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Humans have a significant ability to adapt their skills and use their already gained knowledge in a new

situation with different goals or rewards. Such adaptation capability is an important sign of intelligence,

but current reinforcement learning agents often perform poorly in similar situations. In this work, we

propose a framework to learn a generalizable policy that can efficiently adapt to an unseen task where

different tasks only differ in their reward function. Our approach is based on two key components: (a)

successor features, a representation scheme that makes it possible to immediately compute the value of a

policy on any task, and (b) Robust policy gradient, a generalization of standard policy gradient theorem

to find a generalizable policy that can work well on a set of tasks. Putting these two together leads to an

approach that integrates naturally into the RL framework and can be applied to all Actor-Critic methods

without the need for much change in the original algorithm implementation. We provide our approach

in a firm theoretical ground and present experiments that show it successfully promotes transfer in A2C

and PPO methods in a sequence of tasks in the Linear Quadratic Regulator environment.
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Chapter 1

Introduction

Despite recent successes in reinforcement learning (RL) (Mnih et al., 2015; Lillicrap et al., 2016), there

is still a huge gap between RL algorithms and human intelligence. RL algorithms have been able to

achieve human-level performance in many tasks, especially when combined with deep neural networks

(Mnih et al., 2013; Silver et al., 2016; Berner et al., 2019). However, the agent requires a fairly large

amount of time to interact with the environment to learn an effective policy. One way to reduce the

required number of samples is to utilize knowledge learned from one task to other related tasks. However

RL agents, unlike humans, cant adapt to even a slight change in the environment which makes them

unusable in real-world applications. This problem highlights the importance of the ability to efficiently

adapt to the environment changes.

Humans and animals are able to adjust their learnt skills to be used in different situations. This

flexibility is considered as one of the hallmarks of intelligence. For instance, consider the task of driver’s

navigation in a city. Drivers that know how to get from one point to another are still able to drive the

car if you change their destination. They can adapt their driving skills to new scenarios because they

have a representation of the world that generalizes beyond the specific source and destination. This

efficient transfer of knowledge between tasks and flexibility to reuse previous skills to solve a new task

is largely absent in RL agents.

Several recent papers studied the problem of RL agents getting overly specialized to the environment

setup they are trained on (Whiteson et al., 2011; Zhang et al., 2018a; Machado et al., 2018). It has

been shown that the RL agents suffer from the lack of generalization to even minor changes in the

environment and are prone to memorizing the solution and overfitting to the specific environment setting.

For example, Cobbe et al. (2019) showed that the agent trained to have nearly optimal behaviour in a

video game fails to adapt to the new but highly similar levels while a human can seamlessly generalize

across similar tasks.

To overcome these limitations, several frameworks have been proposed to incorporate generalization

over tasks and transfer capabilities into RL agents. Each framework assumes a specific kind of transfer

because transferring knowledge between two tasks is not possible if they are completely unrelated (Taylor

and Stone, 2009). We focus on a specific kind of transfer where the agent is working in a fixed environment

but only the reward function can change. This transfer scenario is useful to understand how RL agents

transfer the knowledge about the environment shared between tasks and is flexible enough to cover some

scenarios of interest. For example, one can see the reward function as the agent’s preference and the

1
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transfer as the change of this preference in different situations. As another example, the reward function

can be considered as a way to define intermediate goals that are set to break down a complex task and

the transfer as the change of subgoals in the environment. We will elaborate more on this in Chapter 3.

Dayan (1993)’s Successor Representation (SR) and its extension, Successor Features (SF), to include

function approximation are apt for transfer in shared dynamics. SR decouples the reward specification

from the expected future state occupation in the value function. This dissociation has made these

representation schemes a natural choice for the knowledge to be transferred between tasks that only

differ in reward function. This approach has received a lot of attention recently. Many methods have

been proposed using successor features for transfer learning (Barreto et al., 2017; Borsa et al., 2019;

Madarasz and Behrens, 2019; Ma et al., 2020). Our work is mainly inspired by the work of Barreto

et al. (2017) which is one of the pioneer papers in this direction. They introduced SF and used it as a

pivotal element to improve efficiency of their transfer learning method (we will discuss their relation to

our method in the related work section).

Most of the previous methods use SFs in the value-based RL algorithms and none of them theoretically

showed its application in policy-based methods. In this project, we theoretically show how we can extend

the policy gradient theorem to use successor features and propose a method to use SFs in the whole

family of actor-critic methods. The main idea is that using SFs to represent the critic enables us to

quickly compute the critic of any new reward function which is a better estimate of initial critic after

the change of task and speeds up the learning process. This method can make all actor-critic methods

suitable for transfer with minimal changes in the original algorithm, without encountering any slowdown

in the single task scenario. We also present a theorem that formalizes the notion of transferability of

policy in similar tasks and provide a performance bound for the transferred policy before any learning

has taken place that directly depends on the task’s similarity.

Despite the advantages of using SFs for transfer, it also has limitations when applied to the transfer

learning scenarios. The expectation of future outcomes when following a policy (SFs of the policy)

directly depends on the policy that the agent is following. When we approximate SFs through the

process of learning the optimal policy of a specific task, the approximated optimal policy depends on

the reward function of that task. This natural dependence to the reward function makes the SFs to also

implicitly depend on the reward function of the task they are learnt for. As a result, when the difference

between source and target tasks increases, the SFs learnt on the source task is less suitable for the target

task. Using this SFs to compute the initial critic of the target task can even result in a slower learning

compared to when starting from a random critic i.e. negative transfer.

To overcome this limitation, we propose the robust policy gradient method. The idea is that instead

of approximating an optimal policy that maximizes the performance metric of a specific task, we try to

learn a policy that maximizes the worst performance metric for the set of tasks in an uncertainty set

associated with the reward functions. This robust policy and its learnt SFs by definition can generalize

better for the tasks in that uncertainty set, starting from them we can find the optimal policy of an

unseen task in that set faster. Similar to the policy gradient theorem, we derive the robust policy gradient

theorem that presents how we can find the gradient of robust performance metric with respect to policy

parameters. This method also integrates naturally in the policy based methods in the RL framework

and can be adopted in all actor critic methods with minimal change to the original algorithm.

We finally apply the proposed methods on the Advantage Actor Critic (A2C; (Mnih et al., 2016))

and Proximal Policy Optimization (PPO; (Schulman et al., 2017)) methods and empirically evaluate the
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performance of proposed methods. We show how they help to speed up the solution of target tasks in

transfer scenario in the Linear Quadratic Regulator (LQR) environment as a continuous control problem.

1.1 Related Works

Our work is inspired by and builds on top of a broad range of topics, including multitask RL, transfer

learning, and generalization in RL. In this section, we overview the most relevant ones. For a comprehen-

sive presentation of the subject please see (Taylor and Stone, 2009) and (Lazaric, 2012) and references

therein.

General methods: There are lots of recent papers that have proposed methods for the problem of

transfer learning in RL/ deep RL. Similar to our approach, some works proposed a method to train an

agent that can generalize across some tasks. Among them, some methods introduced a new architecture

to leverage prior knowledge and promote transfer. For example, Rusu et al. (2016) and Kirkpatrick

et al. (2016) introduced new neural network architectures well-suited for continual learning based on

sequential learning that tries to overcome catastrophic forgetting to retain previously learned skills. Teh

et al. (2017) proposed a method to capture common behaviour among tasks by proposing a new objective

that penalizes tasks policies to be different from the shared policy as a regularizer. So the knowledge

gained in one task is distilled in the shared policy and then transferred to the other policies. Finn et al.

(2017) used meta-learning to find a policy that can adapt easily instead of having high performance. This

policy then is used as the initial policy that can be fine-tuned effectively to speed up learning in transfer

scenario. None of these methods uses a robust policy search framework similar to ours. We provided a

principled way to learn a policy robust to the change of reward function that naturally integrates into

the RL framework.

SF based methods: Another line of research is the attempts to use SF for transfer as it allows to

immediately compute the value of a policy π on any task. Note that general value functions used in

the Horde architecture (Sutton et al., 2011) can be seen as the more generalized version of SF. They

also calculate several value functions concurrently each of them associated with different pseudo-reward

functions. Schaul et al. (2015) extended Hord architecture to the universal value function approximators

(UVFAs) that takes the embedding of goal as input and approximates its value function over state space.

The idea is to augment the standard value function with an extra argument at the description of the

task so it generalizes not just over state space but also different goals. They first learn goal-specific value

functions and then through matrix factorization try to learn flexible goal and state embeddings. Barreto

et al. (2017) proposed a framework based on two ideas of successor features (SFs) and generalized policy

improvement (GPI). GPI is a generalisation of the policy improvement method that improves the policy

based on a set of value functions rather than on a single one. They use SFs to compute the value of the

previous policy on the task at hand – the value functions of the previous policies under the new tasks

reward function. In this case, applying GPI to the set of action – value functions will result in a policy

that performs at least as well as any of the previous policies.

