Affect of FP Arith

Assume $fl(f(x_{j-1}, y_{j-1})) = f(x_{j-1}, y_{j-1}) + \epsilon_j$ and

$$y_{j} = y_{j-1} \oplus h \otimes fl(f(x_{j-1}, y_{j-1})),$$

= $y_{j-1} + hf(x_{j-1}, y_{j-1}) + h\epsilon_{j} + \rho_{j},$

where $|\epsilon_j|, |\rho_j| < \mu$.

Then, proceeding as before we obtain,

$$|e_j| < |e_{j-1}|(1+hL) + \frac{h^2}{2}\bar{M},$$

where $\overline{M} = Y + \mu/h + \mu/(h^2)$.

Affect of FP Arith (cont)

Therefore the revised error bound becomes:

$$\begin{aligned} |e_j| &\leq e^{(b-a)L} |e_0| + \frac{h\bar{M}}{2L} (e^{(b-a)L} - 1), \\ &= e^{(b-a)L} |e_0| + (e^{(b-a)L} - 1) (\frac{hY}{2L} + \frac{\mu}{2L} + \frac{\mu}{2hL}). \end{aligned}$$

So, as $h \to 0$, the term $\frac{\mu}{2hL}$ will become unbounded (unless the precision changes) and we will not observe convergence.

Difficulties with fixed-h Euler

- The low order results in requiring a small stepsize, which leads to a large number of derivative evaluations and excessive amount of computer time.
- The use of a constant stepsize can be inappropriate if the solution behaves differently on parts of the interval of interest. For example in integrating satellite orbits 'close approaches' typically requires a smaller stepsize to ensure accuracy.

Runge-Kutta Methods

We will consider a general class of one-step formulas of the form:

(1)
$$y_j = y_{j-1} + h\Phi(x_{j-1}, y_{j-1}).$$

where Φ satisfies a Lipschitz condition with respect to y. That is,

$$|\Phi(x,u) - \Phi(x,v)| \le \mathcal{L}|u-v|.$$

We will consider a variety of choices for Φ and will observe that, in each case considered, Φ will be Lipschitz if f is.

Two examples of such formulas are:

Euler: $\Phi \equiv f$.

Taylor Series: $\Phi \equiv T_k(x, y)$.

Some Notation/Definitions

Definition: A formula (1) is of order p if for all sufficiently differentiable functions y(x) we have,

(2)
$$y(x_j) - y(x_{j-1}) - h\Phi(x_{j-1}, y(x_{j-1})) = O(h^{p+1}).$$

Note that:

- 1. The LHS of (2) is defined to be the Local Truncatiom Error (LTE) of the formula.
- 2. Order *p* implies that both the LE and the LTE are $O(h^{p+1})$. (This follows by substituting $z_j(x)$ for y(x) in the definition.)

Main Result:

<u>Theorem:</u> A p^{th} order formula applied to an IVP with constant stepsize h satisfies,

$$|y(x_j) - y_j| \le |e_0|e^{\mathcal{L}(b-a)} + \frac{Ch^p}{\mathcal{L}}(e^{\mathcal{L}(b-a)} - 1).$$

Runge-Kutta Methods (cont)

We wish to consider formulas Φ that are less 'expensive' than higher order Taylor Series and yet are higher order than Euler's formula. Consider a formula Φ based on <u>2</u> derivative evaluations. That is,

$$\Phi(x_{j-1}, y_{j-1}) = \omega_1 k_1 + \omega_2 k_2,$$

where,

$$k_1 = f(x_{j-1}, y_{j-1}),$$

$$k_2 = f(x_{j-1} + \alpha h, y_{j-1} + h\beta k_1).$$

We determine the parameters $\omega_1, \omega_2, \alpha, \beta$ to obtain as high an order formula as possible.

RK Methods (cont)

From the definition of order we have order p if

(3)
$$y(x_j) = y(x_{j-1}) + h(\omega_1 k_1 + \omega_2 k_2) + O(h^{p+1})$$

for all suff diff functions y(x). To derive such a formula we expand $y(x_j), k_1, k_2$ in Taylor Series about the point (x_{j-1}, y_{j-1}) , equate like powers of h on both sides of (3), and set $\alpha, \beta, \omega_1, \omega_2$ accordingly. In what follows we omit arguments when they are evaluated at the point (x_{j-1}, y_{j-1}) . The TS expansion of the LHS of (3) is:

$$\begin{aligned} y(x_j) &= y(x_{j-1}) + hy'(x_{j-1}) + \frac{h^2}{2}y''(x_{j-1}) + \frac{h^3}{6}y'''(x_{j-1}) + O(h^4), \\ &= y(x_{j-1}) + hf + \frac{h^2}{2}(f_x + f_y f) \\ &+ \frac{h^3}{6}(f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_y f_x + f_y^2 f) + O(h^4). \end{aligned}$$

