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Abstract

This work explores the sample complexity of estimation and learning tasks under local differential

privacy (LDP), an especially strong approach to differential privacy which does not rely on any

trusted party to guarantee privacy. We give a new characterization of the sample complexity of

answering statistical (linear) queries under non-interactive LDP in terms of the γ2 norm, showing

that a slight generalization of the well-studied factorization mechanism achieves, in polynomial time,

nearly optimal sample complexity for each specific workload of queries. These results are obtained

by leveraging information theoretic bounds for LDP and applying them together with geometric

techniques which allow us to construct hard distributions for answering statistical queries. We

extend these ideas to obtain characterizations of both agnostic learning and and agnostic refutation

under non-interactive LDP in terms of the γ2 norm, and derive, by consequence, a sample-complexity

equivalence between the two tasks. We also give a characterization of realizable refutation in terms

of a factorization norm which we define. A matching upper boud is given for realizable refutation,

implying that realizable refutability implies realizable learning.

We explore other techniques for obtaining characterizations of local privacy tasks, including an

approach which combines a mutual information bound for differential privacy with an information

complexity lower bound borrowed from communication theory.

We also consider relationships between local privacy and data-access models which turn out to

be closely related. In particular, we demonstrate an equivalence between the sample complexity

of learning under sequential LDP and the sample complexity of learning under single-intrusion

pan-privacy. Finally, we demonstrate an equivalence between the sample complexity of agnostic

learning under non-interactive LDP and the query complexity of agnostic learning under the adaptive

correlational statistical query model.
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Chapter 1

Introduction

1.1 Differential privacy

Increasingly, in a wide range of contexts such as medicine, censuses and social media, there exist rich

data sets whose usefulness for purposes of data analysis is compromised by the danger of revealing

sensitive private information of individuals. Privacy breaches may threaten individuals personally,

socially or economically. Moreover, the risk of privacy breaches can even pose a danger to the validity

of a study itself if it discourages individuals from answering truthfully or participating in the first

place.

Naive approaches to protecting privacy in the context of data analysis often fail. For instance,

removing obvious personal identifiers such as name and phone number is not effective, since a

sufficient amount of information of almost any kind about an individual is unique to that individual

and may be used to identify them. Indeed, linkage attacks exploit this idea by taking advantage

of publicly available information about individuals and linking it to their profile – intended to be

anonymized – in a data set. An example of this is the Netflix de-anonymization attack [CT19]

which recovered the identities behind profiles in an Netflix movie ratings data set by linking them

to public Internet Movie Database (IMDb) profiles. Only publishing aggregate information is also

not sufficient. For instance, a simple differencing attack may look at a sum on a data set before and

after an individual is removed from it. Taking the difference of the two values reveals the amount

which the individual contribute to the sum. Meanwhile, even releasing noisy sums or averages can

reveal private information if the noise is not appropriately scaled with the queries being answered

and the size of the data set [DN03].

Privacy techniques dealing with such attacks on a case-by-case basis may still be susceptible

to attacks of unknown kinds. Instead, we want privacy techniques which provide guarantees even

against unforeseen attacks. Differential privacy (DP) [DMNS06] provides a rigorous mathematical

framework for such guarantees. To satisfy differential privacy, the probability of any output of

the mechanism should be affected only slightly when the input of a single individual is changed.

Formally, for ε > 0, a randomized function M : Xn → Z is called ε-differentially private (ε-DP) if,

when x, x′ ∈ xn disagree on at most one entry, then, for all S ⊆ Z,

P
M

[M(x) ∈ S] ≤ eε · P
M

[M(x′) ∈ S].

1
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The symmetry of the definition also implies

P
M

[M(x) ∈ S] ≥ e−ε · P
M

[M(x′) ∈ S].

By the post-processing property of DP, any function applied on top of an ε-DP function is itself

ε-DP. This implies that the probability of any consequence for an individual is affected by only a

small amount by their choice to participate in a differentially private protocol. This is the essential

promise of differential privacy to the individual participant – “you will be at most negligibly affected,

for good or ill, by your choice to participate.”

The strategic application of randomness to the output is essential in the construction of differen-

tially private algorithms [DN03]. This introduces an inherent trade-off between accuracy and privacy

parameters. A core objective in the study of DP, and in this work in particular, is to elucidate the

optimal trade-off between accuracy and privacy parameters for given tasks. A core objective in this

work will be to characterize, for various estimation and learning problems, the complexity of the

task under local privacy.

In addition to a rich academic literature, differential privacy is now being deployed on a large

scale by Apple [App17], Google [EPK14, BEM+17, WZL+19], Uber [JNS18], and the US Census

Bureau [DLS+17].

Different models of differential privacy may be distinguished by the type of adversary they

protect against. Central differential privacy assumes there is a trusted central curator holding the

sensitive data of all individuals. This central curator releases an output with appropriate randomness

introduced so as to guarantee privacy. Privacy is guaranteed against an external adversary, but not

against the curator.

By contrast, this work will focus on local differential privacy (LDP) [EGS03a, DMNS06, KLN+08],

an especially strong model of privacy which eschews a trusted curator and instead relies only on an

untrusted aggregator to collect already private information from individuals and report on it in a

useful way. Even the aggregator is unable to compromise privacy. Such protocols are local in the

sense that each individual, referred to as a local agent, is responsible for applying an ε-DP function

to their own data point before sending the result to the aggregator. Local differential privacy pro-

vides the strongest possible type of privacy guarantee, since there is no need for the local agent to

trust the party collecting their data. This handles an essential concern with regard to the real-world

application of the central model, where data stewards themselves may pose the most significant

threat to the privacy of individuals. However, while the local model protects against a particularly

strong adversarial model, it is also more restrictive than the central model. Approaches to central

differential privacy do not always readily translate to the local setting. For this reason, it is essential

to understand the complexity of performing relevant tasks under LDP.

We will consider a taxonomy of LDP protocols according to the type of interactivity involved.

Non-interactive LDP allows each local agent to speak once, and their output is not allowed to

depend on the outputs of the other local agents. Sequential LDP allows each local agent to speak

once in sequence, and their output is allowed to depend on the previous outputs of the other local

agents. Finally, general interactive LDP protocols also proceed in a series of sequential rounds. Each

agent speaks once per round and their output is allowed to depend on any of the messages already

sent. The entire transcript of the local agents’ communication should be differentially private as a

function of the inputs. We are interested in understanding the relative power of different types of
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interactivity.

We also extend ideas we apply to local differential privacy to characterize the complexity of

learning and estimation tasks to models where the underlying distribution is accessed in other ways.

These other models include: pan-privacy, where a streaming algorithm is guaranteed to preserve

privacy even in the case where its internal state is compromised; the correlational statistical query

model, where statistical queries on an underlying distribution of labelled samples each ask the

correlation of the labels with a real function.

1.2 Results

1.2.1 Sample-complexity lower bounds against LDP from information-

complexity lower bounds

The first lower bound we present is due to collaborator Jonathan Ullman, and presented here with

his permission. The lower bound is against general interactive LDP, and takes advantage of known

information-complexity lower bounds for 2-party communication. This is leveraged against a generic

mutual-information upper bound for LDP, which bounds the mutual information between the tran-

script of the protocol and the input data set [MMP+10, SZ20]. This technique will be applied to

the selection problem, where each local agent i holds a data point xi drawn independently from an

underlying distribution λ on {0, 1}d and the goal of the protocol is to identify a coordinate j ∈ [d]

which satisfies

µj ≥ max
k∈[d]

µk − α,

where α > 0 is the accuracy parameter and each µk denotes the expectation E
x∼λ

[xk] of coordinate

k. To derive our lower bound for selection, we show that an arbitrary LDP protocol for selection can

be translated into a 2-party communication protocol for set disjointness. This allows us to apply

the known information complexity lower bound for 2-party set-disjointness [BJKS04].

Although our lower bound for selection under LDP has been shown via other techniques [DJW18],

our reduction of LDP sample-complexity lower bounds to information complexity lower bounds is

presented here for the sake of both its novelty and simplicity.

1.2.2 Characterization of statistical query release under non-interactive

LDP

One of the principal tasks we consider for LDP in this work is answering statistical queries. The

simplest example of a statistical query is “What fraction of individuals in the data set have property

P?” More generally, a statistical query is given by some q : X → R and answering it means

approximating its average 1
n

∑
i∈[n] q(xi) on the data set x = (x1, . . . , xn) ∈ Xn. In the context of

LDP, each xi is held by a distinct local agent. We are often interested in answering each query in

a workload Q = {q1, . . . , qk} of statistical queries. For instance, when X = [T ], then the threshold

queries are given, for t ∈ [T ], by

qt(x) = I[x ≤ t]. (1.1)
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Answering the workload of threshold queries corresponds to computing the CDF of our data set.

Indeed, answering a workload of statistical queries captures a variety of statistical tasks: computing

histograms and PDFs, answering range queries and computing CDFs, estimating mean, computing

correlations and higher-order marginals, and estimating the risk of a classifier. Our interest is in

characterizing, for an arbitrary given workload, the optimal sample complexity required to achieve

given accuracy and privacy parameters. We give a new algorithm for the problem of answering a

workload of statistical queries and we give a lower bound which shows that this algorithm is nearly

the best possible in terms of sample complexity.

