
CSCC51H - Numerical Approximation,
Integration and Ordinary Differential

Equations

c©
W.H. Enright

Computer and Mathematical Sciences Division,
University of Toronto at Scarborough

(enright@cs.utoronto.ca)

Overview and Course Organization

1. General Information and Mathematical Background [1 week].

• Administration Details:
Grading Scheme, Course Website, Tutorials, Office hours Prerequisites etc.

• What is Numerical Analysis ?
The generic difficulty, Mathematical Modelling and Numerical issues, Condi-
tioning and Stability of a problem, The need to approximate, Using existing
methods as implemented in available Software libraries

• Mathematical Preliminaries:
Floating Point arithmetic, Relevant results/theorems from Calculus,

2. Interpolation and Approximation [3 weeks].

• Approximation and interpolation – basic problem [3]

• Existence and uniqueness of polynomial interpolant [3.1]

• Representation of interpolating polynomial [3.1]

• Newton basis (divided differences), monomial basis, Lagrange basis [3.1]

• Properties of divided differences [3.2]

• Errors in polynomial interpolation [3.1]

• Interpolating with derivative constraints – Hermite interpolation (or oscula-
tory interpolation) [3.3]

• Difficulties with polynomial interpolation [3.4]

• Piecewise polynomials and splines [3.4]

1

• Linear and Cubic Splines [3.4]

• Choice of end-condition [3.4]

• Shape preserving splines and 2-D splines

3. Least Squares Polynomial Approximation [1 week].

• Least squares approximation –discrete and continuous [8.2]

• Normal equations and existence/uniqueness of solution [8.2]

• QR algorithm

4. Numerical Quadrature [4 weeks].

• The basic Problem [4.3]

• Interpolatory Rules [4.3]

• Errors in Interpolatory Rules [4.3]

• Gaussian Quadrature [4.7]

• Composite Quadrature Rules [4.4]

• Extrapolation – Romberg Quadrature [4.5]

• Adaptive Quadrature Rules [4.6]

• Special Difficulties [4.9]

• Two Dimensional Quadrature [4.8]

5. Numerical Ordinary Differential Equations [3 weeks].

• Mathematical Preliminaries [5.1]

• Taylor Series Methods [5.2, 5.3]

• Runge-Kutta Methods [5.4]

• Higher-order Runge-Kutta Methods [5.4, 5.5]

• Error Estimates [5.5]

• Stepsize Control [5.5]

1 General information / Mathematical Background

1.1 What is Numerical Analysis?

• Consider the investigation of a well defined mathematical model arising in any
application area. The problem is ‘well defined’ in the sense that there exists a
‘solution’ and it is unique.

• We are interested in the ‘Conditioning’ (or sensitivity) of the underlying mathe-
matical problem. That is, do small changes in the data defining the problem lead
to ‘small’ changes in the exact (unique) solution?

2

• For virtually all mathematical models of practical interest one cannot determine
a useful ‘closed form’ expression for the exact solution and one must approximate
the exact solution.

• In Numerical Analysis we develop and analyse algorithms to approximate the exact
solution to mathematical problems.

– Algorithms must be constructive and finite (time and space).

– We must analyse the errors in the approximation.

– We must also quantify the stability and efficiency of the algorithms.

• The focus of this course is on the intelligent use of existing algorithms embedded
in widely used numerical software. (It is NOT focused on deriving algorithms or
writing code.)

– How to interpret the numerical (approximate) results.

– What method (algorithm) should be used.

– Can a ‘standard’ method be applied to a particular problem?

– What methods are available in the usual ‘Problem Solving Environments’ that
scientists, engineers and students work in. For example in MATLAB, MAPLE
or Mathematica.

– In order to appreciate the limitations of the methods we will work with (primar-
ily in MATLAB) we must analyse and understand the underlying algorithms
on which the methods are based.

1.2 Mathematical Preliminaries (A Review):

1. Floating Point Arithmetic (from CSCC50 and CSCB70):
Recall that a floating point number system, Z, can be characterized by four pa-
rameters, (β, s,m,M), and each element of Z is defined by:

z = .d1d2 · · · ds × βe,

where d1 6= 0, 0 ≤ di ≤ β, and m ≤ e ≤M .

The floating point representation mapping, fl(x), is a mapping from the Reals to
Z that satisfies:

fl(x) = x(1 + ε), with |ε| ≤ µ.

where µ is the ‘unit roundoff’ and is defined to be 1/2 β1−s.

For any standard elementary arithmetic operation (+, -, × and /), we have the
corresponding F.P. approximation (denoted by ⊕,	,⊗ and �) which satisfies, for
any a, b ∈ Z,

a� b = fl(a · b) = (a · b)(1 + ε),

where |ε| ≤ µ and · is any elementary operation.

3

For any real-valued function, F (a1, a2, · · · an), the most we can expect is that the
floating point implementation F̄ , will return (when invoked) the value ȳ satisfying:

ȳ = F̄ (fl(a1), f l(a2), · · · fl(an)),

= F̄ (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn)),

= fl(F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn)).

Therefor if y = F (a1, a2, · · · an) is the desired result (defined by exact arithmetic
over the Reals), the computed value (computed in FP arithmetic), ȳ, will at best
satisfy (for differentiable functions, F):

|ȳ − y|
|y|

≤
‖(∂F

∂x
)T‖ ‖ε‖
‖F‖

,

≤
‖∂F
∂x
‖ ‖ε‖
‖F‖

,

where ε = [ε1, ε2 · · · εn]T , and

(
∂F

∂x
)T = [

∂F

∂x1

,
∂F

∂x2

, · · · ∂F
∂xn

],

evaluated at x = (a1, a2, · · · an). From this expression we see that we could be in
trouble with an inherent (independent of the approximation used) amplification of
relative error whenever

‖∂F
∂x
‖

‖F‖
is large.

2. Basic Notation:

We will use standard notation from calculus and analysis. For example:

• [a, b] is the closed interval, (x ∈ R, such that a ≤ x ≤ b).

• (a, b) is the open interval, (x ∈ R, such that a < x < b).

• fn(x) = dn

dxn
f(x).

• f ∈ Cn[a, b] ⇒ f is n times differentiable on [a, b] and fn(x) is continuous
on (a, b).

• gx(x, y) ≡ ∂
∂x
g(x, y), gy(x, y) ≡ ∂

∂y
g(x, y), gxy(x, y) ≡ ∂2

∂x∂y
g(x, y) etc.

• g(h) = O(hn) as h→ 0⇔ ∃h0 > 0 and K > 0 3 |g(h)| < Khn ∀ 0 < h < h0.

3. Useful Theorems from Calculus:

We will also frequently use the classical theorems from analysis such as:

4

Intermediate Value Theorem Let f(x) be continuous on [a, b]. If f(x1) < α <
f(x2) for some α and x1, x2 ∈ [a, b], then α = f(η) for some η ∈ [a, b].

Max-Min Theorem Let f(x) be continuous on [a, b]. Then f(x) assumes its
maximum and minimum values on [a, b]. (That is, ∃x and x̄ ∈ [a, b] 3 ∀x ∈
[a, b], we have f(x) ≤ f(x) ≤ f(x̄).)

Mean Value Theorem for Integrals Let g(x) be a non-negative (or non-positive)
integrable function on [a, b]. If f(x) is continuous on [a, b] then∫ b

a
f(x)g(x)dx = f(η)

∫ b

a
g(x)dx,

for some η ∈ [a, b].

Mean Value Theorem for Sums Let f(x) ∈ C1[a, b], let x1, x2, · · · , xn be points
in [a, b] and let w1, w2, · · · , wn be real numbers of one sign, then

n∑
i=1

wif(xi) = f(η)
n∑
i=1

wi,

for some η ∈ [a, b].

Rolle’s Theorem Let f(x) ∈ C1[a, b]. If f(a) = f(b) = 0 then f ′(η) = 0 for
some η ∈ (a, b).

Mean Value Theorem for Derivatives If f(x) ∈ C1[a, b] then

f(b)− f(a)

b− a
= f ′(η),

for some η ∈ (a, b).

Fundamental Theorem of Calculus If f(x) ∈ C1[a, b] then ∀x ∈ [a, b] and any
c ∈ [a, b] we have

f(x) = f(c) +
∫ x

c
f ′(s)ds.

Taylor’s Theorem (with remainder) If f(x) ∈ Cn+1[a, b] and c is any point
in [a, b], then for x ∈ [a, b], we have

f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
(x− c)2

2
· · ·+ fn(c)

(x− c)n

n!
+Rn+1(x),

where Rn+1(x) = 1
n!

∫ x
c (x− u)nfn+1(u)du.

Note that Taylor’s Theorem is particularly relevant to this course. We can observe
that, since (x− u)n is of constant sign for u ∈ [c, x] we can write

Rn+1(x) =
1

n!

∫ x

c
(x− u)nfn+1(u)du = fn+1(η)

(x− c)n+1

(n+ 1)!
,

for some η ∈ [c, x] .

5

We can also observe the first few terms of the Taylor Series provides an accurate
approximation to f(c+ h) for small h since we have

f(c+ h) = f(c) + hf ′(c) + · · · h
n

n!
fn(c) +

hn+1

(n+ 1)!
fn+1(η).

where the error term, E(h) is O(hn+1).

2 Interpolation and Approximation

1. The Basic Problem:
Approximate a continuous function f(x), by a polynomial p(x), over [a, b].

– f(x) may only be known in tabular form.

– f(x) may be expensive to compute.

2. Definition:
A polynomial p(x) interpolates f(x) at the nodes x0, x1, · · ·xn if p(xi) = f(xi) for
i = 0, 1, · · ·n.

(Intuitively if f(x) and p(x) agree at the xi then they should be ‘close’ at nearby
points.)

3. Key Theorem:
Given distinct nodes x0, x1, · · ·xn and arbitrary f0, f1, · · · fn, there is a unique
polynomial pn(x) of degree at most n that interpolates f(x) at x0, x1, · · ·xn.

Proof:

(a) Existence: (constructive)

Let Pn(x) = a0 + a1(x− x0) + · · · an(x− x0)(x− x1) · · · (x− xn−1).

For any choice of a0, a1, · · · an, Pn(x) will be of degree at most n. We will
choose the ai to ensure that Pn(xi) = fi. This results in a system of n + 1
linear equations in the n+ 1 unknowns, a0, a1, · · · an. The ith equation is:

a0 + a1(xi − x0) + · · · an(xi − x0)(xi − x1) · · · (xi − xn−1) = fi,

and we have (in matrix form):

Ba = f,

where aT = [a0, a1, · · · an]T , f = [f0, f1, · · · fn]T , and B is an (n+ 1)× (n+ 1)
matrix,

B = (bij), bij =

{
1 for j = 0; i = 0, 1, · · ·n,
(xi − x0)(xi − x1) · · · (xi − xj−1) for j = 1, 2, · · ·n; i = 0, 1, · · ·n.

Note:

6

i. B is lower triangular since bij contains a factor (xi − xi) for j > i.

ii. bii 6= 0 since x0, x1, · · ·xn are distinct. This implies B is nonsingular and
there exists a unique solution a. Solving this triangular linear system by
forward substitution we have:

a0 = f0,

a1 = (f1 − a0)/(x1 − x0),
...

an = [fn − (a0 + a1(xn − x0) + · · · an−1(xn − x0)(xn − x1) · · · (xn − xn−2))]

/[(xn − x0)(xn − x1) · · · (xn − xn−1)].

iii. The first r + 1 terms, a0, a1, · · · ar, determine a polynomial of degree at
most r that interpolates f(x) at x0, x1, · · ·xr.

iv. The resulting Pn(x) satisfies the interpolation conditions and the coef-
ficients a0, a1, · · · an define the Newton Form of this polynomial. (The
Newton Form depends on the nodes and their order.)

(b) Uniqueness:
Let qn(x) be a polynomial of degree at most n such that qn(xi) = fi for
i = 0, 1, · · ·n. Then with r(x) ≡ Pn(x) − qn(x) we observe that r(x) is a
polynomial of degree at most n such that r(xi) = 0 for i = 0, 1, · · ·n. Then,
by Rolle’s theorem, r′(x) has n distinct zeros, r′′(x) has n− 1 distinct zeros,
... and rn(x) has one zero in the interval containing the nodes.

But this is impossible unless r(x) ≡ 0, in which case qn(x) must equal Pn(x).

4. Representation of Interpolating Polynomials:
The interpolating polynomial Pn(x) is unique but it can be represented in different
ways. Consider the following representations of Pn(x):

(a) Monomials (powers of x or (x− w)):

Pn(x) = c0 + c1x+ · · · cnxn,
(In this case Pn(x) is represented by the coefficients c0, c1, · · · cn and we do
not need to know the nodes or their order to evaluate or use this polynomial.)

