CSCC51H

Assignment 1

1. (a) Use the Newton form of the interpolating polynomial to determine the degree 4 interpolating polynomial, $p_{4}(x)$, corresponding to the data given in the following table:

x	0.0	0.1	0.3	0.6	1.0
$f(x)$	-6.10000	-5.99483	-5.75014	-5.27788	-4.38172

(b) Add the data point $f(1.1)=-3.99583$ to the table and construct the interpolating polynomial of degree five, $p_{5}(x)$ and plot the difference, $p_{5}(x)-p_{4}(x)$ for $x \in[0.0,1.1]$. Note that this difference can be interpreted as an estimate of the error in using $p_{4}(x)$ to represent the underlying function $f(x)$.
2. Inverse Interpolation:

In 'inverse interpolation', one is given a number \bar{y} and wishes to find the point \bar{x} such that $f(\bar{x})=\bar{y}$, where $f(x)$ is a function specified in tabular form. If $f(x)$ is known to be continuous and strictly monotone increasing (or decreasing), this problem can be 'solved' by considering the given table, $\left[x_{i}, f\left(x_{i}\right)\right]_{i=1}^{N}$, to be a table, $\left[g\left(y_{i}\right), y_{i}\right]_{i=1}^{N}$ for the inverse function, $g(y)=f^{-1}(y)=x$. One can then determine an approximation to \bar{x} using a polynomial approximation, $q(y)$, to $g(y)$ and setting $\bar{x}=q(\bar{y})$.
(a) Why is it necessary that $f(x)$ be monotone?
(b) In Matlab use this idea and the Table from 2a to determine an approximation to \bar{x}, such that $f(\bar{x})=-5.30$.
(c) Using the additional data value given in 2 b estimate the error you would expect in this approximation.

