Bipartite Sparse Exchangeable Graphs for Machine Learning

Ekansh Sharma
with Victor Veitch, Zacharie Naulet, and Daniel Roy

ML Group Meeting
Bipartite graphs

Definition
A bipartite graph is an ordered triple \((V_U, V_I, E)\) where \(V_U, V_I\) are sets of vertices and \(E \subseteq V_U \times V_I\) is a set of edges.

- \(u \in V_U\) means that there is a vertex with label \(u\) in the graph.
- \(t \in V_I\) means that there is a vertex with label \(t\) in the graph.
- \((u, t) \in E\) means that there is an edge between vertices \(u\) and \(t\).
- Note that there are edges only between vertices of different part.
- I’ll use the vocab of users and items to distinguish between parts of a graph.
Overview

- Many models in machine learning, e.g. models for topic modeling, probabilistic matrix factorization, feature allocation, define probability distribution over bipartite graphs

- Interested in inferring the parameters of distribution over bipartite graph from direct or indirect observation of the graph
Overview

- Many models in machine learning, e.g. models for topic modeling, probabilistic matrix factorization, feature allocation, define probability distribution over bipartite graphs

- Interested in inferring the parameters of distribution over bipartite graph from direct or indirect observation of the graph

- Recent work in statistical network modeling has introduced the sparse exchangeable (graphex) models as a new family of probability distributions over graphs (in particular, over bipartite graphs)
Big Picture

- What practical insights can be gained in light of the new sparse graph theory?

 - How to check for sparsity for a fixed size graph?

 - Can we scale inference for models belonging to this new model class?
Background
Example: Non-Negative Matrix Factorization

- **Observed Data:** Binary Adjacency matrix indicating if user i consumed item j
- **Model:** Probability of an edge depends only on the inner product of some latent user preference and item property
- **Task:** Make customized recommendations of items to users based on the observed graph

Figure: Non-Negative Matrix Factorization
Example: Non-Negative Matrix Factorization

Generative Model

For an observed adjacency matrix with n users and m items,

- Each user $i \in \{1, \ldots, n\} = V_U$
 User preference: $X_i \in \mathbb{R}^K_+$, is assigned iid with distribution $\Pr(X_i \in \cdot | \theta_U)$

- Each item $j \in \{1, \ldots, m\} = V_I$
 Item property: $Y_j \in \mathbb{R}^K_+$, is assigned iid with distribution $\Pr(Y_j \in \cdot | \theta_I)$

- Given the user preference and item property, include the edge (i, j) in E with probability $W(X_i^T Y_j)$, for e.g. $W(X_i^T Y_j) = 1 - e^{-X_i^T Y_j}$

Task: Learn likely values of $\{X_i\}, \{Y_j\}, \theta_U$, and θ_I
Dense Exchangeable Bipartite Graph Framework

Generative Model

Sample of a random graph $G_{n,m}$, where $n, m \in \mathbb{N}$, as follows:

- For each user vertex $i \in \{1, \ldots, n\}$, assign a latent feature $x_i \in \mathcal{X}$ iid with some distribution
- For each item vertex $j \in \{1, \ldots, m\}$, assign a latent feature $y_j \in \mathcal{Y}$ iid with some distribution
- Given the user feature and item feature, include the edge (i, j) independently with probability $W(x_i, y_j)$, where $W : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$ is called a graphon

Notes:

- Examples include, probabilistic matrix factorization, topic modeling, feature allocation
- Gives rise to graphs that are almost surely dense graphs, i.e., as the number of vertices increase, the ratio $\rho = \frac{|E|}{|V_U||V_I|}$ remains constant.
Generative Model

Sample a random graph \(G_{s,\alpha} \), where \(s, \alpha \in \mathbb{R}_+ \), as follows:

- Sample user features: a Poisson Process \(\{(x_i, u_i)\} \) on \(\mathcal{X} \times [0, s] \)
- Sample item features: a Poisson Process \(\{(y_j, t_j)\} \) on \(\mathcal{Y} \times [0, \alpha] \)
- Given the user feature and item feature, include the edge \((u_i, t_j)\) independently with probability \(W(x_i, y_j) \), where \(W : \mathcal{X} \times \mathcal{Y} \to [0, 1] \) is a (generalized) graphon
- Throw away all vertices that failed to connect
Example

\[\mathcal{W} : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow [0, 1] \] is defined as: \[\mathcal{W}(x, y) = 1 - \exp(-xy) \]

User Size: \(s < s' \in \mathbb{R}_+ \)