(b) Newton Basis (or divided differences):

Pn(x) = a0 + a1(x− x0) + · · · an(x− x0)(x− x1) · · · (x− xn−1),

(In this case Pn(x) is represented by the ai’s and one must know the nodes
and their order to use this polynomial.)

(c) Lagrange Basis:
We introduce the jth Lagrange basis function `j(x) (associated with the nodes
[xi]

n
i=0) by

`j(x) =
n∏

i=0,i6=j
(x− xi)/

n∏
i=0,i6=j

(xj − xi) =
n∏

i=0,i6=j

(x− xi)
(xj − xi)

,

7

for j = 0, 1, · · ·n.

Then it is clear that `j(x) is a polynomial of degree n such that

`j(xi) =

{
0 for j = 0, 1, · · ·n; j 6= i,
1 for j = i.

It is also clear that any linear combination of the `j(x) will be a polynomial
of degree at most n. In particular,

Pn(x) =
n∑
j=0

fj`j(x),

since Pn(x) is unique and the polynomial
∑n
j=o fj`j(x) satisfies,

n∑
j=0

fj`j(xi) = fi, for i = 0, 1, · · ·n.

(In this case Pn(x) is represented by the function values, f0, f1, · · · fn and we
must know the nodes to use Pn(x).)

The particular choice of what representation to use will depend on the appli-
cation. Often we will use the Lagrange form in our analysis but other forms
in our implementations.

For example, with the Lagrange representation of Pn(x) one cannot easily
determine P

′
n(x) while this task is easy with the monomial representation.

An Example:

Consider the unique quadratic defined by the three interpolating conditions,
P2(−1) = 7, P2(0) = 2, and P2(1) = 1. We then have the nodes x0 =
−1, x1 = 0, and x2 = 1 with the corresponding function values f0 = 7, f1 =
2 and f2 = 1. The Lagrange basis set is,

`0(x) =
(x− 0)(x− 1)

(−1− 0)(−1− 1)
=
x2 − x

2
,

`1(x) =
(x+ 1)(x− 1)

(0 + 1)(0− 1)
=
x2 − 1

−1
= 1− x2,

`2(x) =
(x+ 1)x

(1 + 1)(1− 0)
=
x2 + x

2
.

In Lagrange form P2(x) is

P2(x) = f0`0(x) + f1`1(x) + f2`2(x),

= 7(
x2 − x

2
) + 2(1− x2) +

x2 + x

2
.

(= 2x2 − 3x+ 2 (in monomial form))

5. Divided Differences

8

(a) Definition: The divided difference, f [x0, x1, · · ·xi] is defined to be ai the (i+
1)st coefficient of the interpolating polynomial Pn(x) written in Newton form.

Pn(x) = a0 + a1(x− x0) + · · · an(x− x0)(x− x1) · · · (x− xn−1).

(b) Recall that the first r + 1 coefficients of the Newton form of Pn(x) deter-
mine a polynomial of degree at most r that interpolates f(x) at the nodes
(x0, x1, · · ·xr).

(c) Properties of Divided Differences:

i. f [x0, x1, · · ·xi] = f [xj0 , xj1 , · · ·xji], where j0, j1, · · · ji is a permutation of
0, 1, · · · i.

ii. f [x0, x1, · · ·xi] = f [x0,x1,···xi−1]−f [x1,x2,···xi]
x0−xi .

Proof of these properties:

i. The polynomial of degree at most i interpolating f(x) at (x0, x1, · · ·xi)
is

Pi(x) = f [x0]+f [x0, x1](x−x0)+· · · f [x0, x1, · · ·xi](x−x0)(x−x1) · · · (x−xi−1),

Note that the coefficient of xi in this polynomial is f [x0, x1 · · ·xi]. Simi-
larly the polynomial P̄i(x) interpolating f(x) at (xj0 , xj1 , · · ·xji) is

P̄i(x) = f [xj0]+f [xj0 , xj1](x−xj0)+· · · f [xj0 , xj1 , · · ·xji](x−xj0)(x−xj1) · · · (x−xji−1
).

Now the sets [x0, x1, · · ·xi] and [xj0 , xj1 , · · ·xji] are identical (only the
order may be different) so by uniqueness we have Pi(x) = P̄i(x). In
particular the respective coefficients of xi must agree and we have,

f [x0, x1 · · ·xi] = f [xj0 , xj1 , · · ·xji].

ii. Consider the orderings (x1, x2, · · ·xi, x0) and (x0, x1, · · ·xi). Writing Pi(x)
using the two different Newton Forms (corresponding to these different
orderings) we have,

Pi(x) = f [x0] + f [x0, x1](x− x0) + · · · f [x0, x1, · · ·xi](x− x0)(x− x1) · · · (x− xi−1),

= f [x1] + f [x1, x2](x− x1) + · · · f [x1, x2, · · ·xi, x0](x− x1)(x− x2) · · · (x− xi).

Multiplying the first equation by (x−xi), the second equation by (x−x0)
and subtracting we obtain,

(x− xi)Pi(x) − (x− x0)Pi(x) = (x0 − xi)Pi(x),

= f [x0](x− xi)− f [x1](x− x0) · · ·
+ f [x0, x1, · · ·xi−1](x− x0)(x− x1) · · · (x− xi−2)(x− xi)

− f [x1, x2, · · ·xi](x− x0)(x− x1) · · · (x− xi−1)

+ f [x0, x1, · · ·xi](x− x0)(x− x1) · · · (x− xi)
− f [x1, x2, · · ·xi, x0](x− x0)(x− x1) · · · (x− xi).

9

But the last term in this expansion vanishes and this implies the co-
efficient of xi in the polynomial (x0 − xi)Pi(x) is f [x0, x1, · · ·xi−1] −
f [x1, x2, · · ·xi]. But we have shown before that the coefficient of xi in
Pi(x) is f [x0, x1 · · ·xi] so we can conclude,

f [x0, x1, · · ·xi] =
f [x0, x1 · · ·xi−1]− f [x1, x2, · · ·xi]

x0 − xi
.

6. Error in Interpolation

(a) Let En(x) = f(x) − Pn(x). To investigate the behaviour of En(x) consider
fixing x and determine the interpolating polynomial pn+1(z) of degree at most
n+ 1 (in z), interpolating f(z) at the n+ 2 nodes (x0, x1, · · ·xn, x). We then
have,

pn+1(z) = f [x0] + f [x0, x1](z − x0) + · · · f [x0, x1, · · ·xn, x](z − x0)(z − x1) · · · (z − xn)

= Pn(z) + f [x0, x1, · · ·xn, x](z − x0)(z − x1) · · · (z − xn).

Evaluating this expression at z = x and using the fact that pn+1(x) = f(x)
we have,

En(x) = f(x)− Pn(x),

= pn+1(x)− Pn(x),

= f [x0, x1, · · ·xn, x](x− x0)(x− x1) · · · (x− xn).

(b) If f [x0, x1, · · ·xn, x] (as a function of x) is ‘slowly varying’, then we can esti-
mate En(x) by

estn(x) =
∏n
i=0(x− xi)f [x0, x1, · · ·xn, xn+1]

for some xn+1.

(c) Theorem: Given f(x) r-times differentiable on [a, b] then

f [x0, x1, · · ·xr] =
f (r)(η)

r!

for some η ∈ [a, b].

Proof:
For r = 1 this is the Mean Value Theorem for derivatives. Now, for the
general case, let Pr(x) be the unique polynomial of at most degree r that
interpolates f(x) at (x0, x1, · · ·xr). Then Er(x) = f(x) − Pr(x) has r + 1
zeros in [a, b]. By repeatedly applying Rolle’s Theorem this implies

E
′

r(x) has at least r distinct zeros in [a, b],

10

⇒ E
′′

r (x) has at least r − 1 distinct zeros in [a, b],
...

⇒ E(r)
r (x) has at least 1 zero in [a, b].

Let η be one zero of E(r)
r (x) in (a, b).

0 = E(r)
r (η)⇒ f (r)(η) = P (r)

r (η).

But since Pr(x) is a polynomial of at most degree r, P (r)
r (x) is a constant.

More precisely
P (r)
r (η) = f [x0, x1, · · ·xr]r!.

and we have the desired result:

f (r)(η)

r!
= f [x0, x1, · · ·xr].

(d) Corollary: If f(x) is n+ 1 times differentiable and Pn(x) interpolates f(x) at
the n + 1 distinct points (x0, x1, · · ·xn) ∈ [a, b] then ∀x ∈ (a, b) ∃η ∈ (a, b)
such that,

En(x) =
f (n+1)(η)

(n+ 1)!

n∏
i=0

(x− xi).

NOTE:

i. This is an expression for the exact error in interpolation. We can use it
to derive an overall error bound and to provide guidance in the choice of
interpolation points.

ii. Increasing n may not imply |En(x)| → 0 since |f (n+1)| may grow faster
than (n+ 1)! as n increases.

iii. One can show (a classical theorem in approximation theory) that for any
continuous function, f(x) defined on [a, b], and ε > 0 there is an n > 0
and set of interpolation points (x0, x1, · · ·xn) such that |En(x)| < ε ∀x ∈
[a, b]. (The xi’s will depend on f and ε.)

iv. What can be done to minimise |En(x)| for (x0, x1, · · ·xn) ∈ [a, b] ? One
approach would be to choose the xi’s to make

max
a≤x≤b

n∏
i=0

|x− xi|

a minimum. This leads to the choice of Chebyshev points where we have

max
a≤x≤b

n∏
i=0

|x− xi| = 2(
b− a

4
)n+1.

11

(e) We can exploit the properties of divided differences to derive an efficient
scheme for computing and estimating the error in polynomial interpolation.
If one introduces a two dimensional tableau of divided differences, di,j, i =
0, 1, · · ·n; j = 0, 1, · · · i where

di,j = f [xi−j, xi−j+1, · · ·xi],

=
f [xi−j, xi−j+1, · · ·xi−1]− f [xi−j+1, xi−j+2, · · ·xi]

xi−j − xi
,

=
di−1,j−1 − di,j−1

xi−j − xi
.

then computing the entries in the tableau by rows is easy and effective (by
hand or in MATLAB).

7. An Example:

Consider determining the cubic polynomial, P3(x), and estimating the associ-
ated error (over the interval [−2, 2]) given the data values, f(−2) = 4, f(−1) =
6, f(0) = 1, f(1) = 0 and f(2) = 2. Note that the nodes or interpolation points
defining P3(x) are (−2,−1, 0, 1) while the node x4 = 2 is used only in the derivation
of the error estimate. The associated tableau of divided differences is presented in
Table 1.

xi f [xi] f [xi−1xi] f [xi−2xi−1xi] f [xi−3xi−2xi−1xi] f [xi−4xi−3xi−2xi−1xi]
-2 4
-1 6 4−6

−2+1
= 2

0 1 6−1
−1−0

= −5 2+5
−2−0

= −7/2

1 0 1−0
0−1

= −1 −5+1
−1−1

= 2 −7/2−2
−2−1

= 11/6

2 2 0−2
1−2

= 2 −1−2
0−2

= 3/2 2−3/2
−1−2

= −1/6 11/6+1/6
−2−2

= −1/2

We then have

P3(x) = 4 + 2(x+ 2)− 7/2(x+ 2)(x+ 1) + 11/6(x+ 2)(x+ 1)x,

and the associated error estimate,

estn(x) = f [x0, x1, x2, x3, x4]
3∏
i=0

(x− xi),

= −1/2(x+ 2)(x+ 1)(x)(x− 1).

8. Hermite (or osculatory) Interpolation

In many applications one is interested in deriving interpolating polynomials which
interpolate derivative as well as function values. That is we want to determine a

12

polynomial Pn(x), of degree at most n that satisfies Pn(xi) = f(xi) for i = 0, 1, · · · k
and P

′
n(xi) = f

′
(xi) for i = 0, 1, · · · r (where n = k + r + 1). Note that each of

the k + r + 2 constraints is linear in the unknowns (the coefficients defining the
polynomial Pn(x)) and, as for standard interpolation, we can solve for these
coefficients by solving a linear system of n + 1 equations in n + 1 unknowns. In
particular the algorithm based on the divided difference tableau to constructively
generate the Newton form of Pn(x) can easily be generalized to handle this class
of problems.

Recall that for the standard case of interpolating solution values only at n + 1
distinct interpolation points (x0, x1, · · · , xn) we can determine the Newton form of
Pn(x),

Pn(x) = f [x0]+f [x0, x1](x−x0)+ · · · f [x0, x1, · · ·xn](x−x0)(x−x1) · · · (x−xn−1),

using the diagonal entries of the divided difference tableau. The first three columns
of this tableau are :

xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]
x0 f [x0] = f(x0)

x1 f [x1] = f(x1) f(x0)−f(x1)
x0−x1

= f [x0, x1]

x2 f [x2] = f(x2) f(x1)−f(x2)
x1−x2

= f [x1, x2] f [x0,x1]−f [x1,x2]
x0−x2

...
...