Universal SF based methods: More recent work from Ma et al. (2020) and Borsa et al. (2019) try

to combine the idea of universal value functions and SF to learn an approximate universal SF, similar
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to UVFAs. Ma et al. (2020) proposed the Universal Successor Features (USFs) model, which learns SFs

that can generalize over goals in an end to end model. The idea is that universal SFs can capture the

generalizable knowledge about the underlying dynamics of different tasks with shared dynamics. Then

using this USFs provides a good initial point to start learning a specific task in the transfer scenario. This

method assumes a smooth change of SFs when there is a smooth change in the goals representations

and relies on the neural network to implicitly learn this structure. Borsa et al. (2019) proposed the

Universal Successor Feature Approximators (USFAs) model that imposes the universality of UVFS into

SFs to be used in service of GPI. USFAs estimate SFs over multiple policies. Then applying GPI using

those estimations provides a superior zero-shot policy in an unseen task ((Borsa et al., 2019)).

1.2 Contributions

In this thesis, we study the problem of transfer in reinforcement learning and in particular focus on a

specific instance of transfer learning problem where the tasks only differ in the reward function. The

main contributions of this work are as follows:

• A theoretical result showing how one can compute the gradient of performance metric with respect

to policy parameters when the value function is represented with SFs.

• A method to use SFs for transfer in actor-critic methods that can help to speed up the solution in

transfer learning.

• An upper bound on the performance of the transferred policy before any learning that directly

depends on the similarity of tasks reward functions.

• A method to find a policy robust to the change of reward function that can be applied to the whole

family of actor-critic methods.

• Empirical results demonstrating the effectiveness of proposed methods applied on A2C method in

a continuous control task.

1.2.1 Outline

This thesis consists of five chapters. In Chapter 2 we briefly discuss basic notions from reinforcement

learning that we use throughout the thesis. Chapter 3 provides theoretical results showing how we can

combine SFs in actor critic methods and intorduces the robust policy gradient method. In chapter 4, we

provide extensive empirical analyses of the proposed method. Finally, Chapter 5 concludes the thesis.



Chapter 2

Background

This chapter introduces and describes basic concepts of reinforcement learning and some building blocks

which will be useful for understanding the rest of this document. We begin with the reinforcement

learning problem formulation and Markov decision processes, then move on to the definition of policy

and value function. We then review basic reinforcement learning methods and briefly describe policy-

based algorithms. Finally, in Section 2.3, we describe the main idea of successor representation and its

generalization to successor features.

2.1 Reinforcement Learning

Reinforcement learning (RL) is learning by interacting with an environment (Sutton and Barto, 2018).

This area of machine learning deals with sequential decision-making problems. An RL problem can be

described as an agent which learns from the consequences of its decisions. This agent is a discrete time

stochastic control process where it interacts with its environment. As shown in Figure 2.1, at every step

of interaction, the agent sees an observation of the state of the world and then decides on an action

to take. It follows three consequences: (i) the agent obtains a reward signal from the environment,

(ii) the state transitions to a next state, and (iii) the agent obtains an observation of the new state

(François-Lavet et al., 2018).

Figure 2.1: The reinforcement learning loop.

The goal of RL framework is to find a mapping between situations and decisions for this agent so

that the suggested decisions maximize some measure of the long-term future reward. Here, we review

5
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the main elements of RL before delving into RL methods.

2.1.1 Markov Decision Process

The common approach to formalize a decision-making problem in the RL framework is to model it

with a Markov Decision Process (MDP). The following presentation adopts most of the notation from

Szepesvári (2010).

Definition 2.1.1. A finite-action discounted Markov Decision Process (MDP) is a tupleM = (X ,A,P,R, γ)

where X is a non-empty countable set of states, A = {a1, a2, ...a|A|} is the finite set of |A| actions, The

function P defines the dynamics of the MDP: specifically, P(.|x, a) gives the next-state distribution upon

taking action a in state x. R(·|x, a, x′) gives the correspanding distribution of immediate rewards, where

the random variable R(x, a, x′) ∼ R(·|x, a, x′) determines the reward received in the transition from

state x to state x′ while taking action a and γ ∈ [0, 1) is the discount factor that gives smaller weights

to future rewards.

The key property of MDPs is that they are Markovian. The current state and action capture all

relevant information from the history. The state and action are sufficient statistics of the future. In simple

terms, it means the probability of each possible value for Xt and Rt depends only on the immediately

preceding state and action, Xt−1 and At−1, and given them, not at all on earlier states and actions.

2.1.2 Policy and Value function

As mentioned earlier, the goal of RL framework is to maximize some measure of the long term future

reward. The rewards the agent can expect to receive in the future depend on what actions it will take.

A policy defines how an agent selects actions. To find the optimal policy of some MDP, it is often useful

to estimate how good it is to be in a given state, called value function (or how good it is to perform a

given action in a given state, called action value function). The policy can either be stochastic, denoted

by π(a|x), or deterministic a = π(x). Here we only consider the general case of stochastic policy. It is

formally defined as:

Definition 2.1.2. A policy π : X ×A → [0, 1], is a distribution over actions given states.

π(a|x) = P[A = a|X = x].

That is if the agent is following the policy π, then π(a|x) is the probability of taking action a in state x.

The action a alters the state of the agent and its environment according to the transition prob-

ability function P(xt+1|xt, at). Jointly, the states and actions of the agent form a trajectory τ =

(x0, a0, x1, a1, ...). In this project, we only consider the infinite horizon, episodic MDPs. A common

measure in the infinite-horizon case that is used as the performance metric of the agent is the discounted

return. The discounted return of trajectory τ is defined as:

G(τ) =

∞∑
t=0

γtR(xt, at, xt+1).
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We can formally define the expected return (also called value function) V π and action-value function

Qπ of an underlying policy π as follows: (Szepesvári, 2010)

Definition 2.1.3. Let (Rt; t ≥ 1) be the sequence of rewards when starting from a state X0 (or

(X0, A0) for the action-value function) drawn from a positive probability distribution over X (or X ×A)

and following the policy π for t ≥ 0 (or t ≥ 1 for the action-value function). Then,

V π(x) = E

[ ∞∑
t=0

γtRt+1|X0 = x

]
, x ∈ X ,

Qπ(x, a) = E

[ ∞∑
t=0

γtRt+1|X0 = x,A0 = a

]
, x ∈ X , a ∈ A.

From the definition of the value function, the optimal value function that gives the highest achievable

expected return when the starting from state x can be defined as:

V ∗(x) = max
π

V π(x).

Similar to V ∗(x), if the action-value function yields the maximum expected return for every state-action

pair, it is said to be optimal and is denoted by Q∗:

Q∗(x, a) = max
π

Qπ(x, a).

The particularity of the action value function, Q, as compared to the state value function, V , is that the

optimal policy can be obtained directly (without the need to know transition probability function, P)

from Q∗(s, a) :

π∗(x) = arg max
a∈A

Q∗(x, a).

2.1.3 Bellman Equation

With the help of the Bellman equation, we can compute the value function of a state recursively in terms

of the value function of future states. Bellman equation decomposes the value function in two parts, the

expected immediate reward and the discounted value of successor states. We can define the Bellman

equation as follows:

V π(x) = E[Rt+1 + γV π(Xt+1)|Xt = x].

2.2 RL Methods

The goal of reinforcement learning is to compute a policy directly from interactions between the agent and

its environment such that an agent following this policy will have the maximum possible performance.

There are many ways to categorize RL methods. One fundamental split is that of model-based

vs. model-free methods (Sutton and Barto, 2018). Model-based methods seek to optimize returns by

learning the transition and reward models, then performing some form of dynamic programming to

optimize behaviour. Model-free methods, on the other hand, attempt to learn a policy directly, without

explicitly modeling the environment dynamics. This work focuses on model-free methods.
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Two main approaches to learn agents with model-free reinforcement learning are value-based and

policy optimization methods.

The key idea of value-based methods is that optimal actions are those which result in the highest

value. All we need to do to find the optimal policy is to estimate optimal action values, Q∗(x, a), i.e

how good it is to take an action at a particular state. Then the solution is the greedy policy that selects

actions with the highest estimated value.

On the other hand, policy optimization methods find a parameterized policy by optimizing a per-

formance objective (typically the expected cumulative reward) without the need to compute a value

function. A value function may still be used to learn the policy parameter, but is not required for action

selection. One class of policy optimization methods, among others like evolution strategies (Heidrich-

Meisner and Igel, 2008), is policy gradient methods. This class of algorithms directly optimize perfor-

mance objective by performing stochastic gradient ascent on the parameters θ of a family of policies πθ.

The focus of this project is on this class of algorithms. In the next section we briefly describe the basic

aspects of this methods.

2.2.1 Policy Gradient Methods

The idea of policy gradient reinforcement learning (Sutton et al., 1999) is to directly approximate a

stochastic policy by operating in the parameter space of a parametrized policy. Policy gradient methods

use stochastic gradient ascent for maximizing the performance (objective) function of the corresponding

policy.

The performance function is defined as:

J(θ) = V πθ (x0) =
∑
a∈A

πθ(a|x0)Qπθ (x0, a), (2.1)

the value function of policy πθ starting from state x0. We also define dπ(x) =
∑∞
t=0 γ

tP{xt = x|x0, πθ}
as the unnormalized stationary discounted future-state distribution under π (if we normalize it with

1−γ it turns to a probability distribution). It shows the weighted occupancy frequency of being in state

x, after following π starting in x0. We assume dπ exists and is independent of x0 for all policies.

