j=0

there exists a piecewise polynomial, Z(x) ∈ C1[a, b] such that Z(xj) = yj

for j = 0, 1, · · ·NTOL and for x ∈ [a, b],

|Z
′

(x) − f(x, Z)| ≤ TOL.

This inequality can be shown to imply,

|y(xj) − yj | ≤
TOL

L
(eL(xj−a) − 1).
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Local Error Estimates
Consider the Modified Euler Formula:

- -

1 1 -

1/2 1/2

We have shown

zj(xj) = yj−1 +
h

2
(k1 + k2)

+

[
1

4
f2fyy+

1

2
ffxy+

1

4
fxx−y

′′′

(xj)

]
h3+O(h4),

= yj +

[
1

12
fyyf2+

1

6
ffxy+

1

12
fxx−

1

6
fxy−

1

6
f2

y f

]
h3+O(h4),

≡ yj + c(f)h3 + O(h4).
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Local Error Estimates (cont)

It then follows that the local error, LE, satisfies

LE = c(f)h3 + O(h4),

where c(f) is a complicated function of f . There are two
general strategies for estimating this LE, – the use of "step
halving" and the use of a 3rd order "companion formula".

CSCC51H- Numerical Approx, Int and ODEs – p.164/177



Step Halving
Let ŷj be the approximation to zj(xj) computed with two steps of size h/2.
If c(f) is almost constant the we can show

zj(xj) = ŷj + 2c(f)(
h

2
)3 + O(h4)

and from above
zj(xj) = yj + c(f)h3 + O(h4).

Therefore the local error associated with ŷj , L̂E, is

L̂E = 2c(f)(
h

2
)3 + O(h4) =

−1

3
(yj − ŷj) + O(h4).

The method could then compute ŷj , yj and accept ŷj only if
1
3 |yj − ŷj | < h TOL.

Note that this strategy requires five derivative evaluations on each step and

assumes that each of the components of c(f) is slowly varying.
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3rd-Order Companion Formula
To estimate the local error associated with the Modified Euler formula
consider the use of a 3-stage, 3rd order Runge-Kutta formula,

ŷj = yj−1 + h(ω̂1k̂1 + ω̂2k̂2 + ω̂3k̂3) = zj(xj) + O(h4),

We also have

yj = yj−1 +
h

2
(k1 + k2) = zj(xj) − c(f)h3 + O(h4).

Subtracting these two equations we have the local error estimate,

estj ≡ (ŷj − yj) = c(f)h3 + O(h4).
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3rd-Order Companion Formula
Note that, for any 3rd order formula, k1 = k̂1 and if α̂2 = α2 = 1 and
β̂21 = β21 = 1, we have k̂2 = k2 and the cost is only three derivative
evaluations per step to compute both yj and estj . Can one derive such a
3-stage 3rd order Runge-Kutta formula ? The following tableau with α̂3 6= 1

defines a one-parameter family of such "companion formulas" for Modified
Euler:

- -

1 1 -

α̂3 β̂31 β̂32 -

ω̂1 ω̂2 ω̂3

with

β̂31 = α̂2
3, β̂32 = α̂3−α̂2

3, ω̂2 =
(3α̂3 − 2)

6(α̂3 − 1)
, ω̂3 =

−1

6α̂3(α̂3 − 1)
, ω̂1 =

13α̂3 − 1

6α̂3
.

CSCC51H- Numerical Approx, Int and ODEs – p.167/177



Higher-Order Companion Formulas
This idea of using a "companion formula" of order p + 1 to estimate the
local error of a pth order formula leads to the derivation of s-stage, order
(p, p + 1) formula pairs with the fewest number of stages. Such formula
pairs can be characterized by the tableau:

- -

α2 β21 -
...

...

αs βs1 . . . βs,s−1 -

ω1 ω2 . . . ωs

ω̂1 ω̂2 . . . ω̂s
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Higher-Order Companion Formulas
Where

yj = yj−1 + h

s∑

r=1

ωrkr = zj(xj) − c(f)hp+1 + O(hp+2),

ŷj = yj−1 + h
s∑

r=1

ω̂rkr = zj(xj) + O(hp+2),

estj = (ŷj − yj) = c(f)hp+1 + O(hp+2).

This error estimate is a reliable estimate of the local error associated with
the lower order (order p) formula. The following table gives the fewest
number of stages required to generate formula pairs of a given order.

order pair (2,3) (3,4) (4,5) (5,6) (6,7)

fewest stages 3 4 6 8 10
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Choice of Stepsize, h

Step is accepted only if |estj | < hTOL.

If h is too large, the step will be rejected.

If h is too small, there will be too many steps.

The usual strategy for choosing the attempted stepsize, h, for the next
step is based on ‘aiming’ at the largest h which will result in an accepted
step on the current step. If we assume that c(f) is slowly varying then,

|estj | = |c(f)|hp+1
j + O(hp+2),

and on the next step attempted step, hj+1 = γhj , we want

|estj+1| ≈ TOL hj+1.
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Choice of h (cont)
But

|estj+1| ≈ |c(f)|(γhj)
p+1 = γp+1|estj |.

We can then expect

|estj+1| ≈ TOL hj+1,

if

γp+1|estj | ≈ TOL (γhj),

which is equivalent to

γp|estj | ≈ TOL hj .
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Choice of h (cont)
The choice of γ to satisfy this heuristic is then,

γ =

(
TOL hj

|estj |

)1/p

.

A typical step-choosing heuristic is then,

hj+1 = .9

(
TOL hj

|estj |

)1/p

hj ,

where .9 is a ‘safety factor’. The formula works for use after a rejected step

as well but must be modified slightly when round-off errors are significant

(as might be the case for example when TOL < 100µ).
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