...
...

xn f [xn] = f(xn) f(xn−1)−f(xn)
xn−1−xn = f [xn−1, xn] f [xn−2,xn−1]−f [xn−1,xn]

xn−2−xn

In the limit as two interpolation nodes coalesce (ie, xm → xm+1), the corresponding
entries of the divided difference tableau become:

xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]
...

...
...

...
xm f [xm] = f(xm)

xm+1 f [xm+1] = f(xm+1) f(xm)−f(xm+1)
xm−xm+1

→ f
′
(xm)

...
...

...
...

This suggests that when the function value and derivative are both prescribed at
the node xm we introduce two rows in this tableau (corresponding to xm) and the
first 2 columns of the tableau are initialised to:

xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]
...

...
...

...
xm f [xm] = f(xm)
xm f [xm] = f(xm) f

′
(xm)

...
...

...
...

13

With these modifications, the remaining entries in the tableau are computed in
the usual way (row by row) with the diagonal entries yielding the Newton form of
the Hermite interpolating polynomial, Pn(x).

Note that the error analysis for Hermite interpolation is analogous to that for
standard interpolation and similar error estimates can be justified.

9. Piecewise Polynomial Approximation:

The basic idea is to obtain accurate approximations of f(x) on [a, b] by subdividing
the interval, a = x0 < x1 < · · · < xM = b and over each sub-interval, [xi−1, xi],
introduce interpolation points (ξi,0, ξi,1, · · · ξi,n), and then approximate f(x) by the
interpolating polynomial Pi,n(x) of degree at most n. The resulting approximating
function, S(x) is then defined on [a, b] by,

S(x) = Pi,n(x) for x ∈ [xi−1, xi],

and is referred to as a piecewise polynomial.

Note:

(a) The evaluation of S(x) requires an initial search to locate the correct interval
such that x ∈ [xi−1, xi].

(b) The error in this approximation satisfies,

|f(x)− S(x)| = |f
n+1(η)

(n+ 1)!

n∏
j=0

(x− ξi,j)|

≤ L

(n+ 1)!
hn+1
i ,

where L is a bound on |fn+1(x)| and hi = (xi − xi−1) (usually a constant

= (b−a)
M

).

(c) S(x) will be continuous if the endpoints of each subinterval are interpolation
points. That is, the set of points [ξi,j]

n
j=0 must include xi and xi−1. S(x) will

not in general be differentiable.

10. An Example – Piecewise Linear Interpolation:

On each subinterval [xi−1, xi] let Pi,1(x) be the linear polynomial interpolating fi−1

and fi,
Pi,1(x) = a

(i)
0 + a

(i)
1 (x− xi−1),

where a
(i)
0 = fi−1 and a

(i)
1 = f [xi−1, xi]. Note that S(x) will then be continuous

and satisfy,

|f(x)− S(x)| < L

2
h2,

where h is the maximum subinterval width (usually h = (b− a)/M).

11. Piecewise Cubic Approximations (3 possibilities):

14

(a) Piecewise Cubic Interpolant: On each [xi−1, xi], introduce ξi,0 = xi−1, ξi,3 = xi
and two additional points ξi,1, ξi,2 to define Pi,3(x). We then have,

|f(x)− S(x)| ≤ L

4!
h4, h =

M
max
i=1
|xi − xi−1|.

Note that S(x) is continuous but not ‘smooth’.

(b) Hermite Cubic: Define P̄i,3(x) to be the unique cubic polynomial associated
with [xi−1, xi] such that P̄i,3(xi−1) = fi−1, P̄

′
i,3(xi−1) = f

′
i−1, P̄i,3(xi) = fi and

P̄
′
i,3(xi) = f

′
i . Recall that this can be viewed as the limiting case of piecewise

cubic interpolation where ξi,1 → xi−1 and ξi,2 → xi with f [xi−1, ξi,1] → f
′
i−1

and f [xi, ξi,2]→ f
′
i .

Note:

i. The resulting S̄(x) will be continuous and differentiable since P̄
′
i,3(xi−1) =

f
′
i−1 = P̄

′
i−1,3(xi−1).

ii. The error in S̄(x) satisfies

|f(x)− S̄(x)| ≤ L

4!
(x− xi−1)2(x− xi)2,

≤ L

4!
(h/2)4,

where L ≥ maxa≤x≤b{|f 4(x)|} and h = maxMi=1 |xi − xi−1|.
iii. In some applications f

′
i may not be available or may be too expensive to

compute.

iv. The resulting S̄(x) will be continuous and ‘smoother’ than Piecewise
cubic interpolants, but S̄

′′
(x) will usually be discontinuous.

(c) Cubic Splines (concentrate on smoothness of S(x)):

The basic idea is to determine the polynomial, P̂i,3(x), associated with [xi−1, xi],

by requiring P̂i,3(x) to interpolate fi−1, fi and have continuous first and sec-
ond derivatives at xi−1.

Consider the following representation of P̂i,3(x),

P̂i,3(x) = ci,0 + ci,1(x− xi−1) + ci,2(x− xi−1)2 + ci,3(x− xi−1)3,

which can be stored as a 4×M array.

The piecewise polynomial, Ŝ(x) is determined by specifying 4M linear equa-
tions which uniquely determine the ci,j’s. To do this we let hi = xi−xi−1 and
we associate ‘interpolation’ and ‘smoothness’ constraints with each subinter-
val.

• On the first subinterval (3 interpolation constraints),

P̂
′

1,3(x0) = ? ⇒ c1,1 = ? ,

P̂1,3(x0) = f0 ⇒ c1,0 = f0,

P̂1,3(x1) = f1 ⇒ c1,0 + c1,1h1 + c1,2h
2
1 + c1,3h

3
1 = f1,

15

• On the second subinterval (2 interpolation and 2 smoothness constraints),

P̂2,3(x1) = f1 ⇒ c2,0 = f1,

P̂
′

2,3(x1) = P̂
′

1,3(x1) ⇒ c2,1 − c1,1 − 2c1,2h1 − 3c1,3h
2
1 = 0,

P̂
′′

2,3(x1) = P̂
′′

1,3(x1) ⇒ 2c2,2 − 2c1,2 − 6c1,3h1 = 0,

P̂2,3(x2) = f2 ⇒ c2,0 + c2,1h2 + c2,2h
2
2 + c2,3h

3
2 = f2,

• In general on the ith subinterval (2 interpolation and 2 smoothness con-
straints),

P̂i,3(xi−1) = fi−1 ⇒ ci,0 = fi−1,

P̂
′

i,3(xi−1) = P̂
′

i−1,3(xi−1) ⇒ ci,1 − ci−1,1 − 2ci−1,2hi−1 − 3ci−1,3h
2
i−1 = 0,

P̂
′′

i,3(xi−1) = P̂
′′

i−1,3(xi−1) ⇒ 2ci,2 − 2ci−1,2 − 6ci−1,3hi−1 = 0,

P̂i,3(xi) = fi ⇒ ci,0 + ci,1hi + ci,2h
2
i + ci,3h

3
i = fi,

• And finally on the last subinterval we impose an additional interpolation
constraint:

P̂
′

M,3(xM) = cM,1 + 2cM,2hM + 3cM,3h
2
M = ?.

Note:

i. The two extra interpolation constraints imposed at x0 and xM can be
set by specifying f

′
0 and f

′
M or by using the respective approximating

values, f [x0, x1] and f [xM−1, xM] or by replacing these constraints with
P̂
′′
1,3(x0) = P̂

′′
M,3(xM) = 0. The latter choice leads to what are called

‘natural splines’.

ii. The total number of linear equations is then 3+4(M−1)+1 = 4M . This
system can be shown to be nonsingular as long as the xi’s are distinct.

iii. The error bounds for splines are similar to that for cubic Hermite. That
is, it can be shown that, in most cases

|f(x)− Ŝ(x)| ≤ 5L

4!
(h/2)4

(although for natural splines we only have O(h2) accuracy).

iv. The choice of the ‘knots’ (the xi’s) can be significant.

v. For an alternative derivation of splines see Johnson and Riess.

(d) Difficulties with Piecewise Cubics:

• They do not preserve monotone data. That is if the data is monotone
(increasing or decreasing) then, in some applications, so should the in-
terpolant. This leads to the notion of ‘Splines under tension’ and results
in additional (nonlinear) constraints on the coefficients.

16

• They do not preserve discontinuous derivatives. For example in repre-
senting ‘corners’ in parametric curves.

• They assume accurate data. In many applications (in particular in those
arising in CAD and computer graphics) one often wants to represent the
‘general shape’ of the function or curve rather than insisting on strict
interpolation. This leads to the notion of Bezier Curves/approximation
which is useful in interactive design using curves and surfaces. Another
approach to cope with this difficulty is to use ‘data fitting’ or linear least
squares.

12. Interpolation in 2 Dimensions:

Consider the problem of approximating u(x, y) in a finite region of R2 or ap-
proximating a surface in 3-dimensions. We can generalize the notion of piecewise
polynomials to higher dimensions in a natural way:

(a) The original region (or domain) is first decomposed (or partitioned) into a
collection of regularly-shaped subregions. Usually rectangles or triangles are
used. If the original domain is not a simple shape there may be some ‘ap-
proximation’ introduced in this partitioning process.

(b) Over each subregion (the triangular or rectangular mesh element) one can
define a bi-variate polynomial (in x and y) and use the total collection of
such polynomials to define the bivariate piecewise polynomial, S(x, y).

(c) As in the one dimensional problem one can define the coefficients of the
polynomials associated with each element by imposing interpolation con-
straints, solution continuity constraints at the boundaries, and/or smoothness
of derivatives at the boundaries.

3 Least Square Polynomial Approximation

1. The basic Problem– Data Fitting:

Given data {xi, fi}mi=0 find the polynomial pn(x) of degree at most n represented
by,

pn(x) = c0 + c1x+ · · · cnxn,

such that G(c) is minimized, where G(c) is defined by,

G(c) =
m∑
i=0

(pn(xi)− fi)2.

• Other norms (measures of the error) could be minimized. For example we
could use,

Ĝ(c) =
m∑
i=0

|pn(xi)− fi| or G̃(c) =
m

max
i=0
|pn(xi)− fi|,

17

but these measures are not differentiable and the resulting algorithms are
more complex.

• We will assume that the xi’s are distinct and m > n. From standard results
in linear algebra we know that these assumptions will guarantee a full rank
problem with a unique solution.

2. Characterization of the ‘best fit’, pn(x)

Let ri(c) = pn(xi)− fi for i = 0, 1, · · ·m. We then have,

ri(c) = c0 + c1xi + · · · cnxni − fi,
=

[
Ac− f

]
i
,

where A is the (m+ 1)× (n+ 1) matrix,

A =


1 x0 · · · xn0
1 x1 · · · xn1
...

...
...

...
1 xm · · · xnm

 ,

c is the n+1 vector, c = (c0, c1, · · · cn)T and f is them+1 vector, f = (f0, f1, · · · fm)T .

From standard results in calculus we know that G(c) is a minimum when,

∂G

∂cj
= 0 for j = 0, 1, · · ·n.

But since G(c) =
∑m
i=0 r

2
i (c) we have,

∂G

∂cj
=

∂

∂cj

[
m∑
i=0

r2
i (c)

]
(1)

=
m∑
i=0

∂

∂cj
(r2
i (c)), (2)

= 2
m∑
i=0

ri(c)
∂ri(c)

∂cj
. (3)

From the definition of ri(c) we have,

∂ri(c)

∂cj
=

∂

∂cj

[
Ac− f

]
i
,

= (ai,j) = xji ,

for i = 0, 1, · · ·m; j = 0, 1, · · ·n.

It then follows that
∂G

∂cj
= 2

m∑
i=0

ri(c)ai,j = 2
(
AT r

)
j
.

18

Therefore to achieve ∂G
∂cj

= 0 for j = 0, 1, · · ·n we must have,

(
AT r

)
j

= 0, for j = 0, 1, · · ·m.

This is equivalent to asking that,

AT r = 0 or AT
(
Ac− f

)
= 0.

Note that the matrix ATA is a square (n+ 1)× (n+ 1) nonsingular matrix and we
can therefore compute the best fit least squares polynomial, pn(x) by solving the
linear system:

ATAc = ATf

These linear equations are called the Normal Equations.

3. An Efficient Algorithm for solving the Normal Equations:

To solve the Normal Equations efficiently we can use a QR based algorithm (from
Numerical linear algebra) that doesn’t require the explicit computation of the
(possibly ill-conditioned) matrix ATA.

