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March 12, 2012 University of Toronto Due: April 4, 2012

(Reference Kahaner, Moler and Nash: Problem 8-6, pp. 333-334, and text prob-
lem 9.8, pp. 420-421)

The following differential equations describe the motion of a body in orbit
about two much heavier bodies. An example is an Apollo capsule in an earth-
moon orbit. The coordinate system is a little tricky. The three bodies determine
a plane in space and a two-dimensional Cartesian coordinate system in this
plane. The origin is at the center of mass of the two heavier bodies, the x
- axis is the line through these two bodies and the distance between them is
the unit length. Thus, if µ is the ratio of the mass of the moon to that of the
earth, then the moon and earth are located at coordinates (1−µ, 0) and (−µ, 0),
respectively, and the coordinate system moves as the moon rotates about the
earth. The third body, the Apollo capsule, is assumed to have a mass that is
negligible compared to the other two, and its position as a function of time is
(x(t), y(t)). The equations are derived from Newton’s law of motion and the
inverse square law for gravitation. The first derivatives in the equation come
from the rotating coordinate system and from a friction term, which is assumed
to be proportional to the velocity with proportionality constant f :

x′′ = 2y′ + x− µ̃(x+ µ)
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with

µ =
1

82.45
, µ̃ = 1 − µ, r21 = (x+ µ)2 + y2, r22 = (x− µ̃)2 + y2.

Although a great deal is known about these equations, it is not possible
to find a closed form solution. One interesting class of problems involves the
investigation of periodic solutions in the absence of friction. It is known that
the initial conditions,

x(0) = 1.2, x′(0) = 0, y(0) = 0, y′(0) = −1.04935751,
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lead to a solution which is periodic with period T = 6.19216933, when f = 0.
This orbit starts with the Apollo capsule on the far side of the moon with an
altitude of 0.2 times the earth-moon distance and a prescribed initial velocity.
The resulting orbit brings Apollo in close to the earth, out in a big loop on
the opposite side of earth from the moon, back in close to the earth again, and
finally back to its original position and velocity on the far side of the moon.

1. Use ode113 or ode45 (from MatLab) to compute the solution with the
given initial conditions. Plot this orbit and verify that the solution is
periodic with the given period. Using the interpolant provided with the
code, determine how close Apollo comes to the surface of the earth in this
orbit

In the description above, distances are measured from the centers of the
earth and moon. Assume that the moon is 238, 000 miles from the earth
and that the earth is a sphere with radius 4, 000 miles. (Note that the
origin of the coordinate system is within this sphere but not at its center.)

2. When f = 1, with the same initial conditions as in (1.), determine an
approximate solution from t = 0 to t = 5. Plot the phase plane of the
solution. That is, plot x(t) versus y(t). In this case, the Apollo capsule is
‘captured’ by the earth and eventually crashes.

3. Repeat the computations in (2.) with f = 0.1. By looking at the phase
plane, can you guess what is happening? This will be easier if you repeat
the calculation for a longer time, say to t = 8.

4. Discuss how you could determine (using Matlab) whether a given set of
initial conditions leads to a periodic solution for this ODE. Note that,
for 1., you verified that a prescribed set of initial conditions did produce
a periodic solution with a known period, T . For this question, you are
asked to discuss how you could determine whether a prescribed set of
initial conditions does produce a periodic solution for some period, T .
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