Previously, the optimal sample complexity for answering a worst-case workload of statistical

queries had been well understood [DN03], with known bounds being essentially tight as a function of

the data set size, the data domain, and the size of the workload. Such techniques effectively treat each

query independently. However, with certain workloads, such as those corresponding to computing

PDFs or CDFs, information used to answer one query may be useful in answering another. Such

structured workloads may be answered with considerably fewer samples. This work demonstrates

that factorization techniques give sample complexity guarantees which are nearly optimal relative

to an arbitrary given query workload.

It is useful to represent the workload Q by a matrix W ∈ RQ×X with entries wq,x = q(x).

Representing the data set x = {x1, . . . , xn} ∈ Xn by its histogram vector h ∈ ZX
≥0 with entries given

by hx = |{i : xi = x}|, then the vector of query answers is given by 1
nWh. Standard techniques for

LDP would have each agent i, holding a sample xi, report the vector (q1(xi), . . . , qk(xi)) with added

noise drawn from an appropriate distribution. Aggregating the outputs of all agents by taking the

average gives 1
nWh+G where G is a random noise vector with mean zero. For a worst-case workload

Q, this approach, requiring

n = O

(
∥W∥1→2 log |Q|

α2ε2

)
samples to approximate each query within α under ε-LDP, will have optimal sample complexity.

The quantity ∥W∥1→2 in the upper bound corresponds to the ℓ2-sensitivity of the workload, given

by the maximum ℓ2 norm of a column of W . However, for certain workloads, it is possible to do

better. For example, applying the previous mechanism to threshold queries as given by (1.1) would

result in a sample guarantee of

n = O

(√
T log T

α2ε2

)
.

However, rather than treat each query independently, we can recycle the same information to answer

multiple queries. Specifically, consider the interval queries given by

qs:t(x) = I[s ≤ x ≤ t].

Instead of answering the threshold queries directly, we can instead answer the following dyadic
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queries (when T is a power of 2):

q1:T/2, qT/2+1,T

q1:T/4, qT/4+1,2T/4, . . . q3T/4+1,T

...

q1:1, q2,2, . . . qT,T

Each of our threshold queries may be expressed as a linear combination of these dyadic queries. For

instance, q7 = q1:4 + q5:6 + q7:7. Answering the dyadic queries and using the answers to reconstruct

the answer to our threshold queries gives an algorithm where the number of samples required is

bounded by

n = O

(
log3 T

α2ε2

)
.

Generalizing this approach to an arbitrary workload Q with workload matrix W , we consider a

factorization W = RA of the query matrix. The matrix A itself represents a workload of queries

so, by the same technique, we may obtain Ah + G. Multiplying the result by R reconstructs an

approximation RAh + RG = Wh + RG to the original workload. The number of samples which

this procedure requires to achieve given accuracy and privacy parameters is affected by the choice

of A since it represents the initial workload being answered. The number of samples required is also

affected by the choice of R, since it determines how the noise G is scaled. Optimizing the choices

of R and A gives sample complexity bounds in terms of γ2(W ), a well-studied matrix norm which

will be defined later on. This factorization technique, discovered in [LHR+10], is given a slight

generalization here called approximate factorization which considers a matrix W̃ close to W in ℓ∞

norm and applies factorization to W̃ rather than W . Optimizing the choice of W̃ gives a sample

complexity upper bound in terms of the quantity γ2(W,α), the approximate γ2 norm, defined later.

The primary contribution of this work in the context of answering statistical queries is the derivation

of lower bound as a function γ2(W,α) which, for any given workload, is nearly tight. The lower bound

implies that the approximate factorization mechanism is nearly optimal in sample complexity for

the given workload. We apply our result to obtain new lower bounds for the following well studied

families of queries:

1. Threshold queries, which are equivalent to computing the CDF of the data;

2. Parity queries, which capture covariance and higher-order moments of the data;

3. Marginal queries, also known as conjunctions, which capture the marginal distribution on

subsets of the attributes.

This lower bound is obtained via information theoretic techniques. In particular, we introduce

a new KL-divergence bound for non-interactive LDP, similar to one for sequential LDP previously

discovered in [DJW13]. While our KL-divergence bound is restricted to non-interactive LDP, it is

more general for that setting in a way that our proof depends upon.

The research which appears in this chapter is joint work with Aleksandar Nikolov and Jonathan

Ullman, and was originally published in [ENU19].
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1.2.3 Characterization of agnostic learning under non-interactive LDP

For the agnostic learning problem, each sample (ai, bi) is drawn independently from an arbitrary

unknown distribution λ on U × {−1, 1}. In the context of LDP, each sample (ai, bi) is held by a

local agent. The goal is to produce some hypothesis h ⊆ {−1, 1}X with small loss, defined by

Lλ(h) = P
(x,b)∼λ

[h(x) ̸= b].

In particular, the hypothesis should have loss nearly as small as any concept in the concept class,

so that

Lλ(h) ≤ min
c∈C

Lλ(c) + α,

where α > 0 is the accuracy parameter. The empirical loss of h on a data set x ∈ (X × {−1, 1})n is

defined by

Lx(h) = P
(x,b)∼Unif(x)

[h(x) ̸= b]

where Unif(x) is the uniform distribution on x. We may express Lx(h) as a function of the statistical

query given by qh(x, b) = y · h(x). Specifically,

Lx(h) =
1

2
− 1

2
· E
(x,b)∼λ

[qh(x, b)].

This provides a straightforward approach to learning by answering the statistical query qc for each

c ∈ C. Assuming uniform convergence, the empirical loss will be close to the true loss and so, by

returning a concept c which nearly maximizes the answer to qc, we learn the concept class. The

workload QC = {qc}c∈C may be answered by applying the approximate factorization mechanism,

giving an upper bound in terms of the quantity γ2(W,α) where W ∈ RC×X has entries wc,x = c(x).

Ultimately, we will show that this approach to agnostic learning is nearly optimal under LDP.

However, the lower bound against statistical query release does not immediately apply to the agnostic

learning problem. It does apply to the refutation version of the agnostic learning problem where the

learner is required only to distinguish between the cases

min
c∈C

Lλ(c) ≤
1

2
− α

versus

∀c ∈ C, Lλ(c) =
1

2
.

In most settings other than our own, agnostic learning enables solving the refutation task, by estimat-

ing the loss of the learned concept. In our setting however, estimating the loss involves introducing

a round of interactivity into our algorithm.

We introduce additional machinery which deals with this issue, and obtain nearly tight upper

and lower bounds for the general agnostic learning problem in terms of the approximate γ2 norm.

This result implies an equivalence between the sample complexities of agnostic learning and agnostic

refutation under non-interactive LDP.

The upper bounds for both learning and refutation are joint work with Aleksandar Nikolov and

Jonathan Ullman, originally published in [ENU19]. The lower bound against learning is joint work
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with Aleksandar Nikolov and Toniann Pitassi, originally published in [ENP22].

1.2.4 Characterization of realizable refutation under non-interactive LDP

Realizable learning is a special case of the agnostic learning problem where the underlying distribu-

tion λ on X × {−1, 1} is guaranteed to be realized by some concept c ∈ C, specifically Lλ(c) = 0.

Since it is a special case, our previous learning algorithm may be applied. However, the ‘hard

distributions’ used in the proof of that lower bound are not necessarily realizable.

Previously, lower bounds were obtained against realizable learning of linear separators, in a work

which exploited the fact that learnability of a concept class by an SQ algorithm implied an upper

bound on its margin complexity [DF19]. This suggested the possibility that margin complexity

might characterize realizable learnability under non-interactive LDP, but this was later falsified by

[DF20] which showed that even a large-margin linear classifier could not be learned efficiently under

LDP without interactivity.

Our work will fill in this gap by introducing a measure of the complexity of a concept class,

which is used to give an upper bound on the sample complexity of learning the concept class C in

the realizable case under non-interactive LDP. The LDP protocol which witnesses the upper bound

is also able to recognize when none of the concepts fit the underlying distribution. In particular,

it also solves realizable refutation where the algorithm is required to distinguish between the cases

Lλ(c) = 0 versus minc∈C Lλ(c) ≥ α. By applying techniques analogous to those we use to get

lower bounds against agnostic learning, we give a nearly tight lower bound for realizable refutation

under non-interactive LDP. The problem of getting a lower bound against non-interactive realizable

learners when they are not required to solve the refutation problem is left open.

This chapter is joint work with Aleksandar Nikolov and Toniann Pitassi, originally published in

[ENP22].

1.2.5 Characterization of CSQ learning in terms of γ2 norm

A classic work [KLN+08] on differentially private learning established the close connection between

learning under the statistical query (SQ) model of machine learning and learning under LDP. Under

the statistical query model, instead of accessing the underlying distribution λ on X×{−1, 1} via i.i.d.
samples, the algorithm may pose queries where each is determined by some function q : X×{−1, 1} →
[−1, 1]. In response, it receives r ∈ [−1, 1] which satisfies∣∣∣∣ E

(x,b)∼λ
[q(w)]− r

∣∣∣∣ ≤ τ,

with τ > 0 being the tolerance parameter. An algorithm in the SQ model is called adaptive when

the choice of a query is allowed to depend on the answers to earlier queries posed, and non-adaptive

otherwise. The SQ model may be viewed as a special case of learning with i.i.d. samples since i.i.d.

samples may be used to answer such queries with high probability. In [KLN+08], an equivalence

was shown between query complexity under the SQ model and sample complexity under LDP.