Consider forming the QR factorization (or Schur decomposition) of the (m+ 1)×
(n+ 1) matrix A,

A = QR = (Q1Q2 · · ·Qn+1)R,

where Q is an orthogonal matrix and R is an upper triangular matrix. This is
a standard factorization in numerical linear algebra and is usually accomplished
using a modified Gram Schmidt algorithm or an algorithm based on the use of a
sequence of ‘Householder reflections’. We will consider the latter approach.

That is, we will determine Q as a product of n+ 1 Householder reflections:

QA = R⇔ QT
n+1(QT

n · · ·QT
1A)) · · ·) = R,

where each Qi = QT
i is an (m + 1) × (m + 1) Householder reflection and R is an

(m+ 1)× (n+ 1) upper triangular matrix,

R =



x x · · · x
0 x · · · x
0 0 · · · x
...

...
... x

0 0 · · · 0
...

...
...

...
0 0 · · · 0


≡
[
R
0

]
,

and R is a square (n+ 1)× (n+ 1) upper triangular matrix.

19

With such a factorization of A we have,

ATA = (QR)TQR = RTQTQR = RTR,

where

RTR =


x 0 0 · · · 0
x x 0 · · · 0
...

...
... · · · 0

x x x · · · 0





x x · · · x
0 x · · · x
0 0 · · · x
...

... · · · x
...

...
...

...
0 0 · · · 0


=


x x · · · x
x x · · · x
...

... · · · ...
x x · · · x



=
[
RT 0

] [R
0

]
= RTR.

Now solving the Normal Equations to determine c can be done by solving the
equivalent linear system,

RTRc = ATf.

This requires the computation of ATf (at a cost of (n+ 1)(m+ 1) flops) and two
triangular linear systems (at a cost of n2 flops). The cost of determining the QR
factorization of A is n2m + O(nm) and therefore the total cost of this algorithm
to determine c is n2(m+ 1) +O(nm) flops.

Note that in most applications m is much larger than n and n is often less than 4.

We can define a similar algorithm for the continuous least squares problem, where
we are asked to minimize Ḡ(c),

Ḡ(c) ≡
∫ b

a
(pn(x)− f(x))2dx.

In this case the definitions of ai,j and fi are modified but a similar QR-based
algorithm is available.

4 Numerical Quadrature

1. The basic Problem – approximation of integrals:

We will investigate methods for computing an approximation to the definite inte-
gral:

I(f) ≡
∫ b

a
f(x)dx.

The obvious generic approach is to approximate the integrand f(x) on the interval
[a, b] by a function that can be integrated exactly (such as a polynomial) and then
take the integral of the approximating function to be an approximation to I(f).

20

2. Interpolatory Rules:

When the approximating function is an interpolating polynomial, Pn(x), the cor-
responding approximation I(Pn(x)) is called an interpolatory rule. We will inves-
tigate several widely used interpolatory rules.

Consider writing Pn(x) in Lagrange form,

Pn(x) =
n∑
i=0

f(xi)li(x),

where li(x) is defined by

li(x) =
n∏

j=0,j 6=i

(
x− xj
xi − xj

)
.

We then have ∫ b

a
Pn(x)dx =

∫ b

a

n∑
i=0

f(xi)li(x)dx

=
n∑
i=0

f(xi)
∫ b

a
li(x)dx

=
n∑
i=0

ωif(xi).

Note:

• The ‘weights’ (the ωi’s) depend only on the interval (the value of a and b)
and on the xi’s. In particular these weights are independent of the integrand.

• The interpolatory rules then approximate I(f) by a linear combination of
sampled integrand evaluations.

• If a = x0 < x1 < · · ·xn = b are equally spaced the corresponding interpola-
tory rule is called a Newton-Coates quadrature rule.

3. Errors in Interpolatory Rules:

The error associated with an interpolatory rule is E(f) = I(f)−I(Pn) and satisfies,

E(f) =
∫ b

a
f(x)dx−

∫ b

a
Pn(x)dx =

∫ b

a
[f(x)− Pn(x)]dx,

=
∫ b

a
En(x)dx,

where En(x) is the error in polynomial interpolation and satisfies,

En(x) = (x− x0)(x− x1) · · · (x− xn)f [x0, x1, · · ·xn, x],

= Πn(x)f [x0, x1, · · ·xn, x].

This expression for the error is valid for all interpolatory rules. In some special
cases we can simplify this expression to obtain estimates and/or more insight into
the behaviour of the error.

21

• First special case – If Πn(x) is of one sign (on [a, b]) then the Mean Value
Theorem for Integrals implies,

E(f) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

= f [x0, x1, · · ·xn, ξ]
∫ b

a
Πn(x)dx,

for some ξ ∈ [a, b]. Also since f [x0, x1, · · ·xn, ξ] = f (n+1)(η)
(n+1)!

for some η ∈
(a, b), we have shown that if Πn(x) is of one sign then,

E(f) = 1
(n+1)!

f (n+1)(η)
∫ b
a Πn(x)dx

• Second special case – If
∫ b
a Πn(x)dx = 0 we have, for arbitrary xn+1,

f [x0, x1, · · ·xn, x] = f [x0, x1, · · ·xn, xn+1] + f [x0, x1, · · ·xn+1, x](x− xn+1),

and therefore,

E(F) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

=
∫ b

a
f [x0, x1, · · ·xn+1]Πn(x)dx+

∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx,

=
∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx.

As a result, if
∫ b
a Πn(x)dx = 0 and we can choose xn+1 so that Πn+1(x) is of

one sign, then using a similar argument to that presented in the first special
case, it follows that, if

∫ b
a Πn(x)dx = 0 and Πn+1(x) is of one sign,

E(f) = 1
(n+2)!

f (n+2)(η)
∫ b
a Πn+1(x)dx

4. Examples of Interpolatory Rules:

(a) Trapezoidal Rule (an example of the first special case):

T (f) ≡
∫ b

a
P1(x)dx,

where x0 = a and x1 = b. We then have,

P1(x) = l0(x)f0 + l1(x)f1 =
x− x1

x0 − x1

f0 +
x− x0

x1 − x0

f1.

Therefore we have

T (f) =
∫ b

a

x− b
a− b

dxf(a) +
∫ b

a

x− a
b− a

dxf(b),

=

(
b− a

2

)
f(a) +

(
b− a

2

)
f(b),

=

(
b− a

2

)
[f(a) + f(b)].

22

We also have that Π1(x) = (x − a)(x − b) is negative for x ∈ [a, b] and∫ b
a Π1(x)dx = − (b−a)3

6
. We therefore have satisfied the conditions of the first

special case and this implies,

T (f) = (b−a
2

)[f(a) + f(b)], ET (f) = −f ′′ (η)
12

(b− a)3.

(b) Simpsons Rule (an example of the second special case):

S(f) ≡
∫ b

a
P2(x)dx,

with x0 = a, x1 = a+b
2
, x2 = b.

Exercise: Using

P2(x) = l0(x)f(a) + l1(x)f

(
a+ b

2

)
+ l2(x)f(b),

where

l0(x) =
(x− a+b

2
)(x− b)

(a− a+b
2

)(a− b)
,

l1(x) =
(x− a)(x− b)

(a+b
2
− a)(a+b

2
− b)

,

l2(x) =
(x− a)(x− a+b

2
)

(b− a)(b− a+b
2

)
.

Simplify and verify (after some tedious algebra) that,∫ b

a
P2(x)dx = [

∫ b

a
l0(x)dx]f(a) + [

∫ b

a
l1(x)dx]f(

a+ b

2
) + [

∫ b

a
l2(x)dx]f(b),

...
...

=

(
b− a

6

)[
f(a) + 4f(

a+ b

2
) + f(b)

]
.

Note that for x ∈ [a, b], Π2(x) is antisymmetric about a+b
2

and this implies∫ b
a Π2(x)dx = 0. Furthermore by choosing x3 = a+b

2
we have

Π3(x) = (x− a)(x− a+ b

2
)2(x− b),

is of one sign and this implies,

ES(f) = I(f)− S(F) =
1

4!
f (4)(η)

∫ b

a
Π3(x)dx.

But
∫ b
a Π3(x)dx = − 4

15
(b−a

2
)5 so we have,

23

S(f) = (b−a
6

)[f(a) + 4f(a+b
2

) + f(b)], ES(f) = −f (4)(η)
90

(b−a
2

)5

5. Gaussian Quadrature (choosing the xi’s to maximize accuracy):

(a) Recall that the error in interpolatory rules satisfies,

E(f) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

and if
∫ b
a Πn(x)dx = 0 we have,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx,

for any choice of xn+1.

Now if
∫ b
a Πn+1(x) = 0 as well we can repeat this argument and obtain,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+2, x]Πn+2(x)dx.

For the general case, let q0(x) ≡ 1 and qi(x) ≡ (x− xn+1)(x− xn+2) · · · (x−
xn+i) for i = 1, 2, · · · (m− 1). We can then show that if

∫ b
a Πn(x)qi(x)dx = 0,

for i = 0, 1, · · · (m− 1) then,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+m, x]Πn+m(x)dx.

(b) The key idea of Gaussian Quadrature is to choose the nodes or interpolation
points, (x0, x1, · · ·xn) such that

∫ b
a Πn(x)q(x)dx = 0 for all polynomials, q(x),

of degree at most n. Therefore, in particular for the choice q(x) = qi(x) for
i = 0, 1, · · ·n we have

∫ b
a Πn(x)qi(x)dx = 0, and from the above observation,

E(f) =
∫ b

a
f [x0, x1, · · ·x2n+1, x]Π2n+1(x)dx.

To ensure that Π2n+1(x) is of one sign for x ∈ [a b] we can choose xn+i = xi for
i = 1, 2, · · ·n+ 1 and we then have Π2n+1(x) = Π2

n(x) with the corresponding
error expression,

E(f) = f [x0, x1, · · ·x2n+1, ξ]
∫ b

a
Π2
n(x)dx,

=
1

(2n+ 2)!
f (2n+2)(η)sn+1,

where sn+1 =
∫ b
a Π2

n(x)dx.

Note that such rules will be exact for all polynomials of degree at most 2n+1.
That is, if the integrand is a polynomial of degree less than 2n + 2 the cor-
responding Gaussian Quadrature interpolatory rule (based on the n carefully
chosen points) will give the exact answer.

24

(c) How do we choose the xi’s to ensure that
∫ b
a Πn(x)q(x)dx = 0 for all polyno-

mials, q(x) of degree at most n ?

This question leads to the study of orthogonal polynomials.

• Definition: The set of polynomials {r0(x), r1(x), · · · rk(x)} is orthogonal
on [−1, 1] iff the following two conditions are satisfied:

i.
∫ 1
−1 ri(x)rj(x)dx = 0, for i 6= j,

ii. The degree of ri(x) is i for i = 0, 1, · · · k.

• Properties of orthogonal polynomials:

i. Any polynomial qs(x) of degree s ≤ k can be expressed as.

qs(x) =
s∑
j=0

cjrj(x).

ii. rk(x) is orthogonal to all polynomials of degree less than k. (This
follows from the previous property.)

iii. rk(x) has k simple zeros all in the interval [−1, 1].
Proof:
For rk(x), let {µ1, µ2, · · ·µm} be the set of points in [−1, 1] where
rk(x) changes sign. It is clear that each µj is a zero of rk(x) and all
simple zeros of rk(x) in [−1, 1] must be in this set.
We then havem ≤ k as the maximum number of zeros of a polynomial
of degree k is k. To show that m ≥ k (and hence m = k) assume
the contrary, ie. m < k. With this assumption we have that

q̂m(x) ≡
m∏
i=1

(x− µi),

is a polynomial of degree m < k that changes sign at each µi and,∫ 1

−1
q̂m(x)rk(x)dx = 0,

but q̂m(x) and rk(x) have the same sign for all x in [−1, 1] (they
change sign at the same locations) and this implies a contradiction
(the integrand is of one sign but the integral is zero) and therefore
our assumption must be false and m ≥ k.

iv. The rk(x) satisfy a 3-term recurrence,

rs+1(x) = as(x− bs)rs(x)− csrs−1(x),

for s = 1, 2, · · · k, where the as are normalization constants, r−1(x) =
0, and if ts =

∫ 1
−1 r

2
s(x)dx then,

bs =
1

ts

∫ 1

−1
xr2

s(x)dx,

cs =
asts

as−1ts−1

.

25

For example, we obtain the classical Legendre polynomials if we nor-
malise so rs(−1) = 1. This leads to,

as =
2s+ 1

s+ 1
, bs = 0, cs =

s

s+ 1
.