Item Size: \(\alpha < \alpha' \in \mathbb{R}_+ \)

Figure: Sample from the generative model
Example

\[V_s^U = \{u_2, u_3, u_4\} \quad V_{s'}^U = \{u_2, u_3, u_4, u_5\} \]
\[V_\alpha^I = V_{\alpha'}^I = \{t_1, t_2, t_4, t_6\} \]
\[E^s = \{(u_2, t_1), (u_2, t_4), (u_2, t_6), (u_3, t_1), (u_4, t_2), (u_4, t_4)\} \]
\[E_{s'} = \{(u_2, t_1), (u_2, t_4), (u_2, t_6), (u_3, t_1), (u_4, t_2), (u_4, t_4), (u_5, t_4)\} \]

Figure: Sample from the generative model
Sampling Results
Sparsity is a property of sequences of graphs.

- How can we test if a given dataset is generated using a sparse model?
- How to sub-sample the dataset for test-train split?
Definition
A user p-sampling of a graph G is a random subgraph given by selecting each user vertex of G independently with probability p, and then returning the induced edge set.
Definition
A user p-sampling of a graph G is a random subgraph given by selecting each user vertex of G independently with probability p, and then returning the induced edge set.

Theorem (VR16)
Let $(G_s, \alpha)_{s \in \mathbb{R}^+, \alpha \in \mathbb{R}^+}$ be generated by W. If $\text{user-p-samp}(G_s, \alpha, r/s)$ is an r/s-sampling of G_s, then

$$\text{user-p-samp}(G_s, \alpha, r/s) \overset{d}{=} G_{r, \alpha}$$

Mutatis mutandis for item-p-samp
Test for Sparsity

Recall: For densely generated graphs, \(\rho = \frac{|E|}{|V_U| \cdot |V_I|} \) remains constant.

For sparsely generated graphs, as user/item size decreases, \(\rho \) should increase.

Figure: Dense Users, Sparse Items
Test for Sparsity

Do we actually observe datasets that were sparsely generated?

Yes!

Echonest: Music data set with 1 million users and 385,000 songs, with 48 million observations. Each observation is the number of times a user played a song.
Test for Sparsity

Do we actually observe datasets that were sparsely generated? Yes!

Echonest: Music data set with 1 million users and 385,000 songs, with 48 million observations. Each observation is the number of times a user played a song.

Figure: Echonest p-samp
Test for Sparsity

Do we actually observe datasets that were sparsely generated? Yes! Echonest: Music data set with 1 million users and 385,000 songs, with 48 million observations. Each observation is the number of times a user played a song.

![Echonest: rho vs p-samp level](image-url)
Test for Sparsity

Netflix: Movie data set with 480,000 users and 17,770 movies, with 100 million observations.

Figure: Netflix
Insights related to Train-Test Split

How do we split graph datasets like Echonest, Netflix?

- Dataset is the edge set $E = \{(i, j)\}_{i \in V_U, j \in V_I}$

- Existing Approach: Randomly holdout some fraction of the edges
 - Makes the recommendation task easier: more likely to select edges from high degree users and high degree items.
 - Unfairly penalizes generative models: Posterior distribution would be incorrect because of biased sampling

- Proposed Approach: Based on p-sampling
 - Split the edge set into Train and Test set by p-sampling users
 - Run the training procedure to infer item properties. Fix the item properties once training finishes.
 - Split Test set into lookup and heldout set by p-sampling items
 - Run the training procedure to infer users preferences in the lookup set (keeping item properties fixed)
 - Perform the prediction task on heldout set.
Insights related to Train-Test Split

How do we split graph datasets like Echonest, Netflix?

- Dataset is the edge set $E = \{(i, j)\}_{i \in V_U, j \in V_I}$
- **Existing Approach**: Randomly holdout some fraction of the edges
 - Makes the recommendation task easier: more likely to select edges from high degree users and high degree items.
 - Unfairly penalizes generative models: Posterior distribution would be incorrect because of biased sampling

- **Proposed Approach**: Based on p-sampling
 - Split the edge set into Train and Test set by p-sampling users
 - Run the training procedure to infer item properties. Fix the item properties once training finishes.
 - Split Test set into lookup and heldout set by p-sampling items
 - Run the training procedure to infer users preferences in the lookup set (keeping item properties fixed)
 - Perform the prediction task on heldout set.
Insights related to Train-Test Split

How do we split graph datasets like Echonest, Netflix?