Specifically, the equivalence was shown to hold between non-interactive LDP and non-adaptive

SQ, as well as between sequential LDP and adaptive SQ. In this work, we investigate a special

case of the SQ model, called the correlational statistical query (CSQ) model, where each query
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q : U×{−1, 1} → [−1, 1] takes the form q(x, b) = b ·f(x) for some function f : X → [−1, 1]. We show

that the approximate factorization algorithm, as well as the lower bound in terms of the approximate

γ2 norm, may be adapted to the CSQ setting. This gives a characterization of learning under the

CSQ model in terms of the approximate γ2 norm and allows us to draw an equivalence for learning

between query complexity under adaptive CSQ and sample complexity under non-interactive LDP.

To obtain the CSQ lower bound, we take advantage of the CSQ lower bound of [MS20a], expressed

in terms of a ‘correlational variance’ quantity.

The research represented by this chapter has not been published elsewhere and is the result of

joint work with Aleksandar Nikolov and Toniann Pitassi.

1.2.6 Equivalence between sequential LDP and single-intrusion pan-privacy

Pan-privacy is a model of differential privacy which protects against a stronger adversarial model

than does central DP, though it still relies on a trusted central data curator, unlike with LDP. A

pan-private mechanism is an online algorithm which processes the data points in sequence. The

single-intrusion variant we will consider assumes that the internal state of the mechanism may be

compromised at any one moment in time. Privacy is guaranteed against an adversary who has access

to both the output of the algorithm and this single internal state. In [CU21], an information theoretic

bound was derived which holds for single-intrusion pan-private algorithms and enables the derivation

of sample-complexity lower bounds against this model in terms of a variant of statistical query (SQ)

dimension, as formulated in [Fel17]. Sample complexity upper bounds for private algorithms may

be obtained in terms of SQ dimension by following multiplicative-weight techniques as applied in

[Fel17] to the statistical query model of machine learning. In this way, we obtain a characterization of

sample complexity for pan-private learning in terms of statistical query dimension. By relating it to

the characterization in terms of SQ dimension for learning in the statistical query model of machine

learning, we are able to show an equivalence between sample complexity under single-intrusion pan-

privacy and query complexity for learning under the statistical query model. Similarly, we may

show an equivalence between sample complexities for learning under single-intrusion pan-privacy

and sequential LDP. In particular, it is shown that an arbitrary concept class is efficiently learnable

under single intrusion pan-privacy if and only if it is efficiently learnable under sequential LDP.

The research presented in this chapter has not been published elsewhere and is the result of joint

work with Aleksandar Nikolov and Toniann Pitassi.

1.3 Summary of known separations and equivalences

For reference, we include Table 1.1 and Table 1.2 summarizing known equivalences and separations

for differential privacy.



Non-interactive LDP vs.
sequentially interactive LDP

Exponential sample-complexity separation for distribution
dependent learning where the marginal on unlabelled samples
is known [KLN+11].

Exponential sample-complexity separation for agnostic PAC
learning of linear separators [DF19] and also for large-margin
linear separators [DF20].

Sequentially interactive LDP
vs. fully interactive LDP

By [JMR19], there exists an exponential sample-complexity
separation between sequentially interactive LDP with i.i.d.
inputs and fully interactive LDP with i.i.d. inputs for solving
a certain combinatorial problem. It is not known whether
such a separation exists for problems such as PAC learning.

Table 1.1: Known separations between models

Non-interactive LDP vs.
statistical query model

By [KLN+11], non-interactive LDP protocols operating on a
data set drawn i.i.d. from an unkown distribution are
equivalent to statistical query algorithms operating on the
same unknown distribution, in the sense that the distribution
of the output of the simulation and the distribution of the
output of the original are close in total variation. Polynomial
interdepdence between number of statistical queries and
inverse tolerance on one hand, versus data set size under LDP
and inverse privacy parameter on the other.

Non-interactive LDP vs.
statistical query model

By [KLN+11], equivalent in same sense as non-interactive
LDP and statistical query model.

Sequentially interactive LDP
vs. compositional LDP

By [JMNR19], equivalent when inputs are drawn i.i.d. from
an unknown distribution. Simulation of compositional
protocol by sequential protocol requires, with high
probability, at most a constant factor more samples.

Sequentially interactive LDP
vs. 2-intrusion pan-privacy

By [AJM20], any 2-intrusion ε-pan-private protocol may be
translated into a sequentially interactive ε-LDP protocol
which generates its transcript distribution using an input of
the same size, as well as vice versa. No assumptions required
of input distribution.

Sequentially interactive LDP
vs. single-intrusion

pan-privacy

In Chapter 8, realizable learning under both models is
characterized by SQDR(C, α) (Definition 55). This leads
polynomial equivalence between sample complexities for
realizable learning under these two models (Corollary 54).
This equivalence may also be extended to agnostic learning
(Section 8.6).

Non-interactive LDP vs.
correlational statistical query

model

In Chapter 6, agnostic learning under non-interactive LDP is
characterized in terms of the approximate γ2 norm. In
Chapter 9, agnostic learning under the correlational statistical
query model is also characterized in terms of the approximate
γ2 norm. Combining these characterizations leads to a
polynomial equivalence between the two models.

Table 1.2: Known equivalences between models

9



Chapter 2

Preliminaries

In this chapter we introduce basic notation and definitions which will be used throughout the rest

of this work.

2.1 Norms

For a set S, the ℓ1, ℓ2 and ℓ∞ norms on RS are given respectively by

∥a∥1 =
∑
v∈S

|av|, ∥a∥2 =

√∑
v∈S

(av)2, ∥a∥∞ = max
v∈S

|av|.

Given a probability distribution π on S, we consider the norms ∥ · ∥L1(π) and ∥ · ∥L2(π) on RS ,

given by

∥a∥L1(π) =
∑
v∈S

π(v)|av|, ∥a∥L2(π) =

√∑
v∈S

π(v)(av)2.

We also take advantage of a number of matrix norms. For norms ∥ · ∥ζ and ∥ · ∥ξ on RS and RS′

respectively, we consider the matrix operator norm of M ∈ RS×S′
given by

∥M∥ζ→ξ = max
x∈RS\{0}

∥Mx∥ξ
∥x∥ζ

.

For the special case of ∥M∥ℓs→ℓt , we will simply write ∥M∥s→t. Of particular importance are

∥M∥1→∞ which corresponds to the largest entries of M , ∥M∥1→2, which corresponds to the maxi-

mum ℓ2-norm of a column of M , and ∥M∥2→∞, which corresponds to the maximum ℓ2-norm of a

row of M .

The inner product of two matrices M and N in RS×S′
is defined by M • N = Tr(M⊤N) =∑

u∈S,v∈S′ mu,vnu,v.

Lastly, the γ2 norm, a type of factorization norm which will play a central role in chapters 5, 6

and 7, is given for M ∈ RS×S′
by

γ2(M) = min{∥R∥2→∞∥A∥1→2 : RA = M}.

10
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2.2 Differential privacy

2.2.1 Central model

Let X denote the data universe. A generic element from X will be denoted by x. We consider data

sets of the form x = (x1, . . . , xn) ∈ Xn, each of which is identified with its histogram h ∈ NX
≥0 where,

for every x ∈ X , hx = | {i : xi = x} |, so that ∥h∥1 = n. To refer to a data set, we use x and h

interchangeably. A pair of data sets x = (x1, . . . , xi, . . . , xn) and x′ = (x1, . . . , x
′
i, . . . , xn) are called

adjacent if X ′ is obtained from X by replacing an element xi of x with a new universe element

x′
i ∈ X .

For parameters ε, δ > 0, an (ε, δ)-differentially private ((ε, δ)-DP) mechanism [DMNS06] is a

random function M : Xn → Z which, for all adjacent data sets x and x′, for all outcomes S ⊆ Z,

satisfies

Pr
M

[M(X) ∈ S] ≤ eε Pr
M

[M(X ′) ∈ S] + δ.

A mechanism which is (ε, 0)-differentially private will be referred to as being simply ε-differentially

private (ε-DP for short).

2.2.2 Local model

The main focus of this work is on the local model of differential privacy, where privacy is guaranteed

against even the central party responsible for aggregating the data of individuals [EGS03b, DMNS06,

KLN+11].

A (ε, δ)-differentially private mechanisms Mi : X → Y which take a singleton data set x = {x} as

input is referred to as a local randomizer. A sequence of (ε, δ)-differentially private local randomizers

M1, . . . ,Mn – perhaps chosen at random from an arbitrary joint distribution (independently from

the input) – together with a post-processing function A : Yn → Z specify a non-interactive locally

(ε, δ)-differentially private mechanism M : Xn → Z. When the local protocol M is applied to a

data set x, we refer to

TM(x) = (M1(x1), . . . ,Mn(xn))

as the transcript of the protocol. Then the final output of the protocol is given byM(x) = A(TM(x)).