• Orthogonal Polynomials on arbitrary intervals [a, b].
To transform orthogonal polynomials defined on [−1, 1] to [a, b] consider
the linear mapping from [−1, 1]→ [a, b] defined by x = b−a

2
y + a+b

2
. The

corresponding inverse mapping is y = 1
b−a [2x − b − a] and from calculus

we know, ∫ b

a
g(x)dx = (

b− a
2

)
∫ 1

−1
g(
b− a

2
y +

a+ b

2
)dy.

This relationship, combined with the properties of Legendre polynomials
(that we have identified above) give a prescription for the selection of the
set of interpolation points (the xi’s) that define Gaussian Quadrature:
For i = 0, 1, · · ·n, set yi to the ith zero of the Legendre Polynomial,
rn+1(y). With this choice we note that

∏n
j=0(y − yj) = K rn+1(y) for

some constant K 6= 0. Then with xi = b−a
2
yi + b+a

2
we have,

Πn(
b− a

2
y +

a+ b

2
) =

n∏
j=0

(
b− a

2
y +

a+ b

2
− xj),

=
n∏
j=0

(
b− a

2
y +

a+ b

2
− (

b− a
2

yj +
a+ b

2
)),

=
n∏
j=0

[
b− a

2
(y − yj)

]
,

= (
b− a

2
)n+1

n∏
j=0

(y − yj),

= (
b− a

2
)n+1K rn+1(y),

and therefore for any polynomial, q(x) of degree at most n,∫ b

a
Πn(x)q(x)dx = (

b− a
2

)
∫ 1

−1
Πn(

b− a
2

y +
b+ a

2
)q(

b− a
2

y +
b+ a

2
)dy,

= (
b− a

2
)
∫ 1

−1
Πn(

b− a
2

y +
b+ a

2
)q̂(y)dy,

(where q̂(y) is a polynomial of degree at most n since the degree of q(x)
is at most n)

= (
b− a

2
)n+2K

∫ 1

−1
rn+1(y)q̂(y)dy,

= 0.

26

That is with the xi’s chosen as the ‘transformed zeros’ of the Legen-
dre polynomial, rn+1(y), we have the interpolation points satisfying our
desired property.

6. Composite Quadrature Rules:

Approximating the integrand with a piecewise polynomial leads to the class of
Composite Rules. Let a = x0 < x1 < · · ·xM = b and S(x) be a piecewise poly-

nomial approximation to f(x) for x ∈ [a, b]. We can then use
∫ b
a S(x)dx as

the approximation to I(f) =
∫ b
a f(x)dx. Recall that S(x) ≡ pi,n(x) for x ∈

[xi−1, xi] i = 1, 2, · · ·M . From calculus we have,∫ b

a
S(x)dx =

M∑
i=1

∫ xi

xi−1

S(x)dx,

=
M∑
i=1

∫ xi

xi−1

pi,n(x)dx,

–A sum of basic interpolatory rules.

If we use equally spaced xi’s and low degree interpolation we obtain familiar rules:

• The composite trapezoidal rule, TM(f):∫ xi

xi−1

f(x)dx =
xi − xi−1

2
[f(xi−1) + f(xi)]−

f
′′
(ηi)(xi − xi−1)3

12
,

=
h

2
[fi−1 + fi]−

f
′′
(ηi)h

3

12
.

Summing over all sub-intervals we obtain,

TM(f) ≡ h
M−1∑
i=1

fi +
h

2
(f0 + fM),

with the corresponding error expression,

ET
M(f) ≡ I(f)− TM(f),

= −
M∑
i=1

h3

12
f
′′
(ηi).

If f
′′
(x) is continuous we can apply the MVT for sums to obtain the expres-

sion,

ET
M(f) = −f ′′(η)

M∑
i=1

h3

12
for some η ∈ (a, b),

= −f ′′(η) M
h3

12
, (but h = (b− a)/M)

= −f ′′(η)(b− a)
h2

12
.

We therefore have:

27

TM(f) = h
∑M−1
i=1 fi + h/2(f0 + fM)

with

ET
M = −f ′′(η)(b− a)1

3
(h

2
)2 .

• The composite Simpsons rule, SM(f):

Similarly we can derive the Composite Simpsons Rule:

SM(f) = h/6
[
f0 + fM + 2

∑M−1
i=1 fi + 4

∑M
i=1 fi−1/2

]
with the corresponding error expression,

ES
M(f) = −f (4)(η)

180
(b− a)(h

2
)4

7. Error estimates for composite rules:

• Trapezoidal rule: Consider the contribution to the overall error that comes
from the ith sub-interval,

E(i) ≡ I(i) − T (i)
1 ,

=
∫ xi

xi−1

f(x)dx− h

2
(fi−1 + fi),

= −(
1

12
)h3

i f
′′
(ξi).

Subdividing [xi−1, xi] into two subintervals leads to,∫ xi−1/2

xi−1

f(x)dx ≈ hi
4

(fi−1 + fi−1/2) with error =
−1

12
(
hi
2

)3f
′′
(ξ̄i),

∫ xi

xi−1/2

f(x)dx ≈ hi
4

(fi−1/2 + fi) with error =
−1

12
(
hi
2

)3f
′′
(ξ̂i).

Summing these two terms we obtain,

I(i)(f) ≈ hi
4

(fi−1 + 2fi−1/2 + fi) ≡ T
(i)
2 (f),

with an associated error expression,

I(i) − T (i)
2 =

−1

12
(
hi
2

)3
[
f
′′
(ξ̄i) + f

′′
(ξ̂i)

]
=
−h3

i

48
f
′′
(ξ̃i).

Now if we assume that h is ‘small enough’ so that f
′′

doesn’t change much
on the ith subinterval (ie, f

′′
(ξ̄i) ≈ f

′′
(ξ̂i) ≈ f

′′
(ξ̃i)) then subtracting these

two error expressions we obtain,

(I(i) − T (i)
1)− (I(i) − T (i)

2) = T
(i)
2 − T

(i)
1 ≈

−h3
i

12
f
′′
(ξi) [1− 1/4] =

−3

48
h3
i f
′′
(ξi).

28

We can then estimate the error associated with the approximation, T
(i)
2 as

1/3
[
T

(i)
2 − T

(i)
1

]
and, after summing over all M subintervals, we obtain

EST2M ≡
M∑
i=1

1

3
(T

(i)
2 − T

(i)
1),

=
1

3

[
M∑
i=1

T
(i)
2 −

M∑
i=1

T
(i)
1

]
,

=
1

3
[T2M − TM] .

Furthermore by applying the MVT for sums, it can easily be shown that

EST2M also equals −f
′′

(ξ)
24

(h
2
)2(b− a) for some ξ ∈ (a, b).

Note:

(a) This estimate is only justified for hi sufficiently small so that f
′′

is almost
constant over each subinterval.

(b) The computation of EST2M can be subject to large relative error as it
involves the subtraction of ‘near equals’.

(c) A validity check is available based on the monitoring the ratio |ESTM/EST2M |
which should be close to 4.

• A similar analysis for Simpsons rule yields,

EST S2M =
1

15
[S2M − SM] ,

=
f (4)(η)

180
(
h

4
)4(b− a).

where the corresponding validity check is that |EST SM/EST S2M | ≈ 16.

• Exercise: Show that T2M + EST2M = SM .

8. An Example: Consider applying the Composite Trapezoidal and Composite
Simpsons rules in single and double precision floating point arithmetic (β = 16
and s = 5, s = 12, respectively) to approximate

∫ 1
0 e
−x2

dx. The numerical results
are presented in Table 1 and they clearly indicate the ability of the validity check
to reflect when the error estimate can be trusted. Note that we have only justified
it in the limit as h → 0 and in the situation where truncation error dominates
round-off error.

9. Extrapolation – Romberg Quadrature:

• Recall, for the Trapezoidal rule we have established,

T2M + EST2M =
M∑
i=1

T
(i)
2 +

1

3
(T

(i)
2 − T

(i)
1),

=
M∑
i=1

4

3
T

(i)
2 −

1

3
T

(i)
1 ,

29

M Approximation EST True Err Ratio
I) Composite Trapezoidal, TM – single precision

2 0.7313699000000 -.158E-01 -.155E-01 4.07
4 0.7429835000000 -.387E-02 -.384E-02 4.02
8 0.7458651000000 -.961E-03 -.959E-03 4.00

16 0.7465841000000 -.240E-03 -.240E-03 4.00
32 0.7467608000000 -.589E-04 -.632E-04 3.79
64 0.7468032000000 -.141E-04 -.208E-04 3.04

128 0.7468135000000 -.342E-05 -.106E-04 1.97
256 0.7468156000000 -.715E-06 -.840E-05 1.26
512 0.7467660000000 .165E-04 -.580E-04 0.15
II) Composite Trapezoidal, TM – double precision

2 0.7313702518257 -.158E-01 -.155E-01 4.07
4 0.7429840977975 -.387E-02 -.384E-02 4.02
8 0.7458656148428 -.961E-03 -.959E-03 4.01

16 0.7465845967854 -.240E-03 -.240E-03 4.00
32 0.7467642546494 -.599E-04 -.599E-04 4.00
64 0.7468091636350 -.150E-04 -.150E-04 4.00

128 0.7468203905388 -.374E-05 -.374E-05 4.00
256 0.7468231972433 -.936E-06 -.936E-06 4.00
512 0.7468238989181 -.234E-06 -.234E-06 4.00
III) Composite Simpson, SM – single precision

2 0.7468550000000 .217E-04 .310E-04 11.5
4 0.7468255000000 .197E-05 .143E-05 21.7
8 0.7468219000000 .234E-06 -.209E-05 .7

16 0.7468218000000 .795E-08 -.221E-05 .9
32 0.7468217000000 .119E-07 -.238E-05 .9
64 0.7468134000000 .552E-06 -.107E-04 .2

128 0.7467956000000 .118E-05 -.284E-04 .4
256 0.7467887000000 .457E-06 -.353E-04 .8
512 0.7467867000000 .139E-06 -.374E-04 .9
IV) Composite Simpson, SM – double precision

2 0.7468553797881 .217E-04 .312E-04 11.4
4 0.7468261205246 .195E-05 .199E-05 15.7
8 0.7468242574329 .124E-06 .125E-06 15.9

16 0.7468241406041 .779E-08 .779E-08 16.0
32 0.7468241332968 .487E-09 .487E-09 16.0
64 0.7468241328400 .305E-10 .305E-10 16.0

128 0.7468241328115 .190E-11 .196E-11 15.6
256 0.7468241328097 .119E-12 .173E-12 11.3
512 0.7468241328096 .748E-14 .611E-13 2.8

Table 1: Numerical results for Composite rules applied to approximate
∫ 1

0 e
−x2

dx

30

=
M∑
i=1

{
h

3
(fi−1 + 2fi−1/2 + fi)−

h

6
(fi−1 + fi)

}
,

=
M∑
i=1

h

6

{
fi−1 + 4fi−1/2 + fi

}
,

= SM ,

= I(f) +O(h4),

(A fourth order approximation to I(f)).

• This process of taking a basic quadrature rule, applying it with a sequence of
‘stepsizes’ h, h/2, h/4, · · ·h/2k and then using a linear combination of the re-
sulting approximations, A0, A1, · · ·Ak to obtain a higher order approximation
is called extrapolation.

When the Trapezoidal rule is used as the basic rule this is called Romberg
quadrature (or Romberg Integration).

• To justify extrapolation for the Trapezoidal rule we must show that whenever
f(x) has (2k + 2) continuous derivatives, then the true error satisfies,

ET
M = c1h

2 + c2h
4 + · · · ckh2k +O(h2k+2),

where the ci’s are independent of h.

(a) One can then ‘eliminate’ the h2 term in the error by taking a linear
combination of TM and T2M (two different approximations to I(f)). Let
h be the interval width associated with T2M . We then have,

T2M = I(f) + c1h
2 + c2h

4 + · · · ckh2k +O(h2k+2),

TM = I(f) + c1(2h)2 + c2(2h)4 + · · · ck(2h)2k +O((2h)2k+2).

Defining T 1
2M by,

T 1
2M ≡ 4T2M − TM

3
,

= T2M +
1

3
(T2M − TM),

= I(f) + c1
2h

4 + c1
3h

6 + · · · c1
kh

2k +O(h2k+2),

we have derived an error expansion for this fourth order approximation
(which is Simpson’s rule).
Similarly, by considering the resulting error expressions for T 1

2M and T 1
4M

we can ‘eliminate’ the O(h4) term to obtain,

T 2
4M ≡ 16T 1

4M − T 1
2M

15
,

= T 1
4M + (

T 1
4M − T 1

2M

15
),

= S2M + EST S2M ,

= I(f) + c2
3h

6 + c2
4h

8 + · · · c2
kh

2k +O(h2k+2).