In gradient ascent, the parameter update direction is given by the gradient ∇θJ(θ). It points to the

direction of steepest ascent of the expected return to find the best θ for πθ that produces the highest

return. The policy gradient update is therefore given by

θk+1 = θk + α∇θJ(θ),

where α is a learning rate.

Now using the policy gradient theorem (Sutton et al., 1999), we can find the gradient of performance

metric with respect to the policy parameter as follows:

∇θJ(θ) =
∑
x∈X

dπθ (x)
∑
a∈A
∇θπθ(a|x)Qπθ (x, a).
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We can reformulate the above gradient in an expectation form as follows:

∇θJ(θ) =
∑
x∈X

dπθ (x)
∑
a∈A
∇θπθ(a|x)Qπθ (x, a)

= Ex∼dπθ

[∑
a∈A
∇θπθ(a|x)Qπθ (x, a)

]
= Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)Qπθ (x, a)] . (2.2)

The policy gradient theorem can be generalized to include a comparison of the action value to an

arbitrary baseline b(x):

∇θJ(θ) = Ex∼dπθ ,a∼πθ [(Qπθ (x, a)− b(x))∇θ log πθ(a|x)] .

Because:

Ex∼dπθ [Ea∼πθ [b(x)∇θ log πθ(a|x)]] = Ex∼dπθ [b(x)∇θEa∼πθ [log πθ(a|x)]] = Ex∼dπθ [b(x)∇θ1]] = 0.

So the added baseline term dose not change the expectation of gradient, but it can significantly

reduce its variance (Williams, 1992).

Now we need a way to obtain samples of this gradient to use in stochastic gradient ascent. One of

the simplest ways is to use the Monte Carlo estimator also known as the REINFORCE (Williams, 1992).

It takes the form:

θt+1 = θt + α(Gt − b(xt))∇θ log πθt(at|xt)

Intuitively, we sample a trajectory using our policy and move the parameters of policy in the direction

that most increases the probability of repeating the action at on future visits to state xt times the return

from time t minus the baseline (Gt − b(xt)).

Although REINFORCE with baseline method will converge asymptotically to a local maximum, like

any other Monte Carlo method it tends to learn slowly. If we are able to use an estimate of state-action

value function instead of the return, we can solve some of these limitations. There is a class of algorithms

called actor critic which bootstrapping in temporal difference learning method solve this problem.

Actor-Critic Methods

As we discussed earlier each of the value based and policy based methods have their own advantages

and disadvantages. Actor-Critics aim to take advantage of all the good stuff from both value based and

policy based while eliminating all their drawbacks. The principal idea is to split the process in two parts,

one for computing an action based on a state and another one to produce the Q values of the action.

This leads us to Actor-Critic methods, where the critic that measures how good the action taken is and

the Actor that controls how our agent behaves.

∇θJ(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)Qπθu (x, a)] . (2.3)
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2.3 Successor Representations in Reinforcement learning

Almost all reinforcement learning algorithms involve the prediction of the value of being in state x or the

value of taking the action a in state x. These value functions depend on of two pieces of information: (1)

the expected discounted future states which will be encountered, and (2) the expected reward in those

states. The first component makes up the Successor Representation (SR; (Dayan, 1993)) which comes

from the dynamics of the environment and agent’s policy.

The main idea behind the SR is calculating how often you expect to be in other states when starting

from the state x and following the policy π. It can be seen as encoding the dynamics of the Markov

chain induced by the policy π and by the environments transition probability function P. If the agent

has access to the SR, it can accurately predict the discounted accumulated value of any reward function,

for any state, by simply multiplying the SR of that state in the expected immediate reward of states as

follows:

V (x) =
∑
x′

ψπ(x, x′)R(x′),

where ψπ(x, x′) is the expected discounted future occupancy, i.e. SR, of state x′ starting from state x

and R(x′) is the expected reward received in state x′.

The Successor Representation is defined analogously to the value function; instead of accumulating

rewards (as in the value function), the SR accumulates state occupancies. Since the SR captures the

visitation of successor states, it is directly dependent on the policy π and the transition dynamics

P(xt+1|xt, at). More concretely, the SR with respect to a policy π, ψπ, is defined as follows:1

ψπ(x, x′) = E

[ ∞∑
t=0

γtI{Xt = x′}|X0 = x

]
, (2.4)

where I denoting the indicator function. So for ψπ we have:

ψπ(x, x′) = E [I{X0 = x′}+ γψπ(Xt+1, x
′)|X0 = x] . (2.5)

That is, SR satisfies a Bellman equation in which I play the role of rewards. Therefor in practice any

RL method can be used to compute ψπ. For example we can use TD learning as follows:

ψ̂π(Xt, j)← ψ̂π(Xt, j) + α(I{Xt = j}+ γψ̂π(Xt+1, j))− ψ̂π(Xt, j)), (2.6)

for all j ∈ X , where ψ̂ is the estimate of SR being learnt following policy π and α denoting the step size.

2.3.1 Successor Features

Successor features (SF; Barreto et al. (2017)) generalize the successor representation to the function

approximation setting as follows:

1Unlike the standard notation in RL that we typically describe the return as predicting the signal from t + 1 onward,
Dayan describes the SR as predicting future state visitation from time t onward.
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Definition 4. (Successor Features). For a given 0 ≤ γ < 1, the policy π, and for a feature representa-

tion φ(x) ∈ Rd, the successor features for a state x are:

ψπ(x) = E
[ ∞∑
t=0

γtφ(Xt)|X0 = x
]
, x ∈ X . (2.7)

We can also extend the definition of successor features from being based on state representation φ(x),

to state-action representation φ(x, a). In this case we can define successor features of state-action (x, a),

as well as state x as follows:

ψπ(x) = E
[ ∞∑
t=0

γtφ(Xt, At)|X0 = x
]
, x ∈ X ,

ψπ(x, a) = E
[ ∞∑
t=0

γtφ(Xt, At)|X0 = x,A0 = a
]
, x ∈ X , a ∈ A.

Note that we overload the function ψπ(x) with ψπ(x, a). The relation between ψπ(x) and ψπ(x, a) is as

follows:

ψπ(x) = EA∼π(·|x)[ψ(x,A)]

.

As mentioned in Chapter 1, in this project we are interested in the multitask scenario, where different

tasks only differ in their reward function. Now we present a simple reward model and show how it leads

to the successor features.

Suppose that the reward function associated with taking action a in state x can be computed as:

R(x, a) = R(x, a;w) = φ(x, a)>w, (2.8)

where φ ∈ Rd are the features of (x, a) and w ∈ Rd are weights. SFs allow one to immediately compute

the value of a policy π on any task with weight vector w. Having (2.7), let φt = φ(Xt, At), by simply

rewriting the definition of the value function in Definition (2.1.3) we have:

V π(x) = E[

∞∑
t=0

γtRt+1|X0 = x]

= E[Rt+1 + γRt+2 + γ2Rt+3 + ...|X0 = x]

= E[φ>t+1w + γφ>t+2w + γ2φ>t+3w + ...|X0 = x]

= E[

∞∑
i=t

γi−tφi+1|X0 = x]>w

= ψπ(x)>w. (2.9)

As one can see, SFs decouple the dynamics of the MDP from its rewards. One benefit of doing so is

that if we replace w with w′, the weight vector associate with the reward function of a new task, we

immediately obtain the value function of π on the new task using (2.9).



Chapter 3

Robust Policy Gradient Methods

Using Successor Features

Policy gradient methods assume a parametric policy space and try to find the parameter that maximizes

the performance by performing gradient ascent on the policy parameters. These methods have shown

considerable success in solving high-dimensional sequential decision making tasks (Mordatch et al., 2015;

Schulman et al., 2016; Rajeswaran et al., 2017). However, they are expensive in terms of their sample

complexity. Learning a policy for even relatively simple tasks can require millions of steps of data

collection (Schulman et al., 2016). The need for sample efficiency is even more important for agents in

real-world environments. Transferring the knowledge gained while solving one task to another related,

but different task is one approach to mitigate this problem (Taylor and Stone, 2009).

Despite the importance of transfer in reinforcement learning, one of the factors that makes transfer

difficult or impossible in RL and prevents the widespread use of this approach is the over specialization

of a policy learnt for one task. RL policies trained within a specific environment tend to overfit to the

task, and cannot generalize even to small changes in the environment or task domain (Zhang et al.,

2018b). How to learn generalizable policies is still a subject of ongoing research. In this chapter we will

explain our contribution to this research.

In this chapter, at first we show that we can reformulate the policy gradient theorem to use successor

features representation scheme to make Actor-Critic methods more suitable for transfer and provide a

performance guarantees for the transferred policy. We then explain the limitation of this approach for

transfer based on over specialization of source task’s policy. After that in Section 3.3 we propose a new

objective to enforce generalization in the learnt policy which results in a regularization term added to

the original policy gradient update. Finally, we discuss the wide applicability of proposed method on

Actor-Critic methods and apply it on two popular algorithms of this family, Advantage Actor Critic

(A2C) and Proximal Policy Optimization (PPO).