Local privacy may be defined more generally to allow for various forms of interactivity. In general,

a locally differentially private protocol M is a distributed communication protocol which proceeds

in rounds. In round t ∈ [S], each agent i ∈ [n] communicates in sequence a random message yt,i ∈ Y,

which is seen by the other agents. In particular, each yt,i is allowed to depend on the input xi to

agent i as well as any of earlier messages yt′,i′ where t′ < t or where both t′ = t and i′ < i. The

transcript of the protocol is then defined as the sequence of all such messages, namely

TM(x) = (y1,1, . . . , y1,n ; y2,1, . . . , y2,n ; . . . ; yS,1, . . . , yS,n) ∈ YS×n.

A post-processing function A : YS×n → Z is applied to the transcript to obtain the protocol’s final

output

M(x) = A(TM(x)).

We say that M is locally (ε, δ)-differentially private (ε-LDP) if the function TM : Xn → YS×n is
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itself (ε, δ)-DP. As with central DP, we refer to a mechanism which is locally (ε, 0)-differentially

private as locally ε-differentially private ε− LDP .

In [BNS18], a reduction from (ε, δ)-LDP to ε-LDP is given, which shows that (ε, δ)-LDP provides

essentially no additional power over ε-LDP. For this reason, this work will focus almost exclusively

on “pure” ε-LDP. For conciseness, we give the rest of our definitions only for ε-LDP rather than

(ε, δ)-LDP.

A sequential ε-LDP protocol M is one consisting of a single round, where each agent i com-

municates only a single message yi which depends on their input xi and the messages y1, . . . , yi−1

already sent. In particular, we may view each agent i as being assigned a local randomizer Mi which

depends on the messages y1, . . . , yi−1 already sent, with local agent i reporting yi = Mi(xi).

A compositional ε-LDP protocol M allows for multiple rounds. In each round t ∈ [S], each agent

i is assigned a εt,i-DP local randomizer Mt,i which depends on the messages previously sent. They

report yt,i = Mt,i(xi). If maxi∈[n]

∑
t∈[S] εt,i ≤ ε, then M, which is guaranteed to be ε-LDP by

basic composition properties, is called a compositional ε-LDP protocol.

In [JMNR19], it is shown that the sequential and compositional models of local differential

privacy are equivalent when the data points are drawn i.i.d., in the sense that a compositional local

protocol can then be simulated with a sequential local protocol using, with high probability, at most

a constant factor more samples.

In [JMR19], it is shown that a certain combinatorial problem requires exponentially more samples

to be solved with a compositional LDP protocol instead of with one which is fully interactive. It is

not known whether such a separation exists for natural statistical and learning tasks.

2.3 Answering statistical queries

A statistical query is specified by a bounded function q : X → {−1, 1}. Abusing notation slightly,

its answer on a data set x ∈ Xn is given by q(x) = 1
n

∑n
i=1 q(xi). We also extend this notation to

distributions: if µ is a distribution on X , then we write q(µ) for E
x∼µ

[q(x)]. A workload is a set of

statistical queries Q = {q1, . . . , qk}, and Q(x) = (q1(x), . . . , qk(x)) is used to denote their answers

on the data set, Q(µ) = (q1(µ), . . . , qk(µ)) their answers on µ. We will often represent Q by its

workload matrix W ∈ RQ×X with entries wq,x = q(x). In this notation, the answers to the queries

on x ∈ Xn are given by 1
nWh where h ∈ NX is the histogram of x, defined by hx = | {i : xi = x} |

We will often use Q and W interchangeably.

The ℓ∞ error of a mechanism M : X ∗ → Z on the query workload Q is given by

errℓ∞(M, Q, n) = max
x∈Xn

E
M

[∥M(x)−Q(x)∥∞].

We can then define the sample complexity of M for a given ℓ∞ error α by

scℓ∞(M, Q, α) = min{n ∈ N : errℓ∞(M, Q, n) ≤ α}.

Having defined error and sample complexity for a fixed mechanism, we can define the optimal error
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and sample complexity under local differential privacy by

errℓ∞ε-LDP(Q,n) = min
M is ε-LDP

errℓ∞(M, Q, n),

scℓ∞ε-LDP(Q,α) = min
n∈N

{n ∈ N : errℓ∞ε-LDP(Q,n) ≤ α}

We may also define distributional versions of some of these quantities by

dist-errℓ∞(M, Q, n) = max
µ

E
x∼µn

M

[∥M(x)−Q(µ)∥∞],

dist-scℓ∞(M, Q, α) = min{n : dist-errℓ∞(M, Q, n) ≤ α},

dist-scℓ∞ε-LDP(Q,α) = min
M is ε-LDP

dist-scℓ∞ε-LDP(M, Q, n).

Analogous quantities can be defined for both non-interactive LDP and sequential LDP. We label

these errℓ∞ε-NILDP(Q,n) and scℓ∞ε-NILDP(Q,α) for non-interactive ε-LDP. The notation errℓ∞ε-SeqLDP(Q,n)

and scℓ∞ε-SeqLDP(Q,α) is used for sequential ε-LDP.

2.4 Learning

A concept c : U → {−1, 1} from a concept class C ⊆ {−1, 1}U identifies each sample a ∈ U
with a label c(a). The empirical loss of the hypothesis h : U → {−1, 1} on a data set x =

((a1, b1), . . . , (an, bn)) ∈ (U × {−1, 1})n is given by

Lx(h) =
1

n

n∑
i=1

(I[h(ai) ̸= bi])

For a distribution µ on U×{−1, 1}, the population loss of h on µ is given by Lµ(h) = P
(a,b)∼µ

[h(a) ̸= b].

We will say that a mechanism M : (U × {−1, 1})n → {−1, 1}U (α,β)-learns C agnostically with

n samples if, for any distribution µ over U ×{−1, 1}, given as input a random data set x drawn i.i.d.

from µ, the mechanism returns some hypothesis h : U → {−1, 1} which satisfies

P
x,M

[
Lµ(h) ≤ min

c∈C
Lµ(c) + α

]
≥ 1− β.

Realizable learning is an important special case of agnostic learning where the underlying distribution

agrees with some concept. We say that M : (U × {−1, 1})n → {−1, 1}U (α,β)-learns C realizably

with n samples if, whenever µ is a distribution over U ×{−1, 1} which satisfies P
(a,b)∼µ

[c(a) = b] = 1

for some unknown c ∈ C, then, given a random data set x drawn i.i.d. from µ, the mechanism returns

a hypothesis h ∈ U → {−1, 1} which satisfies

P
x,M

[Lµ(h) ≤ α] ≥ 1− β.

The problem of refutation asks whether the underlying distribution is well approximated by

the concept class. In particular, for θ ∈ [0, 1], we will say that Mθ : (U × {−1, 1})n → {−1, 1}
(α, β)-refutes C for threshold θ if the following two conditions are met:



CHAPTER 2. PRELIMINARIES 14

1. When µ is a distribution on U × {−1, 1} which satisfies Lµ(c) ≤ θ for some c ∈ C,

P
x,M

[M(x) = 1] ≥ 1− β;

2. When µ is a distribution on U × {−1, 1} which, for all h ∈ {−1, 1}U , satisfies Lµ(h) > θ + α,

then

P
x,M

[M(x) = −1] ≥ 1− β.

We say that {Mθ}θ∈[0,1] (α, β)-refutes C agnostically if, for all θ ∈ [0, 1], Mθ (α, β)-refutes C
agnostically for threshold θ.

Realizable refutation is a special case of agnostic refutation where the goal is to recognize whether

the underlying distribution is labeled by a concept from the concept class. We say that Mθ :

(U × {−1, 1})n → {−1, 1} (α, β)-refutes C realizably if it (α, β)-refutes C for threshold 0.

2.5 Statistical query model

A statistical query (SQ) algorithm operates on an underlying distribution µ on X by accessing it

via a statistical query oracle SQµ which, when queried with some q : X → [−1,+1], returns some

r ∈ [−1, 1] such that |r− q(µ)| ≤ τ , with τ denoting the tolerance parameter given to the statistical

query oracle. In a sense, the statistical query model is a special case of the setting where we access

µ via i.i.d. samples, since, with a sufficiently large data set x drawn i.i.d. from µ we may use q(x)

to answer the statistical query q with small probability of failure. Note that the statistical query

model allows queries to be answered adversarially by the oracle. A statistical query algorithm which

poses all of its statistical queries before viewing the answers to any is referred to as non-adaptive. A

statistical query algorithm which is allowed to depend its choice of queries on the answers to earlier

posed queries is referred to as adaptive.

In [KLN+11], a close relationship is shown between compositionally interactive LDP and the

statistical query model. In particular, we may translate between LDP protocols and statistical query

protocols with only polynomial blow-ups in complexity. Non-interactive LDP protocols correspond

specifically to non-adaptive SQ algorithms, and compositionally interactive to adaptive. It is not

known whether the relationship holds for fully interactive local protocols.