31

(b) This process can continue and we have, in general,

Tm2mM ≡ Tm−1
2mM +

Tm−1
2mM − Tm−1

2m−1M

4m − 1
,

where we have the following expansion of the error,

T2mM = I(f) + cmm+1h
2(m+1) + cmm+2h

2(m+2) + · · · cmk h2k +O(h2k+2).

(c) This technique gives high order approximations but round-off limits the
accuracy that can be achieved. In practice we usually have m ≤ 6 or 7.
Note that we can obtain more accuracy by increasing m or M since the
error term associated with Tm2mM is O(h2(m+1)) which is O((b−a

M
)2(m+1)).

The ‘cost’ of computing this approximation is 2mM evaluations of the
integrand.

10. Error estimates for Gaussian Quadrature Rules:

• Let Gn(f) =
∑n
i=0 ωif(xi) denote the (n + 1) – point Gaussian quadrature

rule.

(a) We have shown,

I(f)−Gn(f) = O(b− a)2n+3, as (b− a)→ 0,

and this is optimal.

(b) The rules Gn+1, Gn+2, · · ·, are higher order and therefore asymptotically
more accurate (as (b− a)→ 0) so we could form an error estimate from
one of these. That is, we could use,

ÊSTGn ≡ Gn+k(f)−Gn(f) = EGn +O(b− a)2(n+k)+3.

(c) The rules Gn+k and Gn have at most one common interpolation point
so the computation of this error estimate more than doubles the cost
(2n+ k + 2 integrand evaluations).

• An alternative (to forming an error estimate based on Gn+k) is is to use the
integrand evaluations already available (for the computation of Gn(f)) and
introduce only the minimum number of extra evaluations required to obtain
an effective error estimate. This approach leads to a class of quadrature rules
called Kronrod quadrature rules, Kn+k(f). The error estimate for Gn(f), is
then Kn+k(f) − Gn(f), where Kn+k(f) is more accurate and less expensive
to compute than is Gn+k(f). Kronrod proposed a particularly effective class
of such rules where k = n+ 1,

K2n+1(f) ≡
n∑
i=0

aif(xi) +
n+1∑
j=0

bjf(yj),

32

where the x′is are the interpolation points associated with Gn(f), and the
yi’s are the extra interpolation points necessary to define an accurate approx-
imation to I(f). Kronrod derived these weights (the ai’s and the bi’s) and
the extra interpolation points (y0, y1, · · · yn) so that the resulting rule is order
3n+ 3. The resulting error estimate is then,

ESTGn ≡ K2n+1(f)−Gn(f),

with an associated cost of 2n+ 3 integrand evaluations and an order of accu-
racy of O((b− a)3n+4).

• The resulting Gauss-Kronrod pairs of rules can be the basis for composite
quadrature rules and adaptive methods. These methods are widely used and
implemented in numerical libraries.

11. Adaptive Quadrature Rules:

• A straightforward implementation of a numerical quadrature method based on
a basic quadrature rule with error estimate would accept, as input parameters:

(a) The integrand function, f(x).

(b) The upper and lower limits of integration, a and b.

(c) The desired accuracy, TOL, where the method would attempt to provide
an approximation, A, that satisfies |I(f)− A| < TOL.

and proceed, as in the case of the composite rules (introduced earlier). That is
after applying the basic rule, if the magnitude of the associated error estimate
exceeds TOL, the interval [a, b] is subdivided (by interval halving) and the ba-
sic rule applied to each sub-interval (with an associated overall error estimate
obtained by summing the magnitudes of the estimates from each subinterval).
This process of interval halving and updating the approximation to I(f) and
the associated error estimate EST (f) continues until |EST (f)| < TOL with
some failure condition possible if no convergence is achieved after a reasonable
amount of effort (for example after 8− 10 subdivisions).

Such an implementation will work well for functions that are smooth and
relatively well behaved over the interval of integration. On the other hand,
such a method can be inefficient if the integrand is badly behaved (rapidly
varying for example) on only a small part of the interval of integration. In
such cases it would be more effective to concentrate the effort (the integrand
evaluations) in the neighborhood where the integrand is changing rapidly.
This is the key idea behind ‘adaptive’ quadrature methods.

• In adaptive quadrature methods, a basic rule with an associated error esti-
mate is implemented in a similar fashion to the straightforward implementa-
tion discussed above except that uniform interval halving is not used when
more accuracy is needed. Rather than doubling the total number of inte-
grand evaluations on each step of the method (as is the case with uniform
interval halving) we selectively refine or subdivide only those subintervals

33

whose approximations have an associated error estimate that is too large.
That is, on each step we use interval halving to update the approximations
and corresponding overall error estimate for only a subset of the subinter-
vals. At each step of the method we maintain a partitioning of the interval
a = X0 < X1 < · · ·XN = b and we have the associated approximation, A(f)
and associated error estimate, EST (f),

A(f) ≡
N∑
r=1

Ar,

EST (f) ≡
N∑
r=1

|ESTr|,

where Ar and ESTr are the approximation and error estimate associated with
applying the basic rule to the rth subinterval.

The effectiveness of this approach depends largely on how one decides which
interval to subdivide next (when |EST (f)| exceeds TOL).

• Several possible refinement strategies (strategies for choosing which subinter-
val to halve) are possible. We will consider two alternatives. Note that in
each case one must choose a suitable data structure carefully to ensure that
the potential advantages of the strategy can be realized.

(a) Equal distribution of the error to each subinterval:
Each interval is allowed to contribute an amount to the total error that
is proportional to its width. The maximum allowable error on the ith

subinterval is then xi−xi−1

b−a TOL and this will guarantee,

|EST (f)| ≡
N∑
i=1

|ESTi|,

≤
N∑
i=1

(
xi − xi−1

b− a
)TOL,

= (
TOL

b− a
)
N∑
i=1

(xi − xi−1),

= TOL.

Note that this strategy can be effectively implemented recursively or using
stacks.

(b) Refine where error contribution is largest:
On each step subdivide only the subinterval with the estimate of largest
magnitude. Such a strategy can be effectively implemented using an
ordered linked data structure, where the ordering is determined by the
magnitude of the corresponding estimate, ESTr.

12. Special Difficulties:

One can often introduce a mathematical transformation of a difficult quadrature
problem to ‘reduce’ it to an equivalent ‘standard problem’.

34

• Infinite range problems (improper integrals):

The infinite integration,
∫∞

0 f(x)dx or
∫∞
−∞ f(x)dx is well-defined only if

limR→∞
∫ R

0 f(x)dx exists.

Some possible approaches for approximating I(f) =
∫∞

0 f(x)dx when it exists:

(a) For 0 = R0 < R1 < · · ·RJ < · · ·, define Ai as the approximation to∫ Ri
Ri−1

f(x)dx associated with a standard quadrature rule. We then have
that,

Sj ≡
j∑
i=0

Ai,

can be used as an approximation to I(f) if Ri → ∞. This process can
halt (at a fixed value of j) when |Aj| < TOL.

(b) If f(x) = ω(x)g(x) with ω(x) positive, then one can apply a generalized
Gaussian rule. For example, if ω(x) = e−x we obtain Gauss Laquerre
rules. In this case we have,∫ ∞

0
ω(x)g(x)dx ≈

n∑
i=0

ωig(xi),

where the xi’s are the zeros of polynomials orthogonal on [0,∞) with
respect to ω(x).

(c) Special transformation of variable. Let x = ρ(t) for some differentiable
function ρ(t). We then have,

I(f) =
∫ ∞

0
f(x)dx =

∫ ρ−1(∞)

ρ−1(0)
f(ρ(t))ρ

′
(t)dt.

For example, if x = − ln(t), ⇒ t = e−x and we have

I(f) =
∫ 1

0
f(− ln(t))/tdt.

• Singularities of the integrand: Consider the approximation of I(f) =
∫ b
a f(x)dx

where f(a) or f(b) is undefined. For example,

I =
∫ 1

0

1

x1/2 + x1/3
dx.

For such problems we can attempt to ‘remove’ the singularity by the following
procedure,

(a) Determine the ‘type’ of the singularity at t = t∗, choose s(x) where∫ b
a s(x)dx can be computed analytically and where (f(x) − s(x)) is not

singular at t∗.

(b) Replace
∫
f(x)dx by

∫
(f(x)−s(x))dx+

∫
s(x)dx where standard methods

can be used to approximate the first integral and the analytic formula
used for the second.

35

For the above example, with f(x) = 1
x1/2+x1/3 consider what happens as x→ 0,

1

x1/2 + x1/3
=

1

x1/3(x1/6 + 1)
,

=
1

1 + x1/6
− x1/6 − 1

x1/3
.

We therefore have,∫ 1

0

1

x1/2 + x1/3
dx =

∫ 1

0

1

1 + x1/6
dx+

∫ 1

0

1− x1/6

x1/3
dx.

The first integral on the right hand side can then be approximated by standard
methods while the second is equal to 3/10.

For the general case the key step is to perform an expansion of the integrand
about the point of singularity (t∗ = a or t∗ = b) to allow one to ‘remove’ it.

13. Two Dimensional Quadrature:

Consider the problem of approximating integrals in two dimensions,

I(f) =
∫ ∫

D
f(x, y)dxdy,

This problem is more complicated than the one dimensional case since D can take
many forms.

• One can develop the analogs of Gaussian rules or interpolatory rules but the
weights and nodes will depend on the region D. Such rules can be determined
and tabulated for simple regions such as rectangles, triangles and circles. An
arbitrary region must then be transformed onto one of these simple regions
before the rule can be used. Such a transformation will generally be nonlinear
and may introduce an approximation error as well.

• One can apply a ‘product rule’ where one reduces the 2D-integral to a se-
quence of two 1D-integrals:∫ b

a

∫ β(y)

α(y)
f(x, y)dxdy =

∫ b

a
g(y)dy,

where

g(y) ≡
∫ β(y)

α(y)
f(x, y)dx

is approximated, for a fixed value of y, by a standard method (for example,
≈ ∑M

j=0 ωjf(xj, y), and
∫ b
a g(y)dy is also approximated by a standard (possibly

different) standard method. That is

∫ b

a
g(y)dy ≈

M ′∑
r=0

ω̂rg(yr),

36

≈
M ′∑
r=0

ω̂r

 M∑
j=0

ωjf(xj, yr)

 ,
=

M ′∑
r=0

M∑
j=0

(ω̂rωj)f(xj, yr).

Note that error estimates for product rules are not easy to develop since the
function g(y) ≈ ∑M

j=0 ωjf(xj, y) will not be a ‘smooth’ function of y unless
M and the xj’s are fixed. In particular this ‘inner rule’ cannot be adaptive.

5 Numerical ODEs

1. Mathematical Preliminaries:

• Definition: A first-order ordinary differential equation is specified by:

y′ = f(x, y),

over a finite interval [a, b].

Note that a solution of this ODE, y(x), is a function of one variable (this
is the reason for the term ‘ordinary’ as opposed to ‘partial’). When the
solution depends on more than one variable (ie a multivariate function) it is
called a partial differential equation – PDE). The term first-order refers to the
highest derivative that appears in the equation. We will consider higher-order
equations later. For ODEs the variable x is called the independent variable
while y (which depends on x) is called the dependent variable. ‘Solving’ the
ODE is interpreted as determining a technique for expressing y as a function
of x in some explicit way.

• A function Φ(x) is a solution of this ODE if Φ(x) ∈ C1[a, b] and ∀x ∈ [a, b]
we have Φ

′
(x) = f(x,Φ(x)). (Note that this condition is often easy to check

or verify).

–An Example:

y′ = λy, has solutions Φ(x) = c eλx for any constant c. In particular this
ODE does not have a unique solution but rather a whole family of solutions
(characterized by the parameter c).

• To determine a unique mathematical solution we must add an additional
constraint as part of the problem specification. This can be done in many
ways. The most common is to prescribe the value of the solution at the initial
point of the interval. That is we specify,

y(a) = y0.

–Definition: An ODE together with the initial conditions specifies an initial
value problem for an ordinary differential equation (IVP for an ODE).

37

• Before we can attempt to approximate a solution to an IVP we must consider
some essential mathematical questions:

(a) Does a solution exist?

(b) If a solution exists, is it unique?

(c) Can the problem be solved analytically? (If so, is it worth it?)

• Definition: The function f(x, y) (a function of two variables that defines the
ODE) satisfies a Lipschitz condition in y (ie, wrt its second argument) if
∃L > 0 such that ∀x ∈ [a, b] and ∀ u, v we have

|f(x, u)− f(x, v)| ≤ L|u− v|.

In particular, if f(x, y) has a continuous partial derivative with respect to y
and this derivative is bounded for all y, then f satisfies a Lipschitz condition
in y since,

|f(x, u)− f(x, v)| = |∂f
∂y

(x, η)| |u− v|,

for some η between u and v.