3.1 Problem Statement

In this work we are interested in the problem of Transfer in RL. The specific type of transfer that we

consider is when different tasks only differ in their reward function and the remaining specification of

tasks are the same. We consider the space of all tasks that have the same state space X , action space A,

12
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transition probability function P, and discount factor γ, but only the reward function R can be different.

We want to answer how one can leverage the knowledge gained on the set of tasks with different reward

functions, to speed up the solution of a new, unseen MDP in that set.

We now formally define this setup. Suppose w ∈ Rd and φ : X × A × X → Rd, where φ is a fixed

function and any w defines a new MDP. We define

Mφ(X ,A,P, γ) = {M(X ,A,P,R, γ)|R(x, a, x′) ∼ R(·|x, a, x′), R(x, a, x′) = φ(x, a, x′)>w}, (3.1)

that is,Mφ is the set of MDPs whose reward functions can be represented by a goal specific weight vector

w and a feature vector φ that is a function of x′, a, x in which x′ is the state we end up being when taking

action a in state x. Note that we don’t have any restriction on the φ. When the function φ is expressive

enough, it can represent any reward function. In this work we assume this linear decomposition of

reward function holds exactly, but our solution also applies to the case that this linear decomposition in

only approximately satisfies as discussed by Barreto et al. (2018).

3.2 Policy Gradient Methods Using Successor Features

Suppose that you have approximated the optimal policy for task Mi ∈ Mφ. Further suppose that you

are presented with a new related, but different task Mj . If we can use the knowledge gained while

learning task Mi in solving task Mj , we expect to be able to speed up the solution of this new task.

The way that we propose to use this knowledge in policy gradient methods is by using the action-value

function of policy πi on task Mj as the initial critic when solving task Mj .

As discussed in Section 2.3, when equation (2.8) holds, SFs converts the difficult problem of computing

the value function of a policy πi on task Mj to the much simpler supervised problem of approximating

wj , then we have: Qπij (x, a) = ψπi(x, a)>wj . Now we need to show how we can incorporate successor

features representation in the policy gradient theorem in a way that it meets two conditions. First, it

naturally integrate into the algorithm of solving a task and do not create more computational burden

for it. Second, it has the ability to use useful information from the previously solved tasks.

Our first theorem shows how we can compute the gradient of the performance metric with respect

to the policy parameter, θ, while using successor features representation for action-value function and

meets the desired conditions:

Theorem 1. Let πθ be a policy parameterized by a vector θ. For any MDP M , the gradient of

performance metric, J(θ) (equation (2.1)), with respect to the policy parameter, θ, is:

∇θJ(θ) = Ex∼dπθ ,a∼πθ [〈∇θ log πθ(a|x)ψπθ (x, a), w〉]. (3.2)
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Proof.

∇θψπθ (x) = ∇θ
∑
a

πθ(a|x)ψπθ (x, a),∀x ∈ X

=
∑
a

[∇θπθ(a|x)ψπθ (x, a) + πθ(x, a)∇θψπθ (x, a)]

=
∑
a

[πθ(a|x)(∇θ log πθ(a|x))ψπθ (x, a)] +
∑
a

[
πθ(x, a)∇θ[φ(x, a) +

∑
x′

γP(x′|x, a)ψπθ (x′)]

]
=
∑
a

[πθ(a|x)(∇θ log πθ(a|x))ψπθ (x, a)] + γ
∑
a

πθ(a|x)
∑
x′

[P(x′|x, a)∇θψπθ (x′)]

= Ea∼πθ(·|x) [ψπθ (x, a)∇θ log πθ(a|x)] + γEx′∼P(·|x,a)πθ(a|x)[∇θψ
πθ (x′)]

=
∑
x

∞∑
k=0

γkP(x→ x′, k, πθ)Ea∼πθ(·|x′)[∇θ log πθ(a|x′)ψπθ (x′, a)],

after repeated unrolling, where P(x→ x′, k, πθ) is the probability of transitioning from state x to state

x′ in k steps under policy πθ. We can write it in form of an expectation as follows:

∇θψπθ (x) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)ψπ(x, a)]. (3.3)

It is then immediate that:

∇θJ(θ) = ∇θV πθ (x0) = ∇θ〈ψπθ (x0), w〉

= Ex∼dπθ ,a∼πθ [〈∇θ log πθ(a|x)ψπ(x, a), w〉].

This way of expressing the gradient is the same way that is used on the original policy gradient

theorem (Sutton et al., 1999) and here we just extended their results to the successor features formulation.

We can also use the “linearity in the first argument” property of inner product to write the gradient of

performance metric in the following form:

∇θJ(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈ψπθ (x, a), w〉]. (3.4)

As one can see, our theorem shows that using successor features representation in the critic doesn’t

make any difference on the policy update. Comparing equation (3.4) with the original policy gradient

equation (equation (2.2)), the first term, ∇θ log πθ(a|x), is exactly the same in both formulations which

shows the direction of policy update. The last two terms, 〈ψπθ (x, a), w〉 constructed the value of taking

action a in state x, while following policy π on the task associated with the weight vector w, Qπw(x, a)

which is again what we have in the original policy gradient formulation. We can also explain this theorem

in a more intuitive way. If we consider SF as a representation scheme, using it to represent action-value

function is only considered as a change of representation which shouldn’t have any affect on the policy’s

gradient.

In this theorem, we integrated successor features in the policy gradient methods in the RL framework.

This natural integration of successor features in the original formulation makes it applicable to the whole

family of policy gradient methods as long as the algorithem involves learning action-values without

increasing its computational complexity.
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Until now, we only showed how we can get the same policy update using SFs. But why would one

bother to use this new formulation if this is exactly the same as original policy gradient theorem? This is

where SFs come into play. Suppose that we have learnt the policy πi and SFs φπi for task Mi ∈Mφ with

associated weight vector wi. Now if the reward function changes to Rj(x, a) = φ(x, a)>wj , associated

with a new, unseen but related task Mj ∈ Mφ, we can compute the action value function of the policy

πi, on the task Mj immediately using: Qπij (x, a) = ψπ
>
i wj . Now we can use this value as the initial

critic for solving task Mj starting from policy πi. It has two advantages: First, we can get a better

estimation of critic with the help of SFs. Intuitively, the role of critic in Actor-Critic methods is to

criticizes the actions made by the actor and determine whether the performance have gone better or

worse than expected after selecting an action (Sutton and Barto, 2018). As you can see in equation

(2.3), we need to have the critic associated with the current policy (the true critic of policy at each

step). With the help of SFs we can compute the true critic of the previous task’s policy that we use as

the initial policy on task Mj (instead of a random critic or previous tasks critic (Qπii (x, a))). Second,

the policy πi is a good policy to start from as we have the following guarantee on its performance. Note

that this advantage is not related to use of SFs, but using SFs makes us able to derive a bound on the

policies performance.

Theorem 2. Let Mi,Mj ∈ Mφ and let Q
π∗i
j be the action-value function of an optimal policy of Mi

when executed in Mj . Suppose that the approximate action-value Q̂
π∗i
j is such that

|Qπ
∗
i
j (x, a)− Q̂π

∗
i
j (x, a)| ≤ ε,∀x ∈ X ,∀a ∈ A. (3.5)

Finally let φmax = maxx,a ‖φ(x, a)‖, where ‖ · ‖ is the `2-norm. Then,

Q
π∗j
j (x, a)− Q̂π

∗
i
j (x, a) ≤ φmax

1− γ
‖wj − wi‖+ ε. (3.6)

Proof. We start by noting that for any x ∈ X and any a ∈ A the following holds:

Q
π∗j
j (x, a)− Q̂π

∗
i
j (x, a) = Q

π∗j
j (x, a)−Qπ

∗
i
j (x, a) +Q

π∗i
j (x, a)− Q̂π

∗
i
j (x, a)

≤ |Qπ
∗
j

j (x, a)−Qπ
∗
i
j (x, a)|+ |Qπ

∗
i
j (x, a)− Q̂π

∗
i
j (x, a)|. (3.7)

By equation (3.5) the second term (|Qπ
∗
i
j (x, a) − Q̂π

∗
i
j (x, a)|) is bounded by ε. Now we need to bound

|Qπ
∗
j

j (x, a)−Qπ
∗
i
j (x, a)|. Based on Lemma 1 by Barreto et al. (2017), we have:

|Qπ
∗
j

j (x, a)−Qπ
∗
i
j (x, a)| ≤ 1

1− γ
max
x,a
|Rj(x, a)−Ri(x, a)|.
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Following from there we have:

|Qπ
∗
j

j (x, a)−Qπ
∗
i
j (x, a)| ≤ 1

1− γ
max
x,a
|Rj(x, a)−Ri(x, a)|

=
1

1− γ
max
x,a
|φ(x, a)>wj − φ(x, a)>wi|

=
1

1− γ
max
x,a
|φ(x, a)>(wj − wi)|

≤ 1

1− γ
max
x,a
‖φ(x, a)‖‖wj − wi‖ (Cauchy-Schwarzs inequality)

=
φmax

1− γ
‖wj − wi‖. (3.8)

Plugging (3.5) and (3.8) back in (3.7) we get the desired result.

This theorem covers the case where the policy and policy’s value function are not computed exactly,

either because of suboptimality of the final policy in policy gradient method, the approximation in

calculating the value function, or even because of the use of function approximation. These errors are

compounded in ε in (3.5) which appears again in the final upper bound as the second term.