Expansion of the RHS

The TS expansion of the RHS of (3) is more complicated and first requires the expansions of k_1 and k_2 ,

$$\begin{aligned} k_1 &= f, \\ k_2 &= f(x_{j-1} + \alpha h, y(x_{j-1}) + \beta hk_1), \\ &= f(x_{j-1}, y(x_{j-1}) + \beta hf) + (\alpha h)f_x(x_{j-1}, y(x_{j-1}) + \beta hf) \\ &+ \frac{\alpha^2 h^2}{2} f_{xx}(x_{j-1}, y(x_{j-1}) + \beta hf) + O(h^3), \\ &= \left[f + \beta hff_y + \frac{(\beta hf)^2}{2} f_{yy} + O(h^3) \right] \\ &+ \left[\alpha hf_x + \alpha \beta h^2 ff_{xy} + O(h^3) \right] + \left[\frac{\alpha^2 h^2}{2} f_{xx} + O(h^3) \right], \\ &= f + (\beta ff_y + \alpha f_x)h + (\frac{\beta^2}{2} f^2 f_{yy} + \alpha \beta ff_{xy} + \frac{\alpha^2}{2} f_{xx})h^2 + O(h^3). \end{aligned}$$

TS Expansion of the RHS

The TS expansion of the RHS of (3) then is (with these substitutions for k_1 and k_2)

$$RHS = y(x_{j-1}) + h(\omega_1 k_1 + \omega_2 k_2),$$

= $y(x_{j-1}) + h\omega_1 f + h\omega_2 [\cdots] + O(h^4),$
= $y(x_{j-1}) + [(\omega_1 + \omega_2)f]h + [\omega_2(\beta f f_y + \alpha f_x)]h^2$
+ $\left[\omega_2(\frac{\beta^2}{2}f^2 f_{yy} + \alpha\beta f f_{xy} + \frac{\alpha^2}{2}f_{xx})\right]h^3 + O(h^4).$

and recall

$$LHS = y(x_{j-1}) + hf + \frac{h^2}{2}(f_x + f_y f) + \frac{h^3}{6}(f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_y f_x + f_y^2 f) + O(h^4).$$

Equating like powers of *h*

Equating powers of h for LHS and RHS we observe:

- For order 0 : The coefficients of h^0 always agree and we have order at least zero for any choice of the parameters.
- For order 1: If $\omega_1 + \omega_2 = 1$ the coefficients of h^1 agree and we have at least order 1.
- For order 2: In addition to satisfying the order 1 constraints we must have the coefficient of h^2 the same. That is $\alpha \omega_2 = 1/2$ and $\beta \omega_2 = 1/2$.
- For order 3: In addition to satisfying the order 2 constraints we must have the coefficients of h^3 the same. That is we must satisfy the equations, $\omega_2 \alpha^2 = \frac{1}{3}, \, \omega_2 \alpha \beta = \frac{1}{3}, \, \omega_2 \beta^2 = \frac{1}{3}, \, \frac{1}{6} f_{xy} = ?, \, \frac{1}{6} f_y^2 = ?.$

Family of 2nd-order RK Formula

Note that there are not enough terms in the coefficient of h^3 in the expansion of the RHS to match the expansion of the LHS. We cannot therefore equate the coefficients of h^3 and the maximum order we can obtain is order 2. Our formula will be order 2 for any choice of $\omega_2 \neq 0$, with $\omega_1 = 1 - \omega_2$ and $\alpha = \beta = \frac{1}{2\omega_2}$. This is a one-parameter family of 2^{nd} -order Runge-Kutta formulas.

Three popular choices from this family are:

Modified Euler: $\omega_2 = 1/2$

$$k_{1} = f(x_{j-1}, y_{j-1}),$$

$$k_{2} = f(x_{j-1} + h, y_{j-1} + hk_{1}),$$

$$y_{j} = y_{j-1} + \frac{h}{2}(k_{1} + k_{2}).$$

Family of 2nd-order RK Formula

Midpoint: $\omega_2 = 1$

$$k_{1} = f(x_{j-1}, y_{j-1}),$$

$$k_{2} = f(x_{j-1} + \frac{h}{2}, y_{j-1} + \frac{h}{2}k_{1}),$$

$$y_{j} = y_{j-1} + hk_{2}.$$

Heun's Formula: $\omega_2 = 3/4$

$$k_{1} = f(x_{j-1}, y_{j-1}),$$

$$k_{2} = f(x_{j-1} + \frac{2}{3}h, y_{j-1} + \frac{2}{3}hk_{1}),$$

$$y_{j} = y_{j-1} + \frac{h}{4}(k_{1} + 3k_{2}).$$

