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What is Numerical Analysis?

Consider the investigation of a well defined mathematical model
arising in any application area. Assume the model is ‘well defined’ in
the sense that there exists a ‘solution’ and it is unique. Examples
include modelling the spread of an infectious disease, modelling
cancer treatments, or modelling the pricing of ‘options’.

We are interested in the ‘Conditioning’ (or sensitivity) of the underlying
mathematical problem to ‘small’ changes in the problem definition.

For virtually all mathematical models of practical interest one cannot
determine a useful ‘closed form’ expression for the exact solution and
one must approximate the exact solution.
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Scientific Computing

1. Formulate a mathematical model of the problem.

2. Approximate the solution of the model.

3. Visualize the approximate solution.

4. Verify that the approximate solution is consistent with the model.

5. Verify that the model is well-posed.

In this course we will focus on developing, analysing and evaluating
software/methods for addressing 2.
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Focus of Numerical Analysis

The emphasis is on the development and analysis of
algorithms to approximate the exact solution to
mathematical models.

Algorithms must be constructive and finite .

We must analyse the errors in the approximation.

We must also quantify the stability and efficiency of the
algorithms.
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Numerical Analysis (cont)
We will be concerned with the intelligent use of existing algorithms
embedded in widely used numerical software. We will not spend much
time on developing algorithms or on writing code.

How to interpret the numerical (approximate) results.

What method (algorithm) should be used.

What methods are available in the usual ‘Problem Solving
Environments’ that scientists, engineers and students work in. For
example in MATLAB, MAPLE or Mathematica.

In order to appreciate the limitations of the methods we must analyse
and understand the underlying algorithms on which the methods are
based.
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A Review of Relevant Mathematics
Floating Point Arithmetic

Recall that a floating point number system, Z, can be characterized by
four parameters, (β, s, m, M), and each element of Z is defined by:

z = .d1d2 · · · ds × βe,

where d1 6= 0, 0 ≤ di ≤ (β − 1), and m ≤ e ≤ M .

The floating point representation mapping, fl(x), is a mapping from
the Reals to Z that satisfies:

fl(x) = x(1 + ε), with |ε| ≤ µ.

where µ is the ‘unit roundoff’ and is defined to be 1/2 β1−s.
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FP Arithmetic (cont)
For any standard elementary arithmetic operation (+, -, × and /), we
have the corresponding F.P. approximation (denoted by ⊕,	,⊗ and �)
which satisfies, for any a, b ∈ Z,

a � b = fl(a · b) = (a · b)(1 + ε),

where |ε| ≤ µ and · is any elementary operation.

For any real-valued function, F (a1, a2, · · ·an), the most we can expect
is that the floating point implementation F̄ , will return (when invoked)
the value ȳ satisfying:

ȳ = F̄ (fl(a1), f l(a2), · · · fl(an)),

= F̄ (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)),

= fl(F (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)).
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FP Function Evaluation

In this case,

ȳ − y = [fl(F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))

−F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))]

+[F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))

−F (a1, a2 · · · an)].

≡ A + B,

where |A|
|y| < µ and |B| can be bounded using the MVT for

multivariate functions.
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FP Error Bound
If y = F (a1, a2, · · ·an) is the desired result (defined by exact arithmetic
over the Reals), the computed value, ȳ, will at best satisfy:

|ȳ − y|

|y|
≤ µ +

‖(∂F
∂x )T (a1ε1, a2ε2 · · · anεn)T ‖

‖F‖
,

≤ µ +
‖∂F

∂x ‖ ‖a‖µ

‖F‖
,

where

(
∂F

∂x
)T = [

∂F

∂x1
,

∂F

∂x2
, · · ·

∂F

∂xn
],

evaluated at x = a = (a1, a2, · · ·an). That is, the relative errors can be
large (independent of the approximation used) whenever

‖∂F
∂x ‖‖a‖

‖F‖
is large.
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Notation
[a, b] is the closed interval, (x ∈ R, such that a ≤ x ≤ b).

(a, b) is the open interval, (x ∈ R, such that a < x < b).

fn(x) = dn

dxn f(x).

f ∈ Cn[a, b] ⇒ f is n times differentiable on [a, b] and fn(x) is
continuous on (a, b).

gx(x, y) ≡ ∂
∂xg(x, y), gy(x, y) ≡ ∂

∂y g(x, y) , gxy(x, y) ≡ ∂2

∂x∂y g(x, y) etc.

g(h) = O(hn) as
h → 0 ⇔ ∃h0 > 0 and K > 0 3 |g(h)| < Khn ∀ 0 < h < h0.
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Theorems From Calculus
Intermediate Value Theorem
Let f(x) be continuous on [a, b]. If f(x1) < α < f(x2) for some α and
x1, x2 ∈ [a, b], then α = f(η) for some η ∈ [a, b].

Max-Min Theorem
Let f(x) be continuous on [a, b]. Then f(x) assumes its maximum and
minimum values on [a, b]. (That is, ∃x and x̄ ∈ [a, b] 3 ∀x ∈ [a, b], we
have f(x) ≤ f(x) ≤ f(x̄). )

Mean Value Theorem for Integrals
Let g(x) be a non-negative (or non-positive) integrable function on
[a, b]. If f(x) is continuous on [a, b] then

∫ b

a

f(x)g(x)dx = f(η)

∫ b

a

g(x)dx,

for some η ∈ [a, b].
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Theorems (cont)
Mean Value Theorem for Sums
Let f(x) ∈ C1[a, b], let x1, x2, · · · , xn be points in [a, b] and let
w1, w2, · · · , wn be real numbers of one sign, then

n∑

i=1

wif(xi) = f(η)
n∑

i=1

wi,

for some η ∈ [a, b].

Rolle’s Theorem
Let f(x) ∈ C1[a, b]. If f(a) = f(b) = 0 then f ′(η) = 0 for some
η ∈ (a, b).
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Theorems (cont)
Mean Value Theorem for Derivatives
If f(x) ∈ C1[a, b] then

f(b) − f(a)

b − a
= f ′(η),

for some η ∈ (a, b).

Fundamental Theorem of Calculus
If f(x) ∈ C1[a, b] then ∀x ∈ [a, b] and any c ∈ [a, b] we have

f(x) = f(c) +

∫ x

c

f ′(s)ds.
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Theorems (cont)
Taylor’s Theorem (with remainder)
If f(x) ∈ Cn+1[a, b] and c ∈ [a, b], then for x ∈ [a, b],

f(x) = f(c) + f ′(c)(x − c) + · · · + fn(c)
(x − c)n

n!
+Rn+1(x),

where Rn+1(x) = 1
n!

∫ x

c
(x − u)nfn+1(u)du.

Note that Taylor’s Theorem is particularly relevant to this course. We can
observe that, since (x − u)n is of constant sign for u ∈ [c, x],

Rn+1(x) =
1

n!

∫ x

c

(x − u)nfn+1(u)du = fn+1(η)
(x − c)n+1

(n + 1)!
,

for some η ∈ [c, x] .
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Taylors Theorem (cont)

We can also observe the first few terms of the Taylor Series
provides an accurate approximation to f(c + h) for small h
since we have for h = x − c,

f(c + h) = f(c) + hf ′(c) + · · ·
hn

n!
fn(c)

+
hn+1

(n + 1)!
fn+1(η).

where the error term, E(h) is O(hn+1).
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