CSCC51H

Assignment 1

Jan. 16, 2012

Scarborough Campus

Due: Jan. 30, 2012

1. (a) Use the Newton form of the interpolating polynomial to determine the degree 4 interpolating polynomial, $p_4(x)$, corresponding to the data given in the following table:

[x	0.0	0.1	0.3	0.6	1.0
	f(x)	-6.10000	-5.99483	-5.75014	-5.27788	-4.38172

- (b) Add the data point f(1.1) = -3.99583 to the table and construct the interpolating polynomial of degree five, $p_5(x)$ and plot the difference, $p_5(x) p_4(x)$ for $x \in [0.0, 1.1]$. Note that this difference can be interpreted as an estimate of the error in using $p_4(x)$ to represent the underlying function f(x).
- 2. Inverse Interpolation:

In 'inverse interpolation', one is given a number \bar{y} and wishes to find the point \bar{x} such that $f(\bar{x}) = \bar{y}$, where f(x) is a function specified in tabular form. If f(x) is known to be continuous and strictly monotone increasing (or decreasing), this problem can be 'solved' by considering the given table, $[x_i, f(x_i)]_{i=1}^N$, to be a table, $[g(y_i), y_i]_{i=1}^N$ for the inverse function, $g(y) = f^{-1}(y) = x$. One can then determine an approximation to \bar{x} using a polynomial approximation, q(y), to g(y) and setting $\bar{x} = q(\bar{y})$.

- (a) Why is it necessary that f(x) be monotone?
- (b) In Matlab use this idea and the Table from 2a to determine an approximation to \bar{x} , such that $f(\bar{x}) = -5.30$.
- (c) Using the additional data value given in 2b estimate the error you would expect in this approximation.