CSCC51H

Mid-term Examination

March 2, 2011
Scarborough Campus

Time: 50 minutes.
Answer both questions showing all work in the examination booklet.
The questions are equally weighted.
Aids allowed: Approved calculator and one 8.5" x 11" page of handwritten notes.

1. (Hermite Interpolation and Numerical Integration):

The following tabulated values of $f(x)$ and $f^{\prime}(x)$ are given.

x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$
0.00	0.000	1.000
0.50	0.479	0.878
1.00	0.841	0.540

(a) Determine the Hermite cubic interpolant, $p_{3}(x)$, associated with the two data points $x_{0}=0$ and $x_{2}=1$.
(b) You are to determine two approximations to $\int_{0}^{1} f(x) d x$, where $f(x)$ is the tabulated function. The first approximation is $A_{1}=\int_{0}^{1} p_{3}(x) d x$, where $p_{3}(x)$ is the Hermite cubic you determined in part 1 . The second approximation is $A_{2}=S(f)$, where $S(f)$ is the approximation that corresponds to applying Simpsons Rule to approximate this integral.
i. Compute the values of A_{1} and A_{2}.
ii. For each of these approximations justify and determine a bound on the magnitude of the error based on the assumption that $\left|f^{i}\right| \leq 1$ for $i \geq 1$.
2. (Parametric Interpolation):

Consider the problem of interpolating the data in the following table that tabulates the x and y coordinates of points on a curve in two dimensions. The data in the table are problematic because when they are considered as being in the form $y=f(x), f(x)$ is not unique for some x. This problem also exists if the data are considered to be $x=g(y)$.

i	x_{i}	y_{i}
0	$1 / 2$	0
1	1	1
2	$1 / 2$	$1 / 2$

One solution to the uniqueness difficulty is to use a parametric interpolant. Instead of determining an interpolant of the form $y=f(x)$, a parametric interpolant has the form $x=p(t)$ and $y=q(t)$, where t is a parameter of the curve and $p(t)$ and $q(t)$ are interpolating polynomials. It is often convenient to let the new independent variable t represent the index, i, of a data point in the table. This is not the only possible choice. (For example, in your second assignment you let t be an approximation to the arc length of the curve.) All that is required is that t be strictly monotonically increasing along the curve being interpolated. (That is, the $\left(x_{i}, y_{i}\right) i=0,1,2$ are ordered tracing out the curve with the initial point $\left(x_{0}, y_{0}\right)$ and terminal point $\left(x_{2}, y_{2}\right)$.)
(a) Construct a parametric polynomial interpolant for the given table of data using the index as the parameter t. (That is, determine the quadratic interpolants $p(t), q(t)$, where $p(t)$ interpolates the xcoordinate and $q(t)$ interpolates the y-coordinate of the curve.)
(b) Verify that your parametric polynomial interpolates the given data set.
(c) Evaluate the parametric polynomial interpolant at the additional points, $t=1 / 2$ and $t=3 / 2$ and sketch your results.