• Theorem:

Let f(x, y) be continuous for x ∈ [a, b] and ∀y and satisfy a Lipschitz condi-
tion in y, then for any initial condition y0 the IVP,

y′ = f(x, y), y(a) = y0, over [a, b],

has a unique solution, y(x) defined for all x ∈ [a, b].

• Extension to systems of equations:

Often one must deal with a system of n ‘unknown’ dependent variables of the
form:

y′1 = f1(x, y1, y2, · · · yn),

y′2 = f2(x, y1, y2, · · · yn),
...

...
...

y′n = fn(x, y1, y2, · · · yn),

with initial conditions all specified at the same point,

y1(a) = c1,

y2(a) = c2,
...

...
...

yn(a) = cn,

38

In vector notation, this system of IVPs in ODEs can be written

Y ′ = F (x, Y), Y (a) = Y0,

where Y (x) = [y1(x), y2(x), · · · yn(x)]T , Y0 = [c1, c2, · · · cn]T and F (x, Y) is a
vector-valued function,

F (x, Y) =


f1(x, Y)
f2(x, Y)
...
fn(x, Y)

 .

The theory and the investigation of numerical methods that we present will be
the same for systems as for scalar IVPs. In particular, the main mathematical
Theorem quoted above holds for systems.

–Examples of systems:

(a) From Biology:
A predator-prey relationship can be modeled by the IVP:

y
′

1 = y1 − 0.1y1y2 + 0.02x

y
′

2 = −y2 + 0.02y1y2 + 0.008x

with
y1(0) = 30, y2(0) = 20.

Here y1(x) represents the ‘prey’ population at time x and y2(x) represents
the ‘predator’ population at time x. The solution can then be visualized
as a standard x/y solution plot or by a ‘phase plane’ plot. Figure 1
illustrates the solution to this system. We know that for different initial
conditions solutions to this problem exhibit oscillatory behaviour as x
increases.
A biologist may be interested in whether the solutions to this equation
are ‘almost periodic’ (in the sense that the difference between successive
maximum is constant) and whether the local maxima approach a steady
state exponentially. (See Figure 2).

(b) From Chemistry:
The chemical reaction involving the combination of two chemicals C1 and
C2, to yield a product C3 is represented (in chemistry) by the mechanism
(or notation)

K2

C1 + C2 ⇀↽ C3

K1 .

39

(a) Solution Plot (b) Phase Plane Plot

Figure 1: Solutions to the predator prey problem for x in [0, 20]

Figure 2: Typical behaviour of prey or predator population and decay to steady state

We can model this chemical reaction with the system of 3 ODEs, where
y1(x) = [C1] the concentration of the chemical C1 at time x, y2(x) = [C2]
and y3(x) = [C3]. The resulting system of IVPs whose solution for x ∈
[a, b] describes the change in concentrations over time as the reaction
takes place (possibly approaching a steady state) is,

y′1 = K1y3 −K2y1y2,

y′2 = K1y3 −K2y1y2,

y′3 = K2y1y2 −K1y3.

40

• Extension to Second (and higher) order ODEs:

Often physical or biological systems are best described by second or higher-
order ODEs. That is, second or higher order derivatives appear in the math-
ematical model of the system. For example, from physics we know that New-
tons laws of motion describe trajectory or gravitational problems in terms
of relationships between velocities, accelerations and positions. These can
often be described as IVPs where the ODE has the form y′′(x) = f(x, y) or
y′′(x) = f(x, y, y′).

(a) A Second-order ODE can be reduced to an equivalent system of first-

order ODEs as follows: With y
′′

= f(x, y, y′) we let Z(x) be defined
by,

Z(x) = [z1(x), z2(x)]T ,

where z1(x) = y(x) and z2(x) = y′(x). It is then clear that Z(x) is the
solution of the first order system of IVPs:

Z ′ =

[
z′1(x)
z′2(x)

]
,

=

[
y′(x)
y′′(x)

]
,

=

[
z2(x)
f(x, y, y′)

]
,

=

[
z2(x)
f(x, z1, z2)

]
,

= F (x, Z).

– Note that in solving this ‘equivalent’ system for Z(x), we actually de-
termine an approximation to y′(x) as well as to y(x). This has impli-
cations for numerical methods as, when working with this equivalent
system, we will actually be trying to accurately approximate y′(x)
and this may be a more difficult problem than just approximating
y(x).

– Note also that to determine a unique solution to our problem we must
prescribe initial conditions for Z(a), that is for both y(a) and y′(a).

– Higher order (greater than second order) equations can be reduced
to first order systems in a similar way.

2. Taylor Series Methods:

• If f(x, y) is sufficiently differentiable wrt x and y then we can determine the
Taylor series expansion of the unique solution y(x) to

y′ = f(x, y), y(a) = y0,

41

by differentiating the ODE at the point x0 = a. That is, for x near x0 = a
we have,

y(x) = y(x0) + (x− x0)y′(x0) +
(x− x0)2

2
y′′(x0) + · · · ,

• To generate the TS coefficients, y(n)(x0)/n!, we differentiate the ODE and
evaluate at x = x0 = a. The first few terms are computed from the expres-
sions,

y′(x) = f(x, y) = f,

y′′(x) =
d

dx
f(x, y) = fx + fyy

′

= fx + fyf.

y′′′(x) =
d

dx
[y′′(x)] = (fxx + fxyf) + (fyx + fyyf)f + fy(fx + fyf),

= fxx + 2fxyf + fyyf
2 + fyfx + f 2

y f.

• In general, if f(x, y) is sufficiently differentiable, we can use the first (k + 1)
terms of the Taylor series as an approximation to y(x) for |(x− x0)| ‘small’.
That is, we can approximate y(x) by ẑk,0(x),

ẑk,0(x) ≡ y0 + (x− x0)y′0 + · · ·+ (x− x0)k

k!
y

(k)
0 .

Note that the derivatives of y become quite complicated so one usually chooses
a small value of k (for example k ≤ 6).

• One can use ẑk,0(x1) as an approximation, y1, to y(x1). We can then evaluate
the derivatives of y(x) at x = x1 to define a new polynomial ẑk,1(x) as an
approximation to y(x) for |(x− x1)| ‘small’ and repeat the procedure.

Note:

(a) The resulting ẑk,j(x) for j = 0, 1, · · · define a piecewise polynomial ap-
proximation to y(x) that is continuous on [a, b].

(b) How do we effectively choose hj = (xj − xj−1) and k?

• Let Tk(x, yj−1) denote the first k + 1 terms of the Taylor series expanded
about the discrete approximation, (xj−1, yj−1), and ẑk,j(x) be the polynomial
approximation (to y(x)) associated with this truncated Taylor series. That
is,

ẑk,j(x) = yj−1 + h Tk(x, yj−1),

Tk(x, yj−1) ≡ f(xj−1, yj−1) +
h

2
f
′
(xj−1, yj−1) + · · · h

k−1

k!
f (k−1)(xj−1, yj−1),

where h = (x− xj−1).

A simple, constant stepsize (fixed h) numerical method is then given by:

42

-Set h = (b− a)/N ;
-for j = 1, 2, · · ·N

xj = xj−1 + h;
yj = yj−1 + h Tk(xj−1, yj−1);

-end

3. Local and Global Errors:

Note that, strictly speaking, zk,j(x) is not a direct approximation to y(x) but to
the solution of the ‘local’ IVP:

z
′

j = f(x, zj), zj(xj−1) = yj−1.

Since yj−1 will not be equal to y(xj−1) in general, the solution to this local problem,
zj(x), will not then be the same as y(x).

To understand and appreciate the implications of this observation we distinguish
between the ‘local’ and ‘global’ errors.

Definitions:

• The local error associated with step j is zj(xj)− yj.
• The global error at xj is y(xj)− yj.

4. The Classical Approach:

A Classical (pre 1965) numerical method approximates y(x) by dividing [a, b] into
equally spaced subintervals, xj = a + j h, where h = (b − a)/N and (proceeding
in a step-by-step fashion), generates yj after y1, y2, · · · yj−1 have been determined.

• If the Taylor series method is used in this way, then the TS theorem with
remainder shows that the local error on step j (for the TS method of order
k) is:

Ej =
hk+1f (k)(ηj, zj(ηj))

(k + 1))!
=
hk+1z

(k+1)
j (ηj)

(k + 1)!
.

• An Example:

If k = 1 we have Eulers Method where

yj = yj−1 + h f(xj−1, yj−1),

and the associated local error satisfies,

LEj =
h2

2
y
′′
(ηj).

43

• Classical convergence result (for a fixed-step method):

Definition: A method is said to converge if and only if,

lim
h→0,(N→∞)

{
max

j=1,2,···N
|y(xj)− yj|

}
→ 0.

• Theorem: (typical of classical convergence results)

Let [xj, yj]
N
j=0 be the approximate solution of the IVP, y

′
= f(x, y), y(a) =

y0 over [a, b] generated by Euler’s method with constant stepsize h = (b −
a)/N . If the exact solution, y(x), has a continuous second derivative and
|fy| < L, |y′′(x)| < Y then the associated global error, ej = y(xj)− yj, at the
points xj = a+ j h satisfies,

|ej| ≤
hY

2L
(e(xj−x0)L − 1) + e(xj−x0)L|e0|,

≤ hY

2L
(e(b−a)L − 1) + e(b−a)L|e0|.

Note:

(a) e0 will usually be equal to zero.

(b) This bound is generally pessimistic as it is exponential in (b − a) where
linear error growth is often observed.

(c) In the general case one can show that when local error is O(hp+1) the
global error is O(hp).

Proof of this Theorem (Outline only): Eulers Method satisfies,

yj = yj−1 + hf(xj−1, yj−1).

A Taylor series expansion of y(x) about x = xj−1 implies

y(xj) = y(xj−1) + hf(xj−1, y(xj−1)) +
h2

2
y
′′
(ηj).

Subtracting the first equation from the second we obtain,

y(xj)− yj = y(xj−1)− yj−1 + h [f(xj−1, y(xj−1))− f(xj−1, yj−1)] +
h2

2
y
′′
(ηj).

If Y = maxx∈[a,b] |y
′′
(x)| and |fy| ≤ L, then, from the definition of ej and the

observation that f(x, y) satisfies a Lipschitz condition with respect to y, we
have

|ej| ≤ |ej−1|+ hL|y(xj−1)− yj−1|+ |
h2

2
y
′′
(ηj)|,

≤ |ej−1|+ hL|ej−1|+
h2

2
Y,

= |ej−1|(1 + hL) +
h2

2
Y.

44

This is a linear recurrence relation (or inequality) which after some work
(straightforward) can be shown to imply our desired result,

|ej| ≤
hY

2L
(e(b−a)L − 1) + e(b−a)L|e0|.

Note that this is only an upper bound on the global error and it may not be
sharp.

5. An Example:

Consider the following equation,

y
′
= y, y(0) = 1, on [0, 1].

Now since ∂f
∂y

= 1 , L = 1 and since y(x) = ex, we have Y = e and e0 = 0.

Applying our error bound with h = 1/N and yN ≈ y(1) = e we obtain,

|GEN | = |YN − e| ≤
he

2
(e− 1) < 2.4h.

But for h = .1 we observe that y10 = 2.5937.. with an associated true error of
.1246... This error bound is .24.

6. Limitations and Difficulties with Classical Approach:

• Analysis is valid only in the limit as h→ 0.

• Bounds are usually very pessimistic (can overestimate the error by several
orders of magnitude).

• Analysis does not consider the affect of f.p. arithmetic.

To extend the analysis, consider applying Eulers method with roundoff error:

Assume fl(f(xj−1, yj−1)) = f(xj−1, yj−1) + εj and

yj = yj−1 ⊕ h⊗ fl(f(xj−1, yj−1)),

= yj−1 + hf(xj−1, yj−1) + hεj + ρj,

where |εj|, |ρj| < µ.

Then, proceeding as before we obtain,

|ej| < |ej−1|(1 + hL) +
h2

2
M̄,

where M̄ = Y + µ/h+ µ/(h2).

Therefore the revised error bound becomes:

|ej| ≤ e(b−a)L|e0|+
hM̄

2L
(e(b−a)L − 1),

= e(b−a)L|e0|+ (e(b−a)L − 1)(
hY

2L
+

µ

2L
+

µ

2hL
).

So, as h → 0, the term µ
2hL

will become unbounded (unless the precision
changes) and we will not observe convergence.

45

• Special difficulties with fixed-h Euler:

– The low order results in requiring a small stepsize, which leads to a large
number of derivative evaluations and excessive amount of computer time.

– The use of a constant stepsize can be inappropriate if the solution behaves
differently on parts of the interval of interest. For example in integrating
satellite orbits ‘close approaches’ typically requires a smaller stepsize to
ensure accuracy.