The statistical query model is often considered in a learning context where µ is a distribution

on labelled samples from X = U × {−1, 1}. In this setting, we sometimes narrow our attention

to correlational statistical query (CSQ) algorithms, namely those where each of the posed queries

q : U × {−1, 1} → [−1, 1] is given by some function f : U → [−1, 1], so that

q(a, b) = f(a) · b.

See Chapter 9 for further discussion.
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2.6 Pan-privacy

Pan-private mechanisms protect against a stronger adversarial model than does central DP, though

they still rely on a trusted curator, and hence do not go as far as the local model in this way. A

pan-private mechanism is a streaming algorithms which processes the data set in sequence, and

guarantees privacy even if the internal state of the algorithm is revealed to the adversary.

Being a streaming algorithm, M : Xn → Z may be defined inductively in terms of M1 :

X → Y together with a sequence, for i ≥ 2, of Mi : (X × Y) → Y, as well as a post-processing

function A : Y → Z. Then, on a dataset x = (x1, . . . , xn), the first internal state is given by

I1(x1) = M1(x1), while each iteration i ∈ {2, . . . , n} produces the internal state Ii(x1, . . . , xi) =

Mi(xi, Ii−1(x1, . . . , xi−1)). The final output is given by M(x) = A(In(x1, . . . , xn)).

We call M ε-pan-private against a single intrusion if the function which jointly releases M(x)

and Ii(x1, . . . , xi), for some arbitrary i ∈ [n] is itself ε-DP. In other words, for adjacent datasets

x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n), it holds for all S ⊆ Y × Z that

Pr
M

[(Ii(x1, . . . , xi),M(x)) ∈ S] ≤ eε Pr
M

[(Ii(x
′
1, . . . , x

′
i),M(x′)) ∈ S].

We may also consider for r ≥ 2, ε-pan-privacy against r intrusions, in which case differential privacy

must be satisfied in the scenario where M(x1, . . . , xi) is jointly released with Ii(x1, . . . , xi) for r

arbitrary choices of i ∈ [n].



Chapter 3

Information-theoretic bounds

3.1 Overview

In this chapter, we present a number of information theoretic bounds applicable to the derivation

of sample complexity lower bounds against LDP. We present the mutual information bound for DP

mechanisms, Lemma 1, of [MMP+10], generalized in [SZ20], which in Chapter 4 will be applied

to transform lower bounds on the information complexity of communication problems into sample-

complexity lower bounds for statistical problems under LDP. We also introduce our KL-divergence

bound, Lemma 2, which will be one of our primary tools in deriving lower bounds against estima-

tion and learning problems under non-interactive LDP. This result is closely related to Lemma 3 of

[DR18], which gives a weaker bound, but holds in the setting of sequential LDP. In Chapter 8, we

will apply this bound when showing that sequential LDP and single-intrusion pan-privacy are char-

acterized by the same variant of statistical-query dimension. We present a third bound which takes

a similar form to Lemma 2 and Lemma 3, though it is an upper bound on mutual information rather

than KL-divergence. In Appendix B.3, it is applied towards getting a tight lower bound against an-

swering parity statistical queries under non-interactive LDP, a generalization of the selection lower

bound of [Ull18].

3.2 Mutual information bounds for LDP

Mutual information receives much attention in the context of communication theory where mutual

information lower bounds directly yield communication cost lower bounds. We will see how such

mutual information lower bounds are easily translated into sample complexity complexity bounds

against LDP.

In a communication protocol, a dataset x ∈ Xn is distributed among multiple agents who com-

municate in turn. On each turn, the message sent is allowed to depend on previously sent mes-

sages as well as the input of the agent sending the message. The transcript of these messages

TM : Xn → {0, 1}∗ is a random function on top of which a post-processing function A : {0, 1}∗ → Z
is applied to obtain the final output M(x) = A(TM(x)). In this way, an ε-LDP protocol may

be viewed as a communication protocol with the additional constraint that the transcript of the

protocol is ε-DP.

16
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Communication complexity is typically studied in the context of a binary decision problem, given

by a binary function f : Xn → {0, 1}, with the goal being to output f(x). The minimum mutual

information I
(
X ; TM(X)

)
required of a protocol M operating on a random dataset X which

decides the problem with high probability is known as its information complexity. Lower bounds on

information complexity are of interest in communication theory primarily because I
(
X ; TM(X)

)
provides a lower bound on the entropy H

(
TM(X)

)
, which is itself a lower bound on the length

|TM(X)| of the transcript. From our point of view, information complexity lower bounds are use-

ful because they may be combined with the mutual information upper bounds which follow from

differential privacy.

A precursor to the following mutual information upper bound is found for 2-party differential

privacy in [MMP+10]. The general bound for all DP mechanisms and specifically for the transcripts

of arbitrary LDP protocols is due to [SZ20]. The stronger bounds in the case of i.i.d. inputs are also

due to [SZ20]. It appears that the stronger bound in the case of sequential or compositional LDP,

without assumptions on the data distribution, has not been previously published, so a proof of that

portion of the lemma – which arose out of collaboration with Aleksandar Nikolov, Toniann Pitassi,

and Jonathan Ullman – is given in Appendix A.1.

Lemma 1 (2-party case in [MMP+10]; weak bound for general case and strong bound for i.i.d. case

in [SZ20]; original result for non-i.i.d. sequential case). Let ε = O(1). Suppose M : Xn → Z is

ε-DP. Let X ∈ Xn be a random dataset drawn from an arbitrary distribution. Then,

I
(
X ; M(X)

)
= O(n · ε).

When X is i.i.d., then

I
(
X ; M(X)

)
= O(n · ε2).

In the context of LDP, with TM : Xn → Z being the transcript of an ε-LDP protocol M which takes

X as input, then, since TM is itself ε-DP, this result implies

I
(
X ; TM(X)

)
= O(n · ε).

and, when X is i.i.d.,

I
(
X ; TM(x)

)
= O(n · ε2). (3.1)

When M is a sequential LDP protocol, or merely compositional, then we do not need the requirement

that X is i.i.d., and (3.1) holds nevertheless.

By rearranging, this result allows us to lower-bound the sample complexity of an ε-LDP protocol

in terms of the mutual information between the input and the transcript. In particular, we have

n = Ω

(
I
(
X ; M(X)

)
ε2

)

when X is i.i.d., and otherwise

n = Ω

(
I
(
X ; M(X)

)
ε

)
.
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In either case, a lower bound on I
(
X ; M(X)

)
gives us a lower bound on the number of samples

required.

3.3 KL-divergence bounds for LDP

KL-divergence upper bounds play an important role in obtaining lower bounds against LDP. Such

techniques rely on the construction of families {λ1, . . . , λk} and {µ1, . . . , µk} of ‘hard’ input distri-

butions, together with a parameter distribution π on [k]. For any v ∈ [k], let λn
v be the distribution

which draws n independent samples from λv. Let λn
π be the mixture

∑k
v=1 π(v)λ

n
v . Define µn

v and

µn
π analogously. It is worth emphasizing that λn

π and µn
π are mixtures of product distributions, and

not product distributions themselves. Consider our following result.

Lemma 2 (KL-divergence bound for non-interactive LDP). Let ε = O(1), and let M : Xn → Z be

a non-interactive ε-LDP protocol with transcript TM : Xn → Yn. Then, for distributions λ1, . . . , λk

and µ1, . . . , λk on X , together with a distribution π over [k],

DKL(TM(λn
π)∥TM(µn

π)) ≤ E
V∼π

[DKL(TM(λn
V )∥TM(µn

V ))]

≤ O(nε2) · max
f∈RX :∥f∥∞≤1

E
V∼π

[(
E

X∼µV

[fX ]− E
X∼λV

[fX ]

)2
]
.

In matrix notation, define the matrix M ∈ R[K]×X by mv,x = (µv(x)− λv(x)). Then,

DKL(TM(λn
π)∥TM(µn

π)) ≤ E
V∼π

[DKL(TM(λn
V )∥TM(µn

V ))]

≤ O(nε2) · ∥M∥2ℓ∞→L2(π)
.

Proof. Let Mi : Xn → Y be the local randomizer which agent i applies to their data point in the

execution of the protocol M. We have

E
V∼π

[DKL(TM(λn
V )∥TM(µn

V ))] = E
V∼π

[
n∑

i=1

DKL(Mi(λV )∥Mi(µV ))

]
(3.2)

=

n∑
i=1

E
V∼π

[DKL(Mi(λV )∥Mi(µV ))]

≤
n∑

i=1

E
V∼π

[
Dχ2(Mi(λV )∥Mi(µV ))

]
(3.3)

where (3.2) is by independence, and (3.3) by the fact that χ2-divergence is always an upper bound

on KL-divergence [GS02].

Remark. If we were in the sequential setting, where the output of agent i can depend on the

outputs T <i
M of the previous i − 1 agents, then, instead of independence, we could use the chain

rule for KL-divergence. In line (3.2) of the inequality above, this would result in conditioning each

KL-divergence term on T <i
M and taking the expectation of the summands with respect to T <i

M (λn
V )

as well. Unfortunately, then the expectation with respect to V ∼ π does not appear next to the

KL-divergence expressions and we cannot change the order of expectation since T <i
M (λn

V ) depends

on V . We will see that it is possible to obtain a weak version of this result, Lemma 3, which holds



CHAPTER 3. INFORMATION-THEORETIC BOUNDS 19

for sequential local protocols but requires all the distributions {µv}v∈[k] to be identical, allowing

variety only in {λv}v∈[k].

