Generating Images from Captions with Attention

Elman Mansimov
Emilio Parisotto
Jimmy Lei Ba
Ruslan Salakhutdinov

Reasoning, Attention, Memory workshop, NIPS 2015
Motivation

• To simplify the image modelling task
 • Captions contain more information about the image.
 • Although you need to learn language model.
• To better understand model generalization
 • Create textual descriptions of completely new scenes not seen at training time.
A stop sign is flying in blue skies.

A pale yellow school bus is flying in blue skies.

A herd of elephants flying in blue skies.

A large commercial airplane flying in blue skies.
General Idea

- Part of the sequence-to-sequence framework. (Sutskever et al. 2014; Cho et al. 2014; Srivastava et al. 2015)

- Caption is represented as a sequence of consecutive words.

- Image is represented as a sequence of patches drawn on canvas.

- Also need to figure out where to put generated patches on canvas.
Language Model (Bidirectional RNN)

- Forward LSTM reads sentence from left to right
- Backward LSTM reads sentence from right to left
- Sentence representation is average of hidden states

Cho et. al. 2014, Sutskever et al. 2014
Image Model
(DRAW: Variational Recurrent Auto-encoder with Visual Attention)

- At each step model produces $p \times p$ patch.
- It gets transformed into $h \times w$ canvas using two arrays of 1D filter banks ($h \times p$ and $w \times p$ respectively).
- Mean and variance of latent variables depend on the previous hidden states of generative RNN.

Gregor et. al. 2015
Model

The model is trained to maximize the variational lower bound.

\[
\mathcal{L} = \mathbb{E}_{Q(Z_{1:T} \mid y, x)} \left[\log p(x \mid y, Z_{1:T}) - \sum_{t=2}^{T} D_{KL} (Q(Z_t \mid Z_{1:t-1}, y, x) \| P(Z_t \mid Z_{1:t-1}, y)) \right] - D_{KL} (Q(Z_1 \mid x) \| P(Z_1))
\]

Kingma et. al. 2014, Rezende et. al. 2014
Compute alignment between words and generated patches

\[e_{j}^{t} = \nu^{\top} \tanh(U_h^l a n g_{j} + W_h^g e n_{t-1} + b) \]

\[\alpha_{j}^{t} = \frac{\exp(e_{j}^{t})}{\sum_{j=1}^{N} \exp(e_{j}^{t})} \]

Bahdanau et. al. 2015
Sharpening

- Another network trained to generate edges sharpens the generated samples.
- Instead is trained to fool separate network that discriminates between real and fake samples.
- Doesn’t have reconstruction cost and gets sharp edges.

Goodfellow et. al. 2014, Denton et. al. 2015
Complete Model

align

Generative (P)

Latent (z)
\(p(Z_1) \)

Latent (z)
\(p(Z_2 | Z_1) \)

Latent (z)
\(p(Z_T | Z_{1:T-1}) \)

Inference (Q)

Read

\(y \)

\(y_1 \)

\(y_2 \)

\(y_3 \)

\(y_4 \)

\(y_5 \)

\(y_6 \)
Main Dataset
(Microsoft COCO)

- Contains ~83k images
- Each image has 5 captions
- Standard benchmark dataset for recent image captioning systems

Lin et. al. 2014
Flipping Colors

A yellow school bus parked in a parking lot.

A red school bus parked in a parking lot.

A green school bus parked in a parking lot.

A blue school bus parked in a parking lot.
Flipping Backgrounds

A very large commercial plane flying *in clear skies*.

A herd of elephants walking across a *dry grass field*.

A very large commercial plane flying *in rainy skies*.

A herd of elephants walking across a *green grass field*.
Flipping Objects

The decadent chocolate desert is on the table.

A bowl of bananas is on the table.

A vintage photo of a cat.

A vintage photo of a dog.
Examples of Alignment

A rider on the blue motorcycle in the desert.

A rider on the blue motorcycle in the forest.

A surfer, a woman, and a child walk on the beach.

A surfer, a woman, and a child walk on the sun.
text2image <-> image2text

A very large commercial plane flying in clear skies.

A large airplane flying through a blue sky.

A stop sign is flying in blue skies.

A picture of a building with a blue sky.

A toilet seat sits open in the grass field.

A window that is in front of a mirror.

with Ryan Kiros (Xu et al. 2015)
Lower Bound of Log-Likelihood in Nats

<table>
<thead>
<tr>
<th>Model</th>
<th>Train</th>
<th>Test</th>
<th>Test (after sharpening)</th>
</tr>
</thead>
<tbody>
<tr>
<td>skipthoughtDRAW</td>
<td>-1794.29</td>
<td>-1791.37</td>
<td>-2045.84</td>
</tr>
<tr>
<td>noalignDRAW</td>
<td>-1792.14</td>
<td>-1791.15</td>
<td>-2051.07</td>
</tr>
<tr>
<td>alignDRAW</td>
<td>-1792.15</td>
<td>-1791.53</td>
<td>-2042.31</td>
</tr>
</tbody>
</table>
Qualitative Comparison

Our Model

LAPGAN

Conv-Deconv VAE

Fully-Connected VAE

A group of people walk on a beach with surf boards
More Results
(Image Retrieval and Image Similarity)

<table>
<thead>
<tr>
<th>Model</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>R@50</th>
<th>Med r</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAPGAN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
<tr>
<td>Fully-Conn VAE</td>
<td>1.0</td>
<td>6.6</td>
<td>12.0</td>
<td>53.4</td>
<td>47</td>
<td>0.156</td>
</tr>
<tr>
<td>Conv-Deconv VAE</td>
<td>1.0</td>
<td>6.5</td>
<td>12.0</td>
<td>52.9</td>
<td>48</td>
<td>0.164</td>
</tr>
<tr>
<td>skipthoughtDRAW</td>
<td>2.0</td>
<td>11.2</td>
<td>18.9</td>
<td>63.3</td>
<td>36</td>
<td>0.157</td>
</tr>
<tr>
<td>noalignDRAW</td>
<td>2.8</td>
<td>14.1</td>
<td>23.1</td>
<td>68.0</td>
<td>31</td>
<td>0.155</td>
</tr>
<tr>
<td>alignDRAW</td>
<td>3.0</td>
<td>14.0</td>
<td>22.9</td>
<td>68.5</td>
<td>31</td>
<td>0.156</td>
</tr>
</tbody>
</table>
Conclusions

• Samples from our generative model are okay; but aren’t great.

• Potentially due to many reasons: not powerful enough generator, messed up objective function, very diverse dataset and etc.

• The model generalizes to captions describing novel scenarios that are not seen in the dataset.

• Key factor, treat image generation as computer graphics. Learn what to generate and where to place it.
Thank You!
Examples of sharpening
Toy Dataset
(MNIST with Captions)

- One or two random digits from MNIST were placed on 60 x 60 blank image.
- Each caption specified the identity of each digit along with their relative positions.
- Ex: “The digit seven is at the bottom left of the image”
Generated Samples
(Not present during training)

The digit three is at the top of the digit one.
More Generated Samples (Not present during training)

The digit eight is at the top right of the image.