7. Runge-Kutta Methods:

(a) We will consider a general class of one-step formulas of the form:

yj = yj−1 + hΦ(xj−1, yj−1). (4)

where Φ satisfies a Lipschitz condition with respect to y. That is,

|Φ(x, u)− Φ(x, v)| ≤ L|u− v|.

We will consider a variety of choices for Φ and will observe that, in each case
considered, Φ will be Lipschitz if f is.

Two examples of such formulas are:

Euler: Φ ≡ f .

Taylor Series: Φ ≡ Tk(x, y).

(b) Definition: A formula (4) is of order p if for all sufficiently differentiable
functions y(x) we have,

y(xj)− y(xj−1)− hΦ(xj−1, y(xj−1)) = O(hp+1). (5)

Note that:

i. The LHS of (5) is defined to be the Local Truncation Error (LTE) of the
formula.

ii. Order p implies that both the LE and the LTE are O(hp+1). (This follows
by substituting zj(x) for y(x) in the definition.)

(c) Main Result:

Theorem: A pth order formula applied to an initial value problem with con-
stant stepsize h satisfies,

|y(xj)− yj| ≤ |e0|eL(b−a) +
Chp

L
(eL(b−a) − 1).

This result can be proved using a similar argument to that used in the Euler
convergence theorem.

46

(d) We wish to consider formulas Φ that are less ‘expensive’ than higher order
Taylor Series and yet are higher order than Euler’s formula. Consider a
formula Φ based on 2 derivative evaluations. That is,

Φ(xj−1, yj−1) = ω1k1 + ω2k2,

where,

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + αh, yj−1 + hβk1).

We determine the parameters ω1, ω2, α, β to obtain as high an order formula
as possible. From the definition of order we have order p if

y(xj) = y(xj−1) + h(ω1k1 + ω2k2) +O(hp+1) (6)

for all sufficiently differentiable functions y(x). To derive such a formula we
expand y(xj), k1, k2 in Taylor Series about the point (xj−1, yj−1), equate like
powers of h on both sides of (6), and set α, β, ω1, ω2 accordingly.

In what follows we omit arguments when they are evaluated at the point
(xj−1, yj−1). The expansion of the LHS of (6) is:

LHS = y(xj),

= y(xj−1) + hy
′
(xj−1) +

h2

2
y
′′
(xj−1) +

h3

6
y
′′′

(xj−1) +O(h4),

= y(xj−1) + hf +
h2

2
(fx + fyf)

+
h3

6
(fxx + 2fxyf + fyyf

2 + fyfx + f 2
y f) +O(h4).

The expansion of the RHS of (6) is more complicated and first requires the
expansions of k1 and k2,

k1 = f,

k2 = f(xj−1 + αh, y(xj−1) + βhk1),

= f(xj−1, y(xj−1) + βhf) + (αh)fx(xj−1, y(xj−1) + βhf)

+
α2h2

2
fxx(xj−1, y(xj−1) + βhf) +O(h3),

=

[
f + βhffy +

(βhf)2

2
fyy +O(h3)

]

+
[
αhfx + αβh2ffxy +O(h3)

]
+

[
α2h2

2
fxx +O(h3)

]
,

= f + (βffy + αfx) h+ (
β2

2
f 2fyy + αβffxy +

α2

2
fxx) h

2 +O(h3).

47

The expansion of the RHS of (6) then is (with these substitutions for k1 and
k2)

RHS = y(xj−1) + h(ω1k1 + ω2k2),

= y(xj−1) + hω1f + hω2 [· · ·] +O(h4),

= y(xj−1) + [(ω1 + ω2)f] h+ [ω2(βffy + αfx)] h
2

+

[
ω2(

β2

2
f 2fyy + αβffxy +

α2

2
fxx)

]
h3 +O(h4).

Finally these expansions are true for all values of h, so equating like powers
of h, in the LHS and RHS expansions, we observe the following:

For order 0 : The coefficients of h0 always agree and we have order at least
zero for any choice of the parameters.

For order 1: If ω1 +ω2 = 1 the coefficients of h1 agree and we have at least
order 1.

For order 2: In addition to satisfying the order 1 constraints we must have
the coefficient of h2 the same. That is αω2 = 1/2 and βω2 = 1/2.

For order 3: In addition to satisfying the order 2 constraints we must have
the coefficients of h3 the same. That is we must satisfy the equations,

ω2α
2 =

1

3
,

ω2αβ =
1

3
,

ω2β
2 =

1

3
,

1

6
fxy = ?,

1

6
f 2
y = ?.

Note that there are not enough terms in the coefficient of h3 in the expansion
of the RHS to match the expansion of the LHS. We cannot therefore equate
the coefficients of h3 and the maximum order we can obtain is order 2. Our
formula will be order 2 for any choice of ω2 6= 0, with ω1 = 1 − ω2 and
α = β = 1

2ω2
. This is a one-parameter family of 2nd-order Runge-Kutta

formulas.

Three popular choices from this family are:

Modified Euler: ω2 = 1/2

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + h, yj−1 + hk1),

yj = yj−1 +
h

2
(k1 + k2).

48

Midpoint: ω2 = 1

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
h

2
, yj−1 +

h

2
k1),

yj = yj−1 + hk2.

Heun’s Formula: ω2 = 3/4

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
2

3
h, yj−1 +

2

3
hk1),

yj = yj−1 +
h

4
(k1 + 3k2).

8. Higher-order Runge-Kutta formulas:

An s-stage explicit Runge-Kutta formula uses s derivative evaluations and has the
form:

yj = yj−1 + h(ω1k1 + ω2k2 · · ·+ ωsks),

where

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + α2h, yj−1 + hβ21k1),
...

ks = f(xj−1 + αsh, yj−1 + h
s−1∑
r=1

βsrkr).

This formula is represented by the tableau,

- -
α2 β21 -

...
...

αs βs1 βs2 . . . βs−1,s -
ω1 ω2 . . . ωs

These s(s−1)
2

+ (s− 1) + s parameters are usually chosen to maximise the order of
the formula.

The maximum attainable order for an s-stage Runge-Kutta formula is given by
the following table:

s 1 2 3 4 5 6
max order 1 2 3 4 4 5

49

Note that the derivations of these maximal order formulas can be very messy
and tedious, but essentially they follow (as outlined above for the case s = 2) by
expanding each of the kr in a 2-dimensional Taylor series.

An Example – The Classical Fourth Order Runge Formula (1895)

- -
1/2 1/2 -
1/2 0 1/2 -
1 0 0 1 -

1/6 1/3 1/3 1/6

9. Error Estimates:

(a) Ideally a method would estimate a bound on the global error and adjust
the stepsize, h, to keep the magnitude of the global error less than a toler-
ance. Such computable bounds are possible but are usually pessimistic and
inefficient to implement.

(b) On the other hand, local errors can be reliably and efficiently estimated and
controlled. Consider a method which keeps the magnitude of the local error
less than h TOL on each step.

That is, if zj−1(x) is the local solution on step j,

z
′

j−1 = f(x, zj−1), zj−1(xj−1) = yj−1,

then a method will adjust h = xj − xj−1 to ensure that |zj−1(xj) − yj| ≤
h TOL, for j = 1, 2 · · ·NTOL.

(c) With this type of error control one can show that, for the resulting (xj, yj)
NTOL
j=0

there exists a piecewise polynomial, Z(x) ∈ C1[a, b] such that Z(xj) = yj for
j = 0, 1, · · ·NTOL and for x ∈ [a, b],

|Z ′(x)− f(x, Z)| ≤ TOL.

We can also show that,

|y(xj)− yj| ≤
TOL

L
(eL(xj−a) − 1).

(d) Derivation of Local Error Estimates for Runge-Kutta formulas:

Consider the Modified Euler Formula:

- -
1 1 -

1/2 1/2

50

We have shown

zj−1(xj) = yj−1 +
h

2
(k1 + k2)

+
[
1

4
f 2fyy +

1

2
ffxy +

1

4
fxx − y

′′′
(xj)

]
h3 +O(h4),

= yj +
[

1

12
fyyf

2 +
1

6
ffxy +

1

12
fxx − fxy − f 2

y f
]
h3 +O(h4),

≡ yj + c(f)h3 +O(h4).

It then follows that the local error, LE, satisfies

LE = c(f)h3 +O(h4),

where c(f) is a complicated function of f . There are two general strategies
for estimating c(f) – the use of ”step halving” and the use of a 3rd order
”companion formula”.

Step Halving: let ŷj be the approximation to zj−1(xj) computed with two
steps of size h/2. If c(f) is almost constant the we can show

zj−1(xj) = ŷj + 2c(f)(
h

2
)3 +O(h4)

and from above
zj−1(xj) = yj + c(f)h3 +O(h4).

Therefore the local error associated with ŷj, L̂E, is

L̂E = 2c(f)(
h

2
)3 +O(h4),

=
1

3
(yj − ŷj) +O(h4).

The method could then compute ŷj, yj and accept ŷj only if 1
3
|yj − ŷj| <

h TOL.
Note that this strategy requires five derivative evaluations on each step
and assumes that each of the components of c(f) is slowly varying.

Third Order Companion Formula: To estimate the local error associ-
ated with the Modified Euler formula consider the use of a 3-stage, 3rd

order Runge-Kutta formula,

ŷj = yj−1 + h(ω̂1k1 + ω̂2k2 + ω̂3k3),

= zj−1(xj) +O(h4),

We also have

yj = yj−1 +
h

2
(k1 + k2),

= zj−1(xj)− c(f)h3 +O(h4).

51

Subtracting these two equations we have the local error estimate,

estj ≡ (ŷj − yj) = c(f)h3 +O(h4).

Note that, for any 3rd order formula, k1 = k̂1, so we require at most 4
derivative evaluations per step to compute both yj and estj. Furthermore,

if α̂2 = α2 = 1 and β̂21 = β21 = 1, we have k̂2 = k2 and the cost is only
three derivative evaluations per step. The obvious question is can one
derive such a 3-stage 3rd order Runge-Kutta formula ? The answer is yes
and the following tableau with α̂3 6= 1 defines a one-parameter family of
such ”companion formulas” for the Modified Euler formula:

- -
1 1 -

α̂3 β̂31 β̂32 -
ω̂1 ω̂2 ω̂3

with

β̂31 = α̂2
3, β̂32 = α̂3−α̂2

3, ω̂2 =
1

6(α̂3 − 1)
, ω̂3 =

−1

6(α̂3 − 1)
, ω̂1 = 1−(

1 + 3α̂3

6α̂3

).

Generalization to Higher Order: This idea of using a ”companion for-
mula” of order p + 1 to estimate the local error of a pth order formula
leads to the derivation of s-stage, order (p, p+ 1) formula pairs with the
fewest number of stages. Such formula pairs can be characterized by the
tableau:

- -
α2 β21 -

...
...

αs βs1 . . . βs−1,s -
ω1 ω2 . . . ωs
ω̂1 ω̂2 . . . ω̂s

where

yj = yj−1 + h
s∑
r=1

ωrkr

= zj−1(xj)− c(f)hp+1 +O(hp+2),

ŷj = yj−1 + h
s∑
r=1

ω̂rkr

= zj−1(xj) +O(hp+2),

estj = (ŷj − yj)
= c(f)hp+1 +O(hp+2).

Note that the error estimate is a reliable estimate of the local error asso-
ciated with the lower order (order p) formula. The following table gives

52

the fewest number of stages required to generate formula pairs of a given
order.

order pair (2,3) (3,4) (4,5) (5,6) (6,7)
fewest stages 3 4 6 8 10

10. Stepsize Control:

• Step is accepted only if |estj| < hTOL.

• If h is too large, the step will be rejected and the derivative evaluations will
be wasted.

• If h is too small, there will be many steps and more function evaluations than
necessary.

The usual strategy for choosing the attempted stepsize, h, for the next step is
based on ‘aiming’ at the largest h which will result in an accepted step on the
current step. If we assume that c(f) is slowly varying then,

|estj| = |c(f)|hp+1
j +O(hp+2),

and on the next step attempted step, hj+1 = γhj, we want

|estj+1| ≈ TOL hj+1.

But

|estj+1| ≈ |c(f)|(γhj)p+1,

= γp+1|estj|.

We can then expect
|estj+1| ≈ TOL hj+1,

if
γp+1|estj| ≈ TOL (γhj),

which is equivalent to
γp|estj| ≈ TOL hj.

The choice of γ to satisfy this heuristic is then,

γ =

(
TOL hj
|estj|

)1/p

.

A typical step-choosing heuristic, justified by the above discussion, is to use the
formula,

hj+1 = .9

(
TOL hj
|estj|

)1/p

hj,

where .9 is a ‘safety factor’. The formula works for use after a rejected step as well
but must be modified slightly when round-off errors are significant.

53