It remains to show

E
V∼π

[
Dχ2(Mi(λV )∥Mi(µV ))

]
= O(ε2) · max

f∈RX :∥f∥∞≤1
E

V∼π

[(
E

X∼λV

[fX ]− E
X∼µV

[fX ]

)2
]
. (3.4)

To that end, fix some i and, for x ∈ X , y ∈ Y, let r(y|x) denote PrMi
(Mi(x) = y). Also, let

av(y) = E
X∼λv

[r(y|X)] and let bv(y) = E
X∼µv

[r(y|X)]. Let us assume, for notational simplicity, but

without loss of generality, that the range Y of Mi is finite. Then, by applying the definition of

χ2-divergence, the left-hand side of (3.4) may be rewritten as

E
V∼π

[
E

Y∼Mi(µV )

[(
bV (Y )− aV (Y )

bV (Y )

)2
]]

= E
V∼π

∑
y∈Z

(
bV (y)− aV (y)

bV (y)

)2

· bV (y)


Let µ0 be the uniform distribution on X (though any other distribution will work). Let u(y) =

E
X∼µ0

[r(y|X)]. Since privacy implies u(y)
bv(y)

≤ eε, we may obtain an upper bound on the right-hand

side of (3.5) as follows.

E
V∼π

∑
y∈Z

(
bV (y)− aV (y)

bV (y)

)2

· bV (y)

 (3.5)

= E
V∼π

∑
y∈Z

(
bV (y)− aV (y)

u(y)

)2

· u(y)
2

bV (y)


≤ eε · E

V∼π

∑
y∈Z

(
bV (y)− aV (y)

u(y)

)2

· u(y)


= eε · E

V∼π

[
E

Y∼Mi(µ0)

[(
bV (Y )− aV (Y )

u(Y )

)2
]]

= eε · E
Y∼Mi(µ0)

[
E

V∼π

[(
bV (Y )− aV (Y )

u(Y )

)2
]]

(3.6)

By taking fy ∈ RX to be given by fy
x = r(y|x)

u(y) − 1, then we obtain

bV (y)− aV (y)

u(y)
= E

X∼µV

[fy
X ]− E

X∼λV

[fy
X ].

Furthermore, r(y|x)
u(y) ≤ eε is implied by privacy, from which it follows that ∥fy∥∞ ≤ eε − 1. This
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gives us the following bound on (3.6).

eε · E
Y∼Mi(µ0)

[
E

V∼π

[(
bV (Y )− aV (Y )

u(Y )

)2
]]

= eε · E
Y∼Mi(µ0)

[
E

V∼π

[(
E

X∼µV

[
fY
X

]
− E

X∼λV

[
fY
X

])2
]]

≤ eε · E
Y∼Mi(µ0)

[
sup

∥f∥∞≤eε−1

E
V∼π

[(
E

X∼µV

[fX ]− E
X∼λV

[fX ]

)2
]]

≤ eε(eε − 1)2 · sup
∥f∥∞≤1

E
V∼π

[(
E

X∼µV

[fX ]− E
X∼λV

[fX ]

)2
]
.

Using the fact that eε(eε − 1)2 = O(ε2), then putting everything together, we get

DKL(TM(λn
π)∥TM(µn

π))

≤ O(nε2) · max
f∈RX :∥f∥∞≤1

E
V∼π

[(
E

X∼λV

[fX ]− E
X∼µV

[fX ]

)2
]
.

To obtain our result in terms of the matrix M ∈ R[K]×X given by mv,x = (λv(x)− µv(x)), we note

that the entries of Mf , indexed by v ∈ [K], are given by

(Mf)v =
∑
x∈X

fxmv,x =
∑
x∈X

(λv(x)fx − µv(x)fx)

= E
x∼λv

[fx]− E
x∼µv

[fx].

Hence

∥Mf∥2L2(π)
=
∑
v∈[K]

π(v)(Mf)2v = E
V∼π

[(
E

X∼λV

[fX ]− E
X∼µV

[fX ]

)2
]
.

Finally, we have

∥M∥2ℓ∞→L2(π)
= sup

f∈RX :∥f∥∞≤1

∥Mf∥2L2(π)

= max
f∈RX :∥f∥∞≤1

E
V∼π

[(
E

X∼λV

[fX ]− E
X∼µV

[fX ]

)2
]
,

and this completes the proof.

Suppose we could distinguish between M(λn
π) and M(µn

π) with success probability 1
2 + Ω(1),

whereby dTV(M(λn
π),M(µn

π))
2 ≥ Ω(1). Then, bounding total variation in terms of KL-divergence

and using the fact that post-processing can only decrease total variation, we would have

DKL(TM(λn
π)∥TM(µn

π)) ≥ dTV(TM(λn
π), TM(µn

π))
2 ≥ dTV(M(λn

π),M(µn
π))

2 ≥ Ω(1).

This implies

n = Ω

(
1

ε2 · ∥M∥2ℓ∞→L2(π)

)
.
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In this way, there are two goals which which we want to meet simultaneously in the construction of

our hard distributions. First, the task which our protocol performs – say, the learning or estimation

task – should allow us to distinguish between λn
π and µn

π. The second goal is to design λ1, . . . , λk

and µ1, . . . , λk, together with π, so as to make ∥M∥2ℓ∞→L2(π)
as small as possible.

The approach just described relies on the bound on DKL(TM(µn
π)∥TM(λn

π)). However, the bound

on E
V∼π

[DKL(TM(µn
V )∥TM(λn

V ))] is more useful in some cases as we will see later in our lower

bound against estimating linear queries. To apply this bound, it suffices to demonstrate that, for

each v ∈ [k], we can distinguish between M(λn
v ) and M(µn

v ) with probability 1
2 + Ω(1), whereby

DKL(TM(µn
v )∥TM(λn

v )) = Ω(1) for each v ∈ [k], and hence E
V∼π

[DKL(TM(µn
V )∥TM(λn

V ))] = Ω(1).

This result was preceded by a similar KL-divergence bound for sequential rather than non-

interactive LDP which handles the case where {λ1, . . . , λk} is being distinguished from a single

reference distribution µ instead of a second family of distributions.

Lemma 3 (KL-divergence bound for sequential LDP, [DR18]). Let ε = O(1), and let M be a

sequential ε-LDP protocol with transcript TM : Xn → Yn. Then, for distributions λ1, . . . , λk and µ

on X , together with a distribution π over [k],

DKL(TM(µn)∥TM(λn
π)) ≤ O(nε2) · max

f∈RX :∥f∥∞≤1
E

V∼π

[(
E

X∼λV

[fX ]− E
X∼µ

[fX ]

)2
]
.

In matrix notation, define the matrix M ∈ R[K]×X by mv,x = λv(x)− µ(x). Then,

DKL(TM(µn)∥TM(λn
π)) ≤ O(nε2) · ∥M∥2ℓ∞→L2(π)

.

Similar to Lemma 2, application of Lemma 3 typically involves showing, for all v ∈ [k], M(λn
v )

can be distinguished from M(µn). This also implies M(λn
π) can also be distinguished from M(µn).

Clearly, when restricted to the non-interactive setting, Lemma 3 is weaker than Lemma 2 When

we have the restriction of both non-interactivity and a single reference distribution µ =
∑

v∈[k] π(v)λv

which is all λv mixed according to π, then we may obtain a bound on mutual information, Lemma 4,

which will sometimes enable us to get quantitatively stronger sample-complexity lower bounds than

those given by our Lemma 2. Note that λn
π is a mixture of i.i.d. distributions, whereas µn corresponds

to i.i.d. samples drawn from a mixture.

Lemma 4 (Theorem 2 of [DJW18]). Let ε = O(1), and let M : Xn → Z be a non-interactive

ε-LDP protocol with transcript TM : Xn → Yn. Consider distributions λ1, . . . , λk on X , together

with a distribution π over [k]. Then let µ =
∑

v∈[k] π(v)λv. For a random dataset X ∼ λn
v and a

random parameter V ∼ π, then

I ( TM(X) ; V ) ≤ O(nε2) · max
f∈RX :∥f∥∞≤1

E
V∼π

[(
E

X∼λV

[fX ]− E
X∼µ

[fX ]

)2
]
.

In matrix notation, define the matrix M ∈ R[K]×X by mv,x = λv(x)− µ(x). Then,

I
(
TM(X) ; V

)
≤ O(nε2) · ∥M∥2ℓ∞→L2(π)

.

The advantage of this bound is that it allows us to invoke Fano’s inequality which says that, if
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A(TM(x)) is a predictor for V , then

Pr[A(TM(X)) = V ] ≤ I
(
A(TM(X)) ; V

)
/ log k.

Since post-processing TM(X) by A can only decrease the mutual information with V , this implies

Pr[A(TM(X)) = V ] ≤ I
(
TM(X) ; V

)
/ log k.

Supposing that A(TM(X)) = V holds with probability Ω(1), then, by rearranging and applying

Lemma 4, we obtain

n = Ω

(
log k

ε2 · ∥M∥2ℓ∞→L2(π)

)
.

