## CSCC51H

## Assignment 3

Feb. 27, 2012
Scarborough Campus
Due: March 12, 2012

1. The Corrected Trapezoidal Rule: $C T$

Consider the corrected trapezoidal quadrature rule defined by the formula,

$$
C T \equiv \frac{(b-a)}{2}(f(a)+f(b))+\frac{(b-a)^{2}}{12}\left(f^{\prime}(a)-f^{\prime}(b)\right),
$$

with an associated error expression,

$$
I(f)-C T \equiv E^{C T}=\frac{(b-a)^{5}}{720} f^{(4)}(\eta) \text { for some } \eta \in(a, b)
$$

(a) Derive a formula for the corresponding composite corrected trapezoidal rule, $C T_{N}$ and the corresponding exact error expression, $E_{N}^{C T}$.
(b) Derive a suitable error estimate for this formula that is valid for the case of $N$ equal width subintervals.
(c) Write a Matlab script which will implement this technique and produce a table of approximations, estimates, and ratios for the special case of constant interval widths $\left(h_{i}=(b-a) / N, \quad N=2^{k}, \quad k=\right.$ $1,2 \ldots 8)$. Test this script out on a few problems of your own choice and comment on the order of accuracy of the results. Include in your test problems an integrand, $f(x)$, that is periodic with a period of ( $b-a$ ) and discuss the accuracy obtained on such problems.
2. An Implicit Quadrature Problem:

Using a modified form of the Matlab script you developed to answer the first question, derive and implement in Matlab a method that, when given $f(x)$, and an interval $[a, b]$, will return with an approximation to the first value of $\bar{x}>a$ such that,

$$
\int_{a}^{\bar{x}} f(x) d x=0
$$

Your method should return an error flag if there is no such $\bar{x} \leq b$. You should include a discussion of your algorithm and suitable documentation of the Matlab implementation. Test your algorithm on a few carefully chosen test problems. (Note that, in grading your solution to this question, the efficiency of your method as well as your testing and documentation will be considered.)