In this theorem we are comparing the performance of optimal policy of task Mj and the policy learnt

on task Mi by comparing their action value function. As shown in (3.6), this difference is upper-bounded

by two terms. The first term is of the more interest as it reflects the difference of the tasks. This term

shows that the performance of optimal policy of a task on a different task is related to how much these

tasks are different. It confirms the intuition that we expect the agent to work well on task Mj , if it is

learnt on a similar task Mi.

3.2.1 Limitations of Using Successor Features for Transfer

With the use of Successor Features one can immediately compute the value of a policy π on any task

with weight vector w. This ability along with other properties of SFs has led to the increasing usage

of this representation scheme to tackle the problem of transferring knowledge between tasks when they

only differ in their reward functions. While learning a SFs representation has significant benefits for

transfer, it also has some fundamental limitations.

One of the limitations that has also been studied by Lehnert et al. (2017) is the dependence of SFs

to the policy they are learned for. By definition, SFs are meant to tell about the features the agent

sees in the future which is dependent on what policy it is following. One of the direct conclusions we

can get from Theorem 2 is that the difference between optimal policies of two tasks is directly related

to the difference of their reward functions. When transferring between two tasks, each task has its own

optimal policy and SFs which needs to be learned. When these task have slight differences in their

reward function, their optimal policy and SFs are likely to be very similar, so starting from one of them

to initialize the search for the optimal policy of the other one speeds up the process. But when their

reward functions are significantly different, this initialization can even slow down the learning process

and impose negative transfer.

One way to tackle this problem is to learn a generalizable policy in a way to reduce its dependence

to the first task’s optimal policy, but still can achive a good perforamnce on that task. We propose a

method to find this policy by introducing a new performance metric which encourages generalizability
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of the policy. Maximizing this robust performance metric results in a policy that can be used to as the

inital point to spped up the policy search for other tasks. We describe this method in the next section.

3.3 Robust Policy Gradient Using Successor Features

In this section we describe the robust policy gradient method to tackle the limitation of transfer in policy

gradient method with SFs. The idea is to learn a policy that is robust to the uncertainty associated

with the change of task, which in this project refers to the robustness to the change of reward function.

Starting from this robust policy and its SFs, we can speed up the search for the optimal policy of a new

unseen task.

This uncertainty set is associated to the set of tasks with weight vectors around the first (source)

tasks weight vector, the area that we expect to see a new task, in the space of weight vectors (Rd). We

define this set by a ball centered at the first task’s weight vector w0, with an arbitrary fixed radius,

‖w − w0‖2 ≤ ε0. (3.9)

When equation (2.8) holds, that is R0(x′, a, x) = φ(x′, a, x)>w0, we can write this bound in terms of

`∞-norm in the space of reward functions as follows:

max
x,a
|R(x, a)−R0(x, a)| = max

x,a
|φ(x, a)>w − φ(x, a)>w0|

= max
x,a
|φ(x, a)>(w − w0)|

≤ max
x,a
‖φ(x, a)‖2‖(w − w0)‖2, (3.10)

where the last line is from the Cauchy-Schwarzs inequality. Plugging (3.9) in (3.10), we have:

max
x,a
|R(x, a)−R0(x, a)| ≤ max

x,a
‖φ(x, a)‖2ε0 = ε′0. (3.11)

That is the set contains every task with reward function R such that maxx,a |R(x, a) − R0(x, a)| ≤ ε′0.

Furthermore, as every value function is associated with a reward function, given an uncertainty set of

reward functions, we get a set of value functions containing the value functions V πθw , corresponding to

weight vector w of each of the reward function R in the uncertainty set.

Having the uncertainty set ‖w−w0‖2 ≤ ε0, we want to learn a policy that tries to maximize the worst

value function (robust value function), V̌ πθw0,ε0(x), in that uncertainty set. To do that, instead of trying

to maximize the performance metric of a specific task, we propose a robust objective J̌w0,ε0(θ) which

illustrates the performance of a policy for the lowest value function in that uncertainty set. We formally

define the robust value function, V̌ πθw0,ε0(x), and robust performance metric, J̌w0,ε0(θ), as follows:

Definition 3.1 Let R0 be the reward function of MDP M0 and let w0 ∈ Rd where R0(x, a) =

φ(x, a)>w0 and finally let ε0 ≥ 0. Then,

V̌ πθw0,ε0(x) = min
‖w−w0‖2≤ε0

V πθw (x),

J̌w0,ε0(θ) = V̄ πθR0,ε0
(x0),
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where x0 is a designated start state.

Now the goal is to find the parameter, θ∗, associated with the optimal policy, π∗, that maximizes

this robust performance metric:

θ̌∗w0,ε0 = arg max
θ

J̌w0,ε0 = arg max
θ

min
‖w−w0‖2≤ε0

V πθw (x0). (3.12)

To solve this max-min optimization problem, we at first solve the inner minimization problem in

close form using Lemma 1 and then approximate the solution of the outer maximization problem with

the help of stochastic gradient ascent and Theorem 3.

With the help of linear decomposition of value function in terms of successor features ψπ and weight

vector w, we can solve the inner minimization problem using Lagrange multipliers method as follows:

Lemma 1. Let x,w0 ∈ Rd be two fixed arbitrary vectors and ε0 ≥ 0. Then:

min
‖w−w0‖2≤ε0

〈x,w〉 = x>w0 − ε0‖x‖2. (3.13)

Proof. We want to minimize f(w) = 〈x,w〉, subject to the constraint ‖w − w0‖2 ≤ ε0 where w ∈ Rd is

the optimization variable. We can write the constraint in the following form:

g(w) = ‖w − w0‖2 − ε0 ≤ 0.

We form the Lagrangian function L(w, µ) with µ as the Lagrange multiplier as follows:

L(w, µ) = f(w) + µg(w)

= 〈x,w〉+ µ(‖w − w0‖2 − ε0).

The variable w∗ is a solution to corresponding nonlinear minimization problem if the following KKT

conditions hold:

∇wL(w∗, µ∗) = 0

µ∗g(w∗) = 0

g(w∗) ≤ 0

µ∗ ≥ 0.

The first two conditions give us two equations to find (w∗, µ∗), and then we verify them to satisfy

that last two conditions.

Based on the first condition, we find (w∗, µ∗), the saddle points of L(w, µ) by setting gradient of the

Lagrangian function to zero and solve for w and µ:

∇wL(w, µ) = ∇wf(w) + µ.∇wg(w)

= x+ µ∇w(‖w − w0‖2 − ε0)

= x+ µ∇w((w − w0)T (w − w0)− ε0)

= x+ µ(w − w0).
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Setting the gradient equal to zero we have:

∇wL(w, µ) = 0⇒ w − w0 = −x
µ

⇒ w = w0 −
x

µ
. (3.14)

The second condition results in having µ∗ = 0 or g(w∗) = 0. As µ is in the denominator of equation

(3.14), we can’t have µ∗ = 0, so we set g(w∗) = 0:

g(w∗) = 0⇒ ‖w − w0‖2 = ε0 ⇒ ‖(w0 −
x

µ
)− w0‖2 = ε0

⇒ ‖x
µ
‖2 = ε0

⇒ x>x

µ2
= ε20

⇒ µ = ±‖x‖2
ε0

. (3.15)

As ε0 ≥ 0, the forth condition eliminates the negative answer. So we have µ∗ = ‖x‖2
ε0

and w∗ =

w0 − xε0
‖x‖2 .

To complete the prove, we evaluate the objective function f at w∗ = w0 − xε0
‖x‖2 :

f(w∗) = 〈x,w∗〉 = x>(w0 −
xε0
‖x‖2

)

= x>w0 − ε0‖x‖2. (3.16)

Now back to the main problem of approximating the optimal policy that maximizes the robust

performance metric, J̌w0,ε0(θ), we can use Lemma 1 to convert the max min optimization problem

to a simple maximization problem. Then similar to the original policy gradient theorem described in

Section 2.2.1, we can use stochastic gradient ascent to directly approximate a parametrized policy πθ

that maximizes J̌w0,ε0(θ). To use gradient ascent algorithm, we need to find the gradient ∇θJ̌w0,ε0(θ)

which shows the direction of parameter update. Using Theorem 3, we can find this gradient as follows:

Theorem 3. Let πθ be a policy parameterised by a vector θ. For MDP M0 with associated reward

weight vector w0 ∈ Rd, the gradient of performance metric J̌w0,ε0(θ)) with respect to the policy parameter

θ, is:

∇θJ̌w0,ε0(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈ψπθ (x, a), w0 − ε0
ψπθ (x)

‖ψπθ (x)‖2
〉]. (3.17)

Proof. Using the successor features representation of value function for robust value function V̌ πθw0,ε0(x)

V̌ πθw0,ε0(x) = min
‖w−w0‖2≤ε0

V πθw (x)

= min
‖w−w0‖2≤ε0

〈ψπw(x), w〉

= 〈ψπw0
(x), w0〉 − ε0‖ψπw0

(x)‖2. (Lemma 1)
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Now we can take the gradient of it as follows:

∇θV̌ πθw0,ε0(x) = ∇θ
(
〈ψπθw0

(x), w0〉 − ε0‖ψπθw0
(x)‖2

)
,∀x ∈ X

= 〈∇θψπθw0
(x), w0〉 − ε0∇θ‖ψπθw0

(x)‖2. (3.18)

Our strategy will be to calculate ∇θψπθw0
(x) and ∇θ‖ψπθw0

(x)‖2. We start with ∇θ‖ψπθw0
(x)‖2.