The factor of log k in the numerator is essential for obtaining tight lower bounds in some settings.

In particular, Appendix B.3 uses this result to get a lower bound against answering parities, a

generalization of the unpublished result of [Ull18].

3.4 Total variation bound for pan-privacy

Information theoretic bounds can also play an important role in obtaining lower bounds against

pan-privacy. The following lemma generalizes the total variation bound of [CU21] to allow for an

arbitrary reference distribution µ, rather than one which is the mixture of the distributions {λv}v∈V ,

as in that work. The proof is deferred to Appendix A.2.

Lemma 5 (Generalization of [CU21]). Let M : Xn → Z be a single-intrusion ε-pan-private protocol.

Let {λv}v∈V consist of distributions on X . Let µ also be a distribution on X . Let π be a distribution

on V. Then,

dTV (M(λn
π),M(µn)) ≤ O(nε) · max

f∈RX :∥f∥∞≤1
E

V∼π

[(
E

X∼λV

[fX ]− E
X∼µ

[fX ]

)2
]
.

Note that the expression

max
f∈RX :∥f∥∞≤1

E
V∼π

[(
E

X∼λV

[fX ]− E
X∼µ

[fX ]

)2
]

(3.7)

which appears on the right-hand side of the bound on total variation in Lemma 5 is identical to

that which appears in the bound on KL-divergence in Lemma 3. As before, if the mechanism

M : Xn → Z is able to distinguish, with probability 1
2 + Ω(1), between a dataset drawn from

λn
π versus one drawn from µn, then dTV (M(λn

π),M(µn)) = Ω(1). Once again, by rearranging the

bound of Lemma 5, this implies a sample-complexity lower bound in terms of the quantity (3.7).



Chapter 4

Lower bounds against LDP from

information-complexity lower

bounds

4.1 Overview

In this chapter, we demonstrate how information complexity lower bounds from communication

theory readily yield sample complexity lower bounds against interactive LDP. In particular, the

lower bound of Theorem 6 against the selection problem, due to collaborator Jonathan Ullman

and presented here with his permission, is obtained by combining information complexity lower

bounds with the generic mutual-information upper bound given in Lemma 1, which holds for all

LDP protocols.

Theorem 6. Let α ∈ (0, 1/8] and let d ∈ Z, d ≥ 3. Let X = {0, 1}d. Suppose M : Xn → [d] is an

ε-LDP protocol such that, given a dataset X ∈ Xn drawn i.i.d. from an unknown distribution µ on

{0, 1}d with mean vector (m1, . . . ,md), the output Z = M(X) of the protocol satisfies

mZ ≥ max
j∈[d]

mj − α

with probability Ω(1). Then the number of samples required is bounded below by

n = Ω

(
d

αε

)
.

If, in addition, M is sequential or compositional, then

n = Ω

(
d

α2ε2

)
. (4.1)

We present a matching upper bound of our own, Theorem 7, which applies the bandit strategy

of [AB10] to construct an optimal sequential LDP protocol for selection.

23
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Theorem 7. Let α, β ∈ (0, 1], 1−β = Ω(1). Let X = {0, 1}d. There is a sequential ε-LDP protocol

M : Xn → [d] such that, given a dataset X ∈ Xn, of size

n = O

(
d log(1/β)

α2ε2

)
drawn i.i.d. from an unknown distribution µ on {0, 1}d with mean vector (m1, . . . ,md), the output

Z = M(X) of the protocol satisfies

mZ ≥ max
j∈[d]

mj − α

with probability at least 1− β.

4.2 Interactive selection lower bound

For a decision problem in the distributed setting which takes a random dataset X ∈ Xn as input,

the minimum mutual information I
(
X ; TM(X)

)
required of a protocol M which decides the

problem with high probability is known as its information complexity. Lower bounds on information

complexity are of interest in communication theory because I
(
X ; TM(X)

)
provides a lower bound

on the entropy H
(
TM(X)

)
, which is itself a lower bound on the length |TM(X)| of the transcript.

From our point of view, information complexity lower bounds are useful because they may be

combined with the mutual information upper bound of Lemma 1 which says that, when TM is the

transcript of an ε-LDP protocol, then I
(
X ; TM(X)

)
= O(n · ε). In other words,

n = Ω

(
1

ε · I
(
X ; TM(X)

)) .

The task for which we obtain lower bounds against LDP is the selection problem. For this prob-

lem, each local agent i holds a data point Xi drawn independently from an underlying distribution

λ on {0, 1}d with mean vector (m1, . . . ,md), and the goal of the protocol is to identify a coordinate

Z ∈ [d] which satisfies

mZ ≥ max
j∈[d]

mj − α (4.2)

where α > 0 is the accuracy parameter.

Meanwhile, communication theory’s two-party set disjointness problem gives players Alice and

Bob respective binary strings A ∈ {0, 1}d and B ∈ {0, 1}d, each being the indicator vector of a

subset of [d]. The players exchange bits according to a communication protocol to decide whether

the sets are disjoint. In other words, they should return True if and only if ̸ ∃j ∈ [d], Aj ∧ Bj .

Deriving our lower bound for selection involves showing that an LDP protocol for selection gives us

a protocol for set disjointness with roughly the same information cost.

Proof of Theorem 6. Suppose we have an ε-LDP protocol M for n agents which solves selection with

accuracy α. Let us construct from M a 2-party communication protocol M′ for set-disjointness.

Each agent in the local protocol is assigned uniformly at random to one of the players Alice and

Bob who will communicate by following the local protocol. In particular, if agent i is assigned to

Alice, then Alice simulates agent i with input A. Similarly, Bob simulates his assigned agents with

his own input B. In this way, the local protocol being simulated receives inputs drawn i.i.d. from



CHAPTER 4. LOWER BOUNDS AGAINST LDP FROM INFORMATION-COMPLEXITY LOWER BOUNDS 25

the two-point uniform distribution on {A,B}, which we denote by λ. Let µ be the mean of λ. Then,

since Aj ∧Bj is equivalent to µj = 1 while ¬(Aj ∧Bj) is equivalent to µj ≤ 1/2, it suffices to achieve

(4.2) with α = 1/8. Knowing j, then Alice and Bob may exchange Aj and Bj and output True

precisely when ¬(Aj ∧Bj).

In this construction, Alice’s and Bob’s transcript T ′
M follows the transcript TM of the local

protocol and then exchanges two additional bits, Aj and Bj . If we suppose that A,B ∈ {0, 1}d are

jointly distributed random variables, the local protocol is being simulated on the datasetX consisting

of rows drawn i.i.d. from the uniform distribution on {a, b}, conditional on (A,B) = (a, b), then

I ( T ′
M(A,B) ; (A,B) ) ≤ I

(
TM(X) ; (A,B)

)
+ 2

≤ I
(
TM(X) ; X

)
+ 2. (4.3)

The first inequality from the fact that, since T ′
M(A,B) is TM(A,B) together with two additional

bits, their entropies satisfy the inequality H(T ′
M(A,B)) ≤ H(TM(A,B))+2. The second inequality

follows from the data processing inequality for mutual information, given that TM(X) is independent

of (S, T ), conditional on X.

If M is a compositional protocol, then Lemma 1 implies

I
(
X ; TM(X)

)
= O(n · ε2). (4.4)

If M is not compositional, then Lemma 1 says instead

I
(
X ; TM(X)

)
= O(n · ε). (4.5)

Meanwhile, by the information-complexity lower bound for set disjointness [BJKS04], there exist

jointly distributed random variables A and B from {0, 1}d such that

I ( (A,B) ; T ′
M(A,B) ) = Ω(d) (4.6)

for all 2-party communication protocols M′ which solve set-disjointness.

Combining (4.3), and (4.6) with (4.4) dependening on whether M is compositional, gives a

sample-complexity lower bound of

n = Ω

(
d

ε2

)
for solving selection with accuracy α = 1/8 in the compositional case. If M is not compositional,

the using (4.5) in place of (4.4) gives instead

n = Ω

(
d

ε

)
.

This argument may be generalized to obtain a lower bound which scales with the accuracy

parameter. To do so, we use a simple trick which allows accuracy to be traded for privacy. Suppose

we have an ε-LDP protocol M : Xn → [d] which solves selection with accuracy α ∈ (0, 1/8]. From

M, we construct the protocol M′ : Xn → [d] in the following way. Each agent i ∈ [n], independently

with probability 1− η, follows the original protocol as if their data point was 0; with probability η,
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they follow the protocol as usual with their data point Xi. By Lemma 5.5 of [BS15] the protocol

M′ is ηε-LDP. We can also see that, if X
′
is a data set obtained from X by replacing each data

point with 0 indepedently with probability 1− η, then X
′
effectively consists of i.i.d. samples from

{0, 1}d with mean (m′
1, . . . ,m

′
d) = (ηm1, . . . , ηmd). We have M′(x) = M(x′). Since M solves the

selection problem with accuracy α, then, with probability 1− β, its output Z ∈ [d] satisfies

m′
Z ≥ max

j∈[d]
m′

j − α.

