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Abstract

In this paper, we obtain an (1 − e−1)-approximation algorithm for maximizing a nondecreasing submodular set function
subject to a knapsack constraint. This algorithm requires O(n5) function value computations.
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1. Introduction

Let I = {1; : : : ; n}. Let B and ci, i∈ I , be nonneg-
ative integers. In this note, we consider the following
optimization problem:

max
S⊆I

{
f(S) :

∑
i∈S
ci6B

}
; (1)

where f(S) is a nonnegative, nondecreasing, submod-
ular, polynomially computable set function (a set func-
tion is (i) submodular if f(S) +f(T )¿f(S ∪ T ) +
f(S ∩ T ) for all S; T ⊆ I and (ii) nondecreasing if
f(S)6f(T ) for all S ⊆ T ).

Nemhauser et al. [6] consider the special case of
problem (1) with ci = 1, for all i∈ I . They prove that
the simple greedy algorithm has performance guaran-
tee 1−e−1 (we say that an algorithm has performance
guarantee �¡ 1 if it always obtains a solution of
value at least � times the value of an optimal solu-
tion). The main property used in their proof is that a
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nondecreasing set function f(S) is submodular if and
only if

f(T )6f(S) +
∑
i∈T\S

(f(S ∪ {i})− f(S)) (2)

for all S; T ⊆ I . Wolsey [8] considers problem (1) with
arbitrary nonnegative integer weights ci. He presents
a modi@ed greedy algorithm, with performance guar-
antee 1 − e−
 ≈ 0:35, where 
 is a unique root of
equation ex = 2− x.

The max k-cover (or maximum coverage) prob-
lem with a knapsack constraint is one of the most in-
teresting special cases of problem (1). Khuller et al.
[3] prove that the greedy algorithm, combined with
the partial enumeration procedure due to Sahni [7],
has performance guarantee 1 − e−1 ≈ 0:632. This is
the best possible performance guarantee achievable in
polynomial time, unless P = NP [1], even in the case
when ci = 1, for all i∈ I . Another well-studied ex-
ample of a problem of maximizing a nondecreasing
submodular set function is the entropy of a positive
semide@nite matrix (see [2,5,4]).
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In this note, we show that the algorithm by Khuller
et al. has performance guarantee 1 − e−1, even for
general problem (1). This algorithm requires O(n5)
function value computations.

2. Algorithm and its analysis

Next, we describe a modi@cation of the greedy
algorithm for solving problem (1).

In the @rst phase, the algorithm enumerates all fea-
sible solutions (sets) of cardinality one or two. Let S1
be a feasible set of cardinality one or two that has the
largest value of the objective functionf(S). In the sec-
ond phase, the algorithm considers all feasible sets of
cardinality three. The algorithm completes each such
set greedily and keeps the current solution feasible
with respect to the knapsack constraint (see the formal
description of the second phase in the next paragraph).
Let S2 be the solution obtained in the second phase
that has the largest value of objective function, over
all choices of the starting set for the greedy algorithm.
Finally, the algorithm outputs S1 iff(S1)¿f(S2) and
S2 otherwise. Below, we formally describe the second
phase of the algorithm.

For all U ⊆ I such that |U | = 3, carry out the
following procedure: Let S0 =U; t=1; I 0 = I: At step
t, we have a partial solution St−1. Find

�t = max
i∈I t−1\St−1

f(St−1 ∪ {i})− f(St−1)
ci

: (3)

Let the maximum in (3) be attained on the index it . Let
St = St−1 ∪ {it} and I t = I t−1 if

∑
i∈St−1∪{it} ci6B.

Otherwise, let St=St−1 and I t=I t−1\{it}. Let t=t+1,
and go to the next step. Stop when I t \ St = ∅.

In the proof of the performance guarantee, we will
use the following inequality due to Wolsey [8]: If P
and D are arbitrary positive integers, �i; i = 1; : : : ; P,
are arbitrary nonnegative reals, and �1¿ 0 (note
that Wolsey uses slightly more general conditions),
then ∑P

i=1 �i
mint=1; :::;P(

∑t−1
i=1 �i + D�t)

¿ 1

−
(
1− 1

D

)P
¿ 1− e−P=D: (4)

Theorem 1. The worst-case performance guarantee
of the above greedy algorithm for solving problem
(1) is equal to 1− e−1.