Based on simple calculus for an arbitrary function fθ(x) ∈ Rd we have:

∇θ〈fθ, fθ〉 = ∇θ‖fθ‖22 = 2‖fθ‖2∇θ‖fθ‖2 ⇒ ∇θ‖fθ‖2 =
∇θ‖fθ‖22
2‖fθ‖2

=
∇θ〈fθ, fθ〉

2‖fθ‖2
= 〈∇θfθ,

fθ
‖fθ‖2

〉.

So setting fθ(x) = ψπθw0
(x), we can calculate the second term in equation 3.19 as follows:

∇θ‖ψπθw0
(x)‖2 = 〈∇θψπθw0

(x),
ψπθw0

(x)

‖ψπθw0(x)‖2
〉. (3.19)

Plugging (3.19) back in (3.18) we get:

∇θV̌ πθw0,ε0(x) = 〈∇θψπθw0
(x), w0〉 − ε0〈∇θψπθw0

(x),
ψπθw0

(x)

‖ψπθw0(x)‖2
〉

= 〈∇θψπθw0
(x), w0 − ε0

ψπθw0
(x)

‖ψπθw0(x)‖2
〉. (3.20)

Now we need to calculate ∇θψπθw0
(x). We have already calculated it in Theorem 1, equation (3.3) and it

is:

∇θψπθ (x) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)ψπθ (x, a)].

Plugging ∇θψπθw0
(x) in equation (3.20), we get our desired statement:

∇θJ̄w0(θ) = ∇θV̄ πθw0
(x0)

= Ex∼dπ,a∼π[〈∇θ log πθ(a|x)ψπθ (x, a), w0 − ε0
ψπθw0

(x)

‖ψπθw0(x)‖2
〉].

Using this theorem, we can see how to calculate the gradient of robust performance metric with

respect to policy parameters. Having this gradient, we can use any first-order optimizer like stochastic

gradient ascent to directly approximate the policy that maximizes the robust performance metric.

Comparing this theorem with Theorem 1, the only difference is the
ψ
πθ
w0

(x)

‖ψπθw0
(x)‖2

term subtracted from

the weight vector w0. One way to think about this term is to consider it as a regularizer and ε0 as the

regularization parameter. Intuitively the role of this term is to change the task that the policy is trying

to solve through changing the weight vector w0. so at every step of policy update, it tries to find a task

with the minimum value function under the current policy and then updates the policy to improve its

performance on that specific task.

Based on Theorem 2, the similarity of optimal policies of two tasks decreases with the increase in

the difference of their reward function. With the increase of ε0, the size of the uncertainty set that
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we consider in the robust performance metric increases. That is we are including the tasks with more

different reward functions and as a result more different optimal policies in the uncertainty set around

the main task. So we expect that with the increase of ε0, the learned robust policy gets more conservative

and less proper for transfer.

This theorem naturally integrates in the policy-gradient based RL approaches and can be applied on

any method in this family that its gradient is linear in critic. In the next section we show how we can

apply it to two common policy gradient methods, Advantage Actor Critic (A2C; (Mnih et al., 2016))

and Proximal Policy Optimization (PPO; (Schulman et al., 2017)).

3.4 Designing Transferable Policy Gradient Algorithms

In the last two sections, we proposed two methods to speed up learning the optimal policy for a new

unseen task when we already had experience in a related task. As we described earlier, these methods

naturally integrate in the whole family of Actor-Critic methods and can be used without a need for

major change in the original algorithm. In this section we describe how one can apply the proposed

methods on Advantage Actor Critic (A2C) and Proximal Policy Optimization (PPO) as two of the most

popular Actor-Critic methods.

3.4.1 A2C

One of the problems of Vanilla Actor-Critic method (using action-value function, Qπθ (x, a), as critic),

is having noisy gradients which causes unstable learning. One of the sources of this high variance in

the gradient is the high variability of action-value function (Sutton and Barto, 2018). We can reduce

this variability by subtracting a function, independent of action, from the action-value function. This

function is called baseline. The baseline dosn’t change the expectation of the update, but it can have

a large effect on its variance. An intuitive choice for baseline is the state-value function V πθ (x). This

new critic is called Advantage function and is defined as: Aπθ (x, a) = Qπθ (x, a)− V πθ (x). When using

Advantage function as the critic in the Actor-Critic method it is called Advantage Actor Critic (A2C).

Substituting advantage function as the critic in equation (2.3), we get the A2C gradient update as

follows:

∇θJ(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)Aπθ (x, a)] .

A2C with SFs (A2C-SF): Theorem 1 can be generalized to include a comparison of the ψ(x, a) to

an arbitrary baseline b(x):

∇θJ(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈ψπθ (x, a)− b(x), w〉]. (3.21)

The baseline can be any function as long as it does not vary with action a. The equation remains valid

because the subtracted quantity is zero:

Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈b(x), w〉] = Ex∼dπθ [〈b(x), w〉Ea∼πθ [∇θ log πθ(a|x)]]

= Ex∼dπθ [〈b(x), w〉∇θ1] = 0.
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Using ψπθ (x) as the baseline, we can define successor features advantage function as Aψ
π

:

Aψ
πθ

(x, a) = ψπθ (x, a)− ψπθ (x). (3.22)

Substituting the ψπθ (x) in (3.21), we have:

∇θJ(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈Aψ
πθ

(x, a), w〉]. (3.23)

One way to approximate successor features advantage function (Aψ
π

) is by taking sample from the

environment dynamics:

Aψ
πθ

(x, a) = ψπθ (x, a)− ψπθ (x) = Ex′∼P(·|x,a)[φ(x, a) + γψπθ (x′)]− ψπθ (x)

≈ φ(x, a) + γψπθ (x′)− ψπθ (x).
(3.24)

Robust A2C with SFs (Robust A2C-SF): Similar to the A2C-SF algorithm, when using ψπ(s)

as the baseline in Theorem 3, we get the Robust A2C-SF update as follows:

∇θJ̌w0(θ) = Ex∼dπθ ,a∼πθ [∇θ log πθ(a|x)〈Aψ
π

(x, a), w0 − ε0
ψπθ (x)

‖ψπθ (x)‖2
〉]. (3.25)

3.4.2 PPO

To improve the data efficiency in single task reinforcement learning many algorithms have been proposed,

one of them is the Proximal Policy Optimization (PPO; (Schulman et al., 2017)) algorithm . The authors

proposed a new objective function that enables multiple epochs of minibatch updates instead of just one

update. The key contribution of PPO is ensuring that a new update of the policy does not change it

too much from the previous policy. This leads to less variance in training at the cost of some bias. The

objective function of this algorithem is:

JCLIP(θ) = Et[min(rt(θ)Aθold , clip(rt(θ), 1− ε, 1 + ε)Aθold)],

where rt is the ratio of the probability under the new and old policies (rt(θ) = πθ(at|xt)
πθold (at|xt)

) and ε is a

hyperparameter, usually 0.1 or 0.2.

PPO with SFs (PPO-SF): Using Aψ
πθ defined as:

Aψ
πθold (x, a) = ψπθold (x, a)− ψπθold (x).

we can write the objective as:

JCLIP(θ) = Et[min(rt(θ)〈Aψ
πθold , w〉, clip(rt(θ), 1− ε, 1 + ε)〈Aψ

πθold , w〉)].

Robust PPO with SFs (Robust PPO-SF): Based on the robust performance metric definition,

we can modify the original objective of PPO in the following way to maintin robustness.

J̌CLIP(θ) = Et[min(rt(θ)〈Aψ
πθold , w0−ε0

ψπθ (x)

‖ψπθ (x)‖2
〉, clip(rt(θ), 1−ε, 1+ε)〈Aψ

πθold , w0−ε0
ψπθ (x)

‖ψπθ (x)‖2
〉)].

(3.26)



Chapter 4

Empirical Evaluation

In this chapter we describe the experiments conducted to test the proposed method in a multitask setting

and assess its ability to generalize to unseen tasks. We seek to answer the following questions:

• Can policy gradient with SFs successfully transfer between multiple goals and speed up learning?

• When does policy gradient with SFs fail to speed up learning?

• Can the robust policy gradient with SFs method improve the original policy gradient with SFs

method and standard methods on a fixed task?

To answer these questions, we begin by training our agent on a single task (source task) to learn the

policy and SFs for that specifc task. Then we switch the environment to a new task (target task) and

observe how quickly and how well the agent can adapt to this new, unseen task. In practice, this means

we initialize the target task’s neural network parameters with the parameters of source task.

We start by describing the environments that we used for our experimetns in Section 4.1 and then

in Section 4.2 we inverstigate how SFs in policy gradient methods help to trasfer knowledge between

tasks. We then emperically illustrate limitations of this method and finally in Section 4.3 we design

some experiments to show how robust policy gradient with SFs method tackles these limitations.