In other words,

ηmZ ≥ max
j∈[d]

ηmj − α

or

mZ ≥ max
j∈[d]

mj − α/η.

Hence, M′ solves selection with accuracy α/η. By taking η = 8α, then M′ is an 8αε-LDP protocol

which solves selection with accuracy 1/8. Applying our previous lower bound to M′ gives

n = Ω

(
d

α2ε2

)
when M is compositional. If M is not compositional, we obtain instead the lower bound

n = Ω

(
d

αε

)
.

4.3 Sequential selection upper bound

We give an upper bound, Theorem 7, for the selection problem under sequential ε-LDP, which agrees

with the lower bound (4.1). This result relies on the multi-armed bandit strategy of [AB10]. In

particular we use their ‘pseudo-regret’ bound for what they refer to as the ‘stochastic adversary.’

Proof of Theorem 7. Let λ be a distribution over {0, 1}d with mean vector (m1, . . . ,md). Consider

the dataset X = (X1, . . . , Xn) with entries drawn i.i.d. from λ. For i ∈ [n], j ∈ [d], let Wi,j be the

result of applying randomized response to Xi,j according to[
Pr(Wi,j = 0 | Xi,j = 0) Pr(Wi,j = +1 | Xi,j = 0)

Pr(Wi,j = 0 | Xi,j = 1) Pr(Wi,j = 1 | Xi,j = 1)

]
=

[
eε

1+eε
1

1+eε

1
1+eε

eε

1+eε

]
.

For any single chosen value of j ∈ [d], releasing Wi,j is ε-DP as a function of the data point Xi.

We consider a local protocol which, on step i, selects an index Ji ∈ [d] and has agent i report

Wi,Ji . In particular, we apply the result of [AB10] to obtain a strategy for the choices Ji satisfying

max
j0∈[d]

E

∑
i∈[n]

W
(i)
j0

−
∑
i∈[n]

W
(i)
Ji

 ≤ 25
√
nd (4.7)
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where expectation is taken with respect to both the randomness of each Ji as well as of each Wi,j .

This inequality bounds the pseudo-regret, namely the difference between the expected reward of our

choices Jt and the expected reward of a single choice of j0 ∈ [d] which performs as well as possible

over all rounds.

Note that

E [2Wi,j − 1] =

(
eε − 1

eε + 1

)
· E [2Xi,j − 1]

E [2Wi,j − 1] =

(
eε − 1

eε + 1

)
· E [2Xi,Ji

− 1].

so, substituting into (4.7), we get

max
j0∈[d]

E

∑
i∈[n]

Xi,j0 −
∑
i∈[n]

Xi,Ji

 ≤ 25

(
eε + 1

eε − 1

)√
nd.

In other words,

max
j0∈[d]

∑
i∈[n]

(
mj0 − E

Ji

[mJi
]

) ≤ 25

(
eε + 1

eε − 1

)√
nd. (4.8)

When

max
j0∈[n]

 1

n

∑
i∈[n]

I
[
mj0 − E

Ji

[mJi
] ≥ κ

] ≥ β,

then

max
j0∈[d]

∑
i∈[n]

(
mj0 − E

Ji

[mJi
]

) ≥ nβκ.

By (4.8), this implies nκβ < 25
(

eε+1
eε−1

√
nd
)
, or equivalently

n ≤
625

(
eε+1
eε−1

)2
d

κ2β2
.

Conversely, when

n >
625

(
eε+1
eε−1

)2
d

κ2β2
, (4.9)

which we assume from now on, then

max
j0∈[n]

 1

n

∑
i∈[n]

I
[
mj0 − E

Ji

[mJi
] ≥ κ

] < β.

Let jmax be the value of j0 which witness the maximum above. For values i ∈ [n] where

mjmax
− E

Ji

[mJi
] < κ,
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then, by the non-negativity of mjmax −mj for all j ∈ [d], we may apply Markov’s inequality to obtain

P
Ji

[mjmax −mJi ≥ kκ, ] ≤ 1

k

for k ≥ 1. Taking k = 1/β and κ = αβ gives

P
Ji

[mjmax
−mJi

≥ α] ≤ β

This motivates us to consider the algorithm which, after running the bandits process, selects T ∈ [n]

uniformly at random, and then returns JT . Our previous calculations show

P
T,JT

[mjmax
−mJT

< α] ≥ (1− β)2 ≥ 1− 2β.

By (4.9), this is achieved with the number of samples being at most

n = O

625
(

eε+1
eε−1

)2
d

α2β2

 = O

(
d

α2ε2β2

)
.

We can improve the dependence on β by applying this selection process r = O(log(1/β′)) times

with β = 1
2 . A Chernoff bound allows us to guarantee with probability at least 1− β′ that at least

one repitition of the selection algorithm returns an index j ∈ [d] which satisfies mjmax
− mj < α.

We may estimate mj for each of the r choices of j within α/2 with probability at least 1− β′ using

O

(
r log(1/β)

ε2α2

)
= Õ

(
log( 1β )

ε2α2

)

samples. This will allow us to identify some j ∈ [d] which satisfies mjmax −mj < 2α.

In total, this algorithm requires at most

n′ = O

(
d log(1/β′)

α2ε2

)
+ Õ

(
log( 1β )

ε2α2

)
= O

(
d log(1/β′)

α2ε2

)

samples.



Chapter 5

Characterization of statistical

query release under non-interactive

LDP

5.1 Overview

In this chapter, we characterize the number of samples required to answer a workload of statistical

queries (also called linear queries) [Kea93] under non-interactive local differential privacy.

The simplest example of a statistical query is “What fraction of individuals in the data have

property P?” Workloads of statistical queries capture a variety of statistical tasks: computing his-

tograms and PDFs, answering range queries and computing CDFs, estimating the mean, computing

correlations and higher-order marginals, and estimating the risk of a classifier.

The power of differentially private algorithms for answering a worst-case workload of statistical

queries is well understood [BUV14, DJW18], and known bounds are essentially tight as a function of

the data set size, the data domain, and the size of the workload. However, many workloads, such as

those corresponding to computing PDFs or CDFs, have additional structure that makes it possible

to answer them with less error than these worst-case workloads. Thus, a central question is

Can we characterize the amount of error required to estimate a given workload of statis-

tical queries subject to differential privacy in terms of natural properties of the workload,

and can we achieve this error via computationally efficient algorithms?

In the central model, there has been dramatic progress on this question [HT10, BDKT12, NTZ16,

Nik15, BBNS19], giving approximate characterizations for every workload of statistical queries. We

extend this line of work by giving the first approximate characterization for the non-interactive local

model of differential privacy [DMNS06, KLN+08]. This result is also much sharper than analogous

results for the central model of differential privacy. In particular, we give a generalization of the natu-

ral and well studied factorization mechanism. We show our variant, called approximate factorization

mechanism to be nearly optimal. Factorization mechanisms capture a number of special-purpose

mechanisms from the theory literature [BCD+07, DNPR10, CSS11, TUV12, CTUW14], were in-

volved in previous characterizations, and also roughly capture the matrix mechanisms [LHR+10,

29
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MMHM18] from the databases literature, which have been developed into practical algorithms for

US Census Data.

To answer an arbitrary workload Q ⊆ [−1, 1]X , represented by its workload matrix W ∈
[−1, 1]Q×X with entries wq,x = q(x), we consider a factorization W = RA of the workload ma-

trix. The local randomizer of [BBNS19] satisfies ‘pure’ ε-DP while granting similar concentration

properties to the Gaussian mechanism, which satisfies merely ‘approximate’ (ε, δ)-LDP. Using this

local randomizer to answer the workload of queries given by the matrix A allows us to obtain Ah+G

under non-interactive LDP, where G is some random noise. Multiplying by R reconstructs an ap-

proximation RAh + RG = Wh + RG to the original workload. The number of samples which this

procedure requires to achieve given accuracy and privacy parameters is affected by the choice of

A since it represents the initial workload being answered. The number of required samples also

depends on the choice of R, since it determines how the noise G is scaled. In particular, we will see

that this approach allows a workload Q of size k = |Q| to be answered under ε-LDP with accuracy

α using n samples where

n = O

(
∥R∥22→∞∥A∥21→2 log k

ε2α2

)
.

Optimizing for the choice of R and A gives the sample complexity bound

n = O

(
γ2(W )2 log k

ε2α2

)
where

γ2(W ) = min{∥R∥2→∞∥A∥1→2 : W = RA}.

This approach, called the factorization mechanism, was discovered in [LHR+10]. We give it a slight

generalization here. In particular, for any matrix W̃ satisfying ∥W̃ − W | ≤ α, answering W̃ with

accuracy α gives answers of accuracy 2α for W . Our approximate factorization mechanism optimizes

for the choice of W̃ and applies the factorization mechanism to W̃ rather than W , to give a sample-

complexity upper bound in terms of

γ2(W,α) = min{γ2(W̃ ) : ∥W − W̃∥1→∞ ≤ α/2}.

This leads to the following result.

Theorem 8 (Approximate Factorization Mechanism). There exists an ε-LDP mechanism Mγ2 such

that, for any workload Q ⊆ [−1, 1]X of size |Q| = k, with workload matrix W ∈ [−1, 1]Q×X , we have