Proof. If there is an optimal solution to problem (1)
with cardinality one, two or three, such a solution will
be found by the algorithm by the enumeration of all
sets of cardinality three or less. So we assume that
the cardinality of any optimal solution is larger than
three. Let S∗ be an optimal solution to problem (1).
We order the set S∗ so that

f({i1; : : : ; it}) = max
i∈S∗\{i1 ;:::; it−1}

f({i1; : : : ; it−1} ∪ {i});

i.e. i1 is an element of the optimal set S∗ having the
greatest value of the objective function, i2 is an ele-
ment that gives the greatest increase in objective value
if we add it to the set {i1}, and so on. Let Y={i1; i2; i3}
be the set that consists of the @rst three elements of
the set S∗. Now, we prove an inequality that is a gen-
eralization of inequality (3) from [3]. For any element
ik ∈ S∗, k¿ 4, and set Z ⊆ I\{i1; i2; i3; ik}, the follow-
ing series of inequalities follows from submodularity,
the ordering of the set S∗, and the fact that f(∅)¿ 0:

f(Y ∪ Z ∪ {ik})− f(Y ∪ Z)6f({ik})
−f(∅)6f({i1});
f(Y ∪ Z ∪ {ik})− f(Y ∪ Z)6f({i1} ∪ {ik})
−f({i1})6f({i1; i2})− f({i1});
f(Y ∪ Z ∪ {ik})− f(Y ∪ Z)6f({i1; i2} ∪ {ik})
−f({i1; i2})6f({i1; i2; i3})− f({i1; i2}):
Summing up all these inequalities, we obtain

3(f(Y ∪ Z ∪ {ik})− f(Y ∪ Z))
6f({i1; i2; i3})− f({i1; i2}) + f({i1; i2})
−f({i1}) + f({i1}) = f(Y ): (5)

From now on, we consider an iteration of the algorithm
in which the set Y was chosen at the beginning of the
greedy procedure, i.e. S0 = Y . We will prove that the
value of the objective function of the solution obtained
in this iteration is at least 1 − e−1 times the value of
the optimal solution.

De@ne the function g(S) =f(S)−f(Y ). It is easy
to see that the function g(S) is nondecreasing and
submodular if the function f(S) is nondecreasing and
submodular. Therefore, g(S) satis@es inequality (2).
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It is also clear that the function g(S) is nonnegative,
for all sets S such that Y ⊆ S ⊆ I , since f(S) is a
nondecreasing function.

Let t∗+1 be the @rst step of the greedy algorithm for
which the algorithm does not add element it∗+1 ∈ S∗
to the set St

∗
, i.e. St

∗+1=St
∗
and I t

∗+1= I t
∗ \{it∗+1}.

Without loss of generality, we assume that t∗ + 1 is
the @rst step t for which St=St−1 and I t= I t−1 \{it}.
We can do this since if it happens earlier for some
t′¡t∗+1, then it′ �∈ S∗, and it′ does not belong to the
approximate solution we are interested in; therefore,
excluding it′ from the ground set I does not change
the analysis, the optimal solution S∗, and the approx-
imate solution obtained in the iteration with S0 = Y .
If the element it∗+1 is not included in the set St

∗
, then

cit∗+1 +
∑

i∈St∗ ci ¿B. Let St ; t=0; : : : ; t∗, be the sets
de@ned in the description of the algorithm. Applying
inequality (2) and the de@nition of g(S), we obtain

g(S∗)6 g(St) +
∑

i∈S∗\St
(g(St ∪ {i})− g(St))

= g(St) +
∑

i∈S∗\St
(f(St ∪ {i})− f(St))

6 g(St) +

(
B−

∑
i∈Y

ci

)
�t+1 (6)

for all t = 0; : : : ; t∗. The last inequality follows from
the facts that (i) f(St ∪ {i}) − f(St)6 ci�t+1, and
(ii)

∑
i∈S∗\St ci6B−∑i∈Y ci.

Let Bt=
∑t

�=1 ci� and B0 =0. Note that, by the de@-
nition of the element it∗+1, we have B′=Bt∗+1¿B−∑

i∈Y ci = B′′. For j = 1; : : : ; B′, we de@ne �j = �t
if j = Bt−1 + 1; : : : ; Bt . Using this de@nition, we ob-
tain g(St

∗ ∪ {it∗+1}) =
∑t∗+1

�=1 ci��� =
∑B′

j=1 �j and

g(St) =
∑t

�=1 ci��� =
∑Bt

j=1 �j for t = 1; : : : ; t∗ (here
we have used the fact that it∗+1 is the @rst element it
that is not added to St−1). Using equalities

min
s=1;:::;B′



s−1∑
j=1

�j + B′′�s




= min
t=1;:::; t∗




Bt∑
j=1

�j + B′′�Bt+1




= min
t=1;:::; t∗

{g(St) + B′′�t+1}

and inequalities (4) and (6), we obtain

g(St
∗ ∪ {it∗+1})
g(S∗)

¿

∑B′

j=1 �j

mins=1; :::;B′ {
∑s−1

j=1 �j + B
′′�s}

¿ 1− e−B
′=B′′ ¿ 1− e−1: (7)

Combining (5) and (7), we obtain

f(St
∗
) = f(Y ) + g(St

∗
)

= f(Y ) + g(St
∗ ∪ {it∗+1})

−(g(St
∗ ∪ {it∗+1})− g(St∗))

= f(Y ) + g(St
∗ ∪ {it∗+1})

−(f(St
∗ ∪ {it∗+1})− f(St∗))

¿f(Y ) + (1− e−1)g(S∗)− f(Y )=3

¿ (1− e−1)f(S∗):

Since the output of the algorithm is at least as good
as St

∗
, this proves the performance guarantee of

1− e−1.
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