4.1 Linear Quadratic Regulator

In order to evaluate our algorithms we examine their performance in the Linear Quadratic Regulator

(LQR) environment as a continuous control problem. In the LQR environment we assume a linear

dynamical system such that:

xt+1 = Axt +Bat, (4.1)

where xt ∈ X ⊂ Rd is the continuous state at time t and at ∈ A ⊂ Rk is the continuous control input

(i.e., action) at time t. Matrix A ∈ Rd×d is the system matrix which governs the evolution of the states

from one time step to another, and the matrix B ∈ Rd×k is the control matrix which determines how

the system input affects the states and both are independent of time t.

23
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In this environment there is an immediate cost (negative of reward) associated with being at state

xt and taking the action at in the quadratic form:

c(xt, ut) = x>t Qxt + a>t Rat, (4.2)

where Q ∈ Rd×d and R ∈ Rk×k are symmetric, positive definite matrices (∀x, x>Qx > 0 and ∀a, a>Ra >
0) that place weights on the competing objectives based on which of the objectives we care more

about.The first term indicates quadratic state cost that penalizes deviation of system’s state from the

all zeros state and the second term indicates quadratic control cost which penalizes high control signals.

Assume that A, B, Q, R are known. The goal in this environment is to stabilize the system around

the all-zeros equilibrium state with all-zeros control input, so the system remains at zero forever.

In the discounted finite horizon LQR problem, we want to find a∗ so that:

a∗ = arg min
a

T∑
t=0

γtc(xt, at)

s.t. ∀i ∈ N; i ≤ T − 1 : xi+1 = Axi +Bai.

(4.3)

In this environment, if we want to stabilize the system around a desired point, it is enough to reframe

the state of the system as the derivation from the desired state, that is x′t := xt − g where g ∈ Rd is the

desired state. In other words:

c(xt, at) = (xt − g)>Q(xt − g) + a>t Rat. (4.4)

In our experiemtns, we set x, a ∈ R2, used the identity matrix for B,Q,R, and chose A in a way that

that the system would be stable over time. Specifically,

B = Q = R = I

A =

[
0.9 0

0 0.9

]
.

4.1.1 Linear Decomposition of LQR Cost Function

We are interested in the scenario where all components of an MDP are the same, except for the reward

function. In the LQR environment it means that all tasks share same dynamical system and just differ

in the equilibrium point, g.

The expected one-step cost of the LQR environment can be computed as

c(xt, at) = (xt − g)>Q(xt − g) + a>t Rat

= x>t Qxt − 2x>t Qg + g>Qg + a>t Rat

= [x>t Qxt + a>t Rat,−2x>t Q, 1]>︸ ︷︷ ︸
φ(xt, at)

>

[1, g, g>Qg]︸ ︷︷ ︸
w(g)

,
(4.5)

where w only depends on the equilibrium point and any w specifies a different task. As we chose

x, a ∈ R2 in this project, so we have φ,w ∈ R4. This linear decomposition of cost function allows us to

use the successor features formulation to represent the cost-to-go function in exact form.
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4.2 Policy Gradient with Successor Features

We start with the first question. When learning with multiple goals, can policy gradient with SFs method

successfully transfer knowledge between tasks and speed up training? To answer this question, we begin

by training the agent on a source task. After a while, we switch the environment to a new unseen task

(target task) and observe how quickly the agent can adapt to this new task. That is we use the model

(function approximators of actor and critic) parameters that the agent learned on the source task as

initialization for the model on the target task.

We consider the LQR environment. The initial state is drawn uniformly from [−1, 1]2. The objective

is to stabilize the agent around the goal location. We choose the source task’s goal, gs, uniformly from

[−1, 1]2. Each episode terminates after 1000 time steps. After 300 episodes, the goal location (target

task’s goal, gt) moves to a point sampled from the intersection of a Gaussian distribution with mean gs

and σ2 variance and [−1, 1]2, i.e. N(gs, σ
2)∩ [−1, 1]2. Roughly speaking, as gt gets farther away from gs,

their optimal policies will be more different. Therefor as σ increases, the probability of having different

source and target tasks increases, their successor features might be more different, and transferring

knowledge between them gets more difficult. We choose σ to be {0.1, 0.5, 1.0, 2.0} to consider transfer

scenarios in different difficulties.

We use the `2-norm objective (equation 4.6) for the source task’s training. For the target task’s

training, we compare two different objectives for learning the critic. In the first one, called SF2, after

the change of task we will still use `2-norm objective to learn ψπ.

Lθ(Xt) = ‖Gt:t+n − ψ̂πt+n−1(Xt)‖22, (4.6)

where Gt:t+n = φt + γφt+1 + ...+ γn−1φt+n + γnψ̂πt+n−1(Xt+n) and φt = φ(xt, at).

The second version of our agent uses the inner product objective to learn ψπ after the change of task:

Lθ(Xt) = 〈Gt:t+n − ψπt+n−1(Xt), w〉2. (4.7)

We refer to this instance of our algorithm as SF2w. Note that both of the agents use the `2-norm

objective for the source task’s training. We also compared our methods with the standard version of the

agent which directly predicts value function instead of SFs as a baseline in our comparisons which we

call them PPO-V and A2C-V.

To evaluate the performance of the above algorithms, we use the discounted return metric where the

discount factor is 0.99 . We compare these methods using the same set of the goals. The results are

averages of 30 runs. For all algorithms we model the policy in each state as a Gaussian distribution.

We use a neural network (NN) with two hidden layers of 64 units and D units in final layer where D

is the dimension of action space (64 × 64 × D). We use hyperbolic tangent function (tanh) activation

function to predict the mean and D parameters with softplus activation function (f(x) = ln(1 + ex)) to

predict the standard deviation of policy distribution. We use a (64× 64× 1) NN for state-value function

estimation in PPO-V and A2C-V methods and a (64×64×d) NN to predict SFs in their SF2 and SF2w

variation, where d is the dimension of w. For this set of experiments our action space has 2 dimension

so D is equal 2 and we chose d to be 4.

For the A2C and PPO based methods we use RMSProp (Tieleman and Hinton, 2012) and Adam

(Kingma and Ba, 2015) optimizers respectlively to update the parameters of networks.
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Parameter -V -SF2 -SF2w -RobustSF2w
A2C actor lr 0.001 0.001 0.001 0.001
A2C critic lr 0.03 0.03 0.03 0.02
PPO actor lr 0.0002 0.0002 0.0002 0.0002
PPO critic lr 0.005 0.001 0.001 0.005

Table 4.1: Value of hyper-parameters for A2C and PPO based methods. The columns refer to different
variations of algorithms, V: the standard version, SF2: using (4.6) for critic loss in the target task, SF2w:
using (4.7) for critic loss in the target task, RobustSF2w: using robust policy gradient in the source task
and inner product as the critic update.

We find the best value for the hyper-parameters based on the time to threshold metric of source

task over 10 runs, that is we choose the value that achieved a specific average performance over 10

runs faster than others. The search spaces that we choose for actor learning rate and critic learning

rate are {0.0001, 0.0002, 0.0005, 0.001, 0.005} and {0.0005, 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05}, respec-

tively. We find the best learning rates by conducting a grid search in this space. Table 4.1 shows the

selected values for each parameter for different methods. Note that we also multiply the learning rates

by 0.99 in each episode.

Also in the methods based on PPO algorithm we take 50 samples from the environment and update

the parameters in 16 epochs with mini batches with the size of 32 while in A2C based methods we

update the parameters once after taking 5 samples.

The results of our experiments can be seen in Figure 4.1. Before the change of task, in the first

300 episodes, the discounted return of all methods quickly decreases and saturates around zero. Note

that SF2 and SF2w are exactly the same during the source task. SFs based A2C and PPO have

comparable performance with the original A2C and PPO. Existing methods that use SFs representation

are considerably slower when learning from a single task and much of the benefit comes from using

learned SFs to transfer knowledge in next tasks. But we see that SF-A2C and SF-PPO methods still

have a competitive result compared to A2C and PPO which shows their usefulness even in the single

task scenario.

When the goal suddenly changes at episode 300, the performance in all methods decreases. With the

increase of σ, the probability of having more different source and target tasks increases and as expected

the drop in the performance of all methods increases. Comparing the performance of methods a few

episodes after the change of task, we observe that both SF2 and SF2w methods have higher performance

than the original method. The reason is that with the help of learned SFs during the first task, now

we can compute the exact value function of the current policy for the target task, but in the A2C-V

and PPO-V we have the value function of source task. This more accurate estimation of critic helps to

achieve a higher performance in the early episodes after the change of task.

For the PPO based methods, we observe that this superiority of SFs based methods still holds over

the PPO-V, while they all get slower with the increase of σ. But in A2C based methods as the learning

proceeds, we observe that A2C-V beats A2C-SF2 while A2C-SF2w still converges faster than A2C-V.

One possible explanation is that, the critic objective in SF2 method does not have any signal about

the change of task so it cannot get out of the source’s task local minima easily. This problem is more

important when the policy of source task makes exploration for the target task difficult while in the case

of SF2w, using the vector w which specifies the current task, helps to solve this problem, so the critic

converges faster to the optimal critic and achieves faster learning rate. We don’t see this problem in
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the PPO-SF2, because the critic in this method gets updated many more times over multiple epochs of

mini-batch updates while we update the critic in the A2C method only once after each data collection.