- Dataset is the edge set \(E = \{(i, j)\} \in V_u, j \in V_i \)

- **Existing Approach:** Randomly holdout some fraction of the edges
 - Makes the recommendation task easier: more likely to select edges from high degree users and high degree items.
 - Unfairly penalizes generative models: Posterior distribution would be incorrect because of biased sampling

- **Proposed Approach:** Based on \(p \)-sampling
 - Split the edge set into Train and Test set by \(p \)-sampling users
 - Run the training procedure to infer item properties. Fix the item properties once training finishes.
 - Split Test set into lookup and heldout set by \(p \)-sampling items
 - Run the training procedure to infer users preferences in the lookup set (keeping item properties fixed)
 - Perform the prediction task on heldout set.
Extended Example: Sparse Non-Negative Matrix Factorization
Application: Sparse Non-Negative Matrix Factorization

Recall:

- Observed Data: Adjacency matrix g where g_{ij} indicates user i consumed item j

Figure: Non-Negative Matrix Factorization
Main Idea
Users and items have a K-dimensional latent feature

- Each user i has total popularity P_i and feature affinity $(\phi_{ik})_{k=1}^K$
- Each item j has total popularity P'_j and feature affinity $(\varphi_{jk})_{k=1}^K$
- Probability of edge (i, j) is given as $1 - \exp(-P_i P'_j \sum_k \phi_{ik} \varphi_{jk})$

Note: Inclusion probability of edge (i, j) is the probability of a non-zero draw from a Poisson distribution with mean $P_i P'_j \sum_k \phi_{ik} \varphi_{jk}$
Digression: Generalized Gamma Process

For \((\sigma, \tau) \in (0, 1) \times \mathbb{R}_+ \cup [\infty \times \mathbb{R}_+],\) let \(\rho_{\sigma,\tau}\) denote the Lévy intensity measure of a Generalized Gamma process:

\[
\rho_{\sigma,\tau}(d\omega) = \frac{1}{\Gamma(1 - \sigma)} \omega^{-1-\sigma} \exp(-\omega \tau) d\omega,
\]

Properties of GGP

- Pseudo-conjugacy relationship with Poisson distribution - useful for inference
- Poisson process has finite activation \(\iff\ \sigma < 0\) (model is equivalent to dense graph) - useful for interpretability
Application: Sparse Non-Negative Matrix Factorization

Generative Model (TC16)

- Sample user features:

 \[\{ (x_1, u_1), \ldots \} \sim \text{PP}(\rho_{\sigma_U, \tau_U} \times \text{Leb}[0,s]) \quad \theta_{ik} \overset{iid}{\sim} \text{Gamma}(a, b) \]

- Sample item features:

 \[\{ (y_1, t_1), \ldots \} \sim \text{PP}(\rho_{\sigma_I, \tau_I} \times \text{Leb}[0,\alpha]) \quad \beta_{jk} \overset{iid}{\sim} \text{Gamma}(c, d) \]

- Given user features and item features:

 \[e_{ij}^k | x_i, \{ \theta_{ik} \}, y_j, \{ \beta_{jk} \} \overset{ind}{\sim} \text{Poi}(x_i y_j \theta_{ik} \beta_{jk}) \]

 Probability of edge between user \(u_i \) and item \(t_j \) is given as
 \[\Pr(\sum_k e_{ij}^k > 0) \]
Variational Inference

- Model is defined in a way, using gamma-poisson conjugacy, complete conditionals for parameters lie in exponential family
- Use mean field approximation for the posterior distribution over parameters
- Variational distributions for all parameters are in the same exponential family as their complete conditionals
- We follow a coordinate ascent inference scheme described in [GHB14] for scaling inference
- (Forthcoming Paper for more details)
Posterior simulation

- We simulated a sparse graph of large size.
- Based on observation of a subgraph, we computed the posterior predictive distribution of the degree distribution of items for
 1. a sparse GGP prior (left figure), and
 2. a dense GGP prior (right figure).
- In both case the blue curve corresponds to the true degree distribution and the orange curve corresponds to the posterior predictive average.
Summary

- Described Sparse Exchangeable models for Machine Learning
- Sampling Insights:
 - Test for sparsity
 - New train-test split for relational data
- Extended Example: Sparse Non-Negative Matrix Factorization
Summary

- Described Sparse Exchangeable models for Machine Learning
- Sampling Insights:
 - Test for sparsity
 - New train-test split for relational data
- Extended Example: Sparse Non-Negative Matrix Factorization

That’s all Folks!