Affect of FP Arith
fAssume SUSf(xj—1,95-1)) = f(xj—1,yj-1) + €; and T

i = Yi—1Dh® fl(f(rj-1,Yj-1)),
= yj—1+hf(zj—1,y-1) + he; + pj,

where |¢;], [p;| < p.
Then, proceeding as before we obtain,

h? _
5| < lejal(1+ L) + 5.

where M =Y + u/h + p/(h?).

. |
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Affect of FP Arith (cont)

|7Therefore the revised error bound becomes: T

ML, (1

hY
(b—a)L (b—a)L 1 M L
e leo| + (e )(2L+2L+2hL)

ejl < TV eo] + -

So, as h — 0, the term 57+ will become unbounded (unless the precision
changes) and we will not observe convergence.

|
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Difficulties with fixed-h Euler

-

® The low order results in requiring a small stepsize, which leads to a

large number of derivative evaluations and excessive amount of
computer time.

® The use of a constant stepsize can be inappropriate if the solution
behaves differently on parts of the interval of interest. For example in
Integrating satellite orbits ‘close approaches’ typically requires a
smaller stepsize to ensure accuracy.

|
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Runge-Kutta Methods

fWe will consider a general class of one-step formulas of the form: T
(1) y; = yj—1+h®(x;_1,y;-1).
where & satisfies a Lipschitz condition with respect to y. That is,
|D(x,u) — P(x,v)| < Llu—v|.

We will consider a variety of choices for & and will observe that, in each
case considered, ® will be Lipschitz if f is.
Two examples of such formulas are:

Euler: ® = f.

Taylor Series: ® = Ty (x,y).

|
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Some Notation/Definitions

Definition: A formula (1) is of order p if for all sufficiently differentiable T
functions y(x) we have,

(2) y(a;) —y(zj—1) — h®(zj-1,y(x;-1)) = O(hPTH).
Note that:
1. The LHS of (2) is defined to be the Local Truncatiom Error (LTE) of the

formula.

2. Order p implies that both the LE and the LTE are O(h?*!). (This
follows by substituting z;(x) for y(z) in the definition.)

Main Result:
Theorem: A pt" order formula applied to an IVP with constant stepsize h
satisfies,

—a C'hP —a
y(2;) — yj| < leolete™ + T(Gﬁ(b ) —1).

|
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Runge-Kutta Methods (cont)
-

We wish to consider formulas ® that are less ‘expensive’ than higher order
Taylor Series and yet are higher order than Euler’s formula. Consider a
formula ® based on 2 derivative evaluations. That is,

O(x;_1,y—1) = wik1 + waka,
where,

ki = f(zj—1,95-1),
ke = f(xj_1+ah,yj—1 + hBk1).

We determine the parameters w, ws, «, 5 to obtain as high an order formula
as possible.

|
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RK Methods (cont)

fFrom the definition of order we have order p if T
(3) y(xj) :y(lll'j_l) + h(w1k1 + WQkQ) + O(hp—l-l)

for all suff diff functions y(z). To derive such a formula we expand
y(x;), k1, ko in Taylor Series about the point (z,_1,y,_1), equate like
powers of h on both sides of (3), and set «, (3, w1, wy accordingly.

In what follows we omit arguments when they are evaluated at the point

(zj—1,yj-1). The TS expansion of the LHS of (3)is:
h2 3

/ 7, ]’L "
y(z;) = ylxj—1)+hy (xj—1)+7y ($j—1)+§y (zj—1) + O(h%),

h2
= y(zj_1)+hf+ 7(‘]% + fuf)
3

. |
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Expansion of the RHS

The TS expansion of the RHS of (3) is more complicated and first requiresj
the expansions of k; and ks,

kl — f7
ke = f(zj—1+ ah,y(z;_1)+ Bhky),
= f(zj—1,y(xj—1)+Bhf)+(ah)fe(xj—1,y(x;—1)+Bhf)

2h2
fa:a:(l'j 1, y(% 1)+ﬁhf)+0(h3)
(Bhf)?
2

f+Bhffy+ Fyy + O(hg)]

2]’L2

52 2

= f+@Bffytafa)h+ (7 ffyy+aﬂffxy+ fm)h2+0(h3)

|
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TS Expansion of the RHS

|7The TS expansion of the RHS of (3) then is (with these substitutions for lﬁj
and k)

RHS = y(xj_1)+ h(wiks + waka),
= y(zj_1) + hwi f + hwa [ -] + O(h?),
= y(@j—1) + [(w1 +w2)f]h + [w2(5ffy + afy)] h?
+ (%2 I fyy + B f fay + fm) h* + O(h?).
and recall
LHS = y(z;- 1)+hf+ (fx+fyf)

3
e 2 Fu B o+ 12) + O
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Equating like powers of h

quuating powers of h for LHS and RHS we observe: T

For order 0 : The coefficients of 4" always agree and we have order at
least zero for any choice of the parameters.

For order 1: If w; + wy = 1 the coefficients of ' agree and we have at least
order 1.

For order 2: In addition to satisfying the order 1 constraints we must have
the coefficient of 42 the same. That is aw, = 1/2 and Bw, = 1/2.

For order 3: In addition to satisfying the order 2 constraints we must have
the coefficients of ~? the same. That is we must satisfy the equations,

Wo? = %, wo = %, wo 3% = %, %fxy =7, %f; =7,

|
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Family of 2"?-order RK Formula

fNote that there are not enough terms in the coefficient of 43 in the T
expansion of the RHS to match the expansion of the LHS. We cannot
therefore equate the coefficients of 3 and the maximum order we can
obtain is order 2. Our formula will be order 2 for any choice of wy # 0, with
wi=1—wranda =73 = ﬁ This is a one-parameter family of 2"<-order
Runge-Kutta formulas.

Three popular choices from this family are:

Modified Euler: wo = 1/2

ki = flzj-1,95-1),

ky = f(zj—1+h,yj—1+ hky),
h

Yi = Yj-1 -+ 5(]@1 + kg)

|
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Family of 2"?-order RK Formula

o N

Midpoint: wy =1

ki = flzj—1,y-1)

h h
ke = f(zj—1+ 5o Yi-1 T §k1),
Yy; = Yj—1 -+ hka.

Heun’s Formula: wo = 3/4

kl — f(xj—layj—l)a
2 2
ky = f(il?j—l + ghayj—l + ghkl)y
h
Yi = Yj—1T Z(kl + 3ks).

. |
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