As described earlier, with the increase of σ2, we only increase the chance of having farther goal states

between source and target task. To study the limitations arise in this setting, we need a more definite

scenario. In the next part, we will discuss this limitation using another experiment.

Figure 4.1: Discounted Return in the LQR domain. After a 300 episodes, the goal location is moved to

gt ∼ N (gs, σ
2). Shaded areas represent standard error over 30 runs.
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4.2.1 Limitation of Successor Features in Transfer

To answer the second question about limitations of policy gradient with SFs method and in general SFs

in transfer learning, we study a scenario that emphasizes this effect. We consider two cases: a) The

source task’s goal state is at [0.9, 0.9] and the target task’s goal state is at [0.0, 0.0]. b) The source task’s

goal state is at [0.0, 0.0] and the target task’s goal state is at [0.9, 0.9]. In both cases the initial state

is drawn uniformly from [−1, 1]2. The distance of goal states in both scenarios are the same. The only

difference is the problem with exploration especially on the target task.

In the first case, after the change of task, the source task’s policy still leads the agent to the upper

right corner of the state space from different start states. In the second case, after the change of task,

the policy forces the agent to go around the centre of state space. Given that we choose the initial state

uniformly, the chance of agent to be in the upper right corner is low. So it is much more difficult for the

agent to explore the new goal in the second scenario compared to this first one.

We expect that the high difference in the optimal policies of source and target tasks makes it difficult

for A2C-V and PPO-V methods to adapt quickly to the target task. But In the first task as we don’t

have an exploration problem they should converge as fast as the source task’s convergence rate but the

difficult exploration problem of case b makes the adaptation much slower.

On the other hand, the SFs based methods in the first case are expected to have a better estimate

of critic after the change of the task which should result in a faster transfer. But in case b they are not

expected to be useful in an efficient transfer.

Figure 4.2 shows the results of this experiment. In both cases we have a significant reward change,

but in case b because of the exploration problem, which is the result of using source task’s policy as

the initial policy of target task, the convergence rate is much slower compared to first case and even to

the source task’s convergence. The dependency of SFs on the source task’s policy, the high difference of

optimal policies in source and target tasks, and the exploration problem imposed by the target task’s

policy results in even slower convergence compared to the source task’s convergence rate even in these

methods. In general, even using these SFs can’t help much to have an efficient transfer. These results

show the importance of finding a generalizable policy to be used as the initial policy of target task which

we will investigate in the next section.
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Figure 4.2: Discounted return in the LQR environment. After 300 episodes, the goal location is moved
[Left]: from [0.9,0.9] to [0.0,0.0] (case a), [Right]: from [0.0,0.0] to [0.9,0.9] (case b). Shaded areas
represent standard error over 30 runs.

4.3 Robust Actor Critic Using Successor Features

As we saw in the previous section, successor features depend on the policy they are trained with and

even in the proposed methods, the policy only approximates the optimal behaviour for a specific task.

Hence, when transferring knowledge between tasks with different optimal policies, with the increase

of this difference, the learned SFs can get unusable. In this scenario even using the learned policy as

the initialization of a new tasks policy can make exploration problem and even slow down the learning

compared to when we start learning from a random initial point.

If we can learn a policy that performs well on a set of tasks (instead of the optimal policy of a specific

task), the resulting policy can help to learn SFs that are more generalizable. Also, this generalizable

policy can serve as a good initialization for fine-tuning to a more specific behaviour. Now we try to

empirically evaluate the proposed Robust SF based methods designed to find this policy.

We train the RSFA2C method based on Theorem 3 in the source task, that is for the A2C-RobustSF

method we use equation (3.25) and for the PPO-RobustSF method, equation (3.26). After the change

of task, just like SF based methods, we use both objectives to learn critic based on equation (4.6) and

(4.7), calling them RobustSF2 and RobustSF2w, respectively. We use exactly the same setting as we

described in Section 4.2. The only difference is that this method has a hyper-parameter ε that we need

to tune it.

Figure 4.3 and 4.4 shows the result of this experiment for a value of σ and three different values of ε.

As we can see, with the increase of ε (which means increasing difference of tasks that the policy is trying

to solve them all), the performance in the source tasks decreases. That is ε controls the diversity of the

set of tasks that the policy is trying to maximize its performance over them. An ε equal to zero is equal
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to not having any Robustness is equal to the simple SF based methods. A large value of ε means we

want a policy that can work well on a set of very different tasks which results in a conservative policy

with limited the learning capacity and fails to transfer efficiently.

After the change of the task, we are using the generalized policy and its successor features as the

initial policy and to compute the initial critic for the target task. In both versions of RobustSF2 and

RobustSF2w versions, in both of the A2C and PPO methods, results associated with the intermediate

value of ε outperform their SFs based methods and show faster adaptation to the target task compared

to the other methods and when starting from scratch. One possible explanation is that they could find

the best trade-off between generalization and gathering knowledge from the source task.
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Figure 4.3: Discounted Return in the LQR domain for A2C algorithm. After a 200 episodes, the goal
location is moved to [Left]:gt ∼ N (gs, 0.5), [Right]:gt ∼ N (gs, 1.5). Shaded areas represent standard
error over 30 runs.

To study the effect of ε in transfer and the sensitivity of our method to value of this hyper-

parameter, we consider transfer to four different target tasks with different difficulty of transfer (gt ∈
{[0.3, 0.3], [0.5, 0.5], [0.7, 0.7], [0.9, 0.9]}) when the source tasks’s goal is at [0.0, 0.0]. To compare the effect
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Figure 4.4: Discounted Return in the LQR domain for PPO algorithm. After a 300 episodes, the goal
location is moved to [Left]:gt ∼ N (gs, 0.5), [Right]:gt ∼ N (gs, 1.5). Shaded areas represent standard
error over 30 runs.

of different values of epsilon, we compare the area under the discounted return curve of agents trained

with different ε in the 200 episodes of training on the target task. As a better transfer results in the

discounted return curve to get close to zero faster in the LQR environment, a lower area under the

training curve means faster convergence and a better transfer. Figure 4.5 shows the area under the

training curve of RobustSF2w in A2C method for these four cases for different values of ε. As we can

see, as the difference between the optimal policy of source and target tasks increases, the optimal value

of ε increases.
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Figure 4.5: The area under the curve of different value of ε in different transfer settings. Shaded areas
represent standard error over 30 runs. Lower absolute value of area under the curve means a faster
transfer.
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Conclusion

In this thesis, we introduced a framework to improve the generalizability of Actor-Critic methods over

tasks with different reward functions. This framework builds on two concepts. The first one is successor

features, a representation scheme for the value function that decouples the reward function from the

dynamics of the environment. The second concept is the robust policy gradient, an algorithm that

directly approximates a stochastic policy that maximizes the performance function on a set of tasks

instead of a single, specific task.

We started by Theorem 1 that shows how we can reformulate the original policy gradient theorem to

use successor features as the action-value function representation. Then we provided an upper bound on

the performance of the transferred policy before any learning happens, which shows that the performance

of transferred policy directly depends on the similarity of source and target task. Although learnt SFs

may boost the learning speed, we empirically studied a scenario where using SFs can’t be helpful. In

fact, the dependence of SFs on the policy they are learned for, makes SFs unusable if the optimal policies

of source and target task are so different. This problem suggests learning transferable SFs that reduce

the dependence of SFs to a specific task’s policy.

To tackle this problem, we then proposed a new performance metric (robust performance metric) for

policy gradient RL methods that encourages the generalizability in the RL method. The learned policy

and its SFs provide a better starting point for parameters of a new task so that starting from those

parameters one can find the policy of a new unseen task much faster. The empirical evaluation of the

proposed method showed the effectiveness of this objective in a transfer scenario with both A2C and

PPO algorithms.

We conclude by discussing several ways in which our method may be used.

5.1 Future Work

Successor Feature representation has received a lot of attention recently. In addition to the ability of

computing value of a policy immediately, the recent work by Lehnert and Littman (2019) showed how

SFs can be a bridge between model-based and model-free approaches. Specifically, SFs can be seen

as the expectation model of the world. On the other hand, Actor-Critic methods require to have the

true critic of the current policy during the training, but computing the true critic increases the sample

complexity of the method so in practice we usually only use an approximation of the true critic. In this

32
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project, we proposed a method to use SFs for the critic representation to compute a better estimate of

the critic immediately after the change of task. But this is not the only way to use SFs.

One possible future extension of this work is to use the learned SFs as the expectation model of the

world to learn a more accurate estimate of the critic, so without increasing the sample complexity of the

method, have a better estimate of the true critic.

In this project, we considered transfer on the set of tasks with only different reward functions.

Although this is a type of transfer with many use cases, the more general type of transfer is when

not only the reward function but also the probability transition function can be different in the set of

tasks of interest. The robust policy gradient theorem that we provided only uses the linearity of value

function represented by successor features. Another interesting extension of this work is to remove the

assumption about the tasks having a shared dynamics and only use the more general case of linear value

function approximation. In this case, the robust policy gradient theorem still holds and can be used to

find generalizable policies in a more general transfer scenario.
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