CSCC51H

Assignment 2

1. Parametric Interpolation:

In computer typography we are faced with the problem of finding an interpolant to points which lie on a curve in the plane, for example the Greek lower case "alpha", (α). Such a shape cannot be represented with y as a fuction of x since $y(x)$ will not generally be single-valued. One approach to resolve this difficulty is to order the data points, $P_{0}, P_{1}, \ldots P_{M}$ as we traverse the curve (using an approximation to the 'arclength' to parametrise the curve). Let d_{i} be the (straight-line) distance between P_{i-1} and $P_{i}, i=1 \ldots M$, and let $t_{i}=\sum_{j=1}^{i} d_{j}, i=0 \ldots M$. That is, $t_{0}=0, t_{1}=d_{1}, t_{2}=d_{1}+d_{2}$, etc. With $P_{i} \equiv\left(x_{i}, y_{i}\right)$, consider the two sets of data, $\left(t_{i}, x_{i}\right)$ and $\left(t_{i}, y_{i}\right), i=0 \ldots M$. We can interpolate each of these sets independently to generate approximations $R(t)$ and $S(t)(R(t)$ and $S(t)$ are approximations to the respective coordinate functions $x(t)$ and $y(t))$. Then for any $t \in\left[0, t_{M}\right], P(t) \equiv(R(t), S(t))$ is a point in the plane and, as t increases from 0 to $t_{M}, P(t)$ interpolates the data and, with luck, reproduces the shape of the Greek letter α too.
(a) Using drafting paper draw an α and measure seven points P_{i} on your curve (recording the respective measured values d_{i}, x_{i}, y_{i}). Interpolate the parametric data (ie. the $\left\{t_{i}, x_{i}\right\}$ and the $\left\{t_{i}, y_{i}\right\} i=0 \cdots 6$), using the Matlab function spline. Plot the results and show how well the shape of this character is represented. For the two extra constraints necessary to define your spline approximations, $R(t), S(t)$; use estimates for the derivative values $x^{\prime}(0), x^{\prime}\left(t_{M}\right), y^{\prime}(0), y^{\prime}\left(t_{M}\right)$ as discussed below.
(b) Write a Matlab function That will determine the two cubic Hermite piecewise polynomial approximations (to $x(s)$ and $y(s)$) from tabulated data $\left(t_{i}, x_{i}, x_{i}^{\prime}\right)$ and $\left(t_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=0 \ldots M$ and use this Matlab function (with $M=6$) to approximate the parametric curve representing your alpha. Note that, to do this, you will have to measure, from your 'hand-drawn' curve representing your alpha, estimated values for $d y / d x$ at the data points. (That is, you will estimate the slope of the tangent to your curve at each point P_{i}.) These values can then be used to estimate $d x / d t$ and $d y / d t$ at each P_{i} since t is an approximation to arclength. (ie, at P_{i} you can estimate $d x / d t$ and $d y / d t$ using your estimate of $d y / d x$ and the observation that $\left.(d t)^{2}=(d x)^{2}+(d y)^{2}.\right)$
(c) In both cases, using cubic Hermite and cubic spline interpolation, display and comment on the accuracy and smoothness of the approximating curve.
2. Approximating the length of a hand-drawn curve:

You are to derive and implement (in Matlab) a method to approximate the 'length' of a hand-drawn curve. The method is based on the 'arclength' parametrisation of the coordinate functions, $x(t)$ and $y(t)$ that you worked with and approximated to solve the first problem. Let your approximation to the curve $(x(t), y(t))$, be $P(t) \equiv(R(t), S(t))$, where $R(t)$ and $S(t)$ are piecewise polynomials.
The method first determines N equally space points on $P(t)$, calculates the straight line distance between each pair of consecutive points, $P\left(t_{j-1}\right), P\left(t_{j}\right) j=$ $1,2 \cdots N$ and takes the sum of these distances to be an approximation to the length of the curve.
Apply this method to estimate the length of the approximation to the hand-drawn α you used to solve the first problem (corresponding to the use of piecewise Hermite interpolation over the seven data points). Report the results for $N=51, N=101$ and $N=201$ and briefly discus which approximation you feel is the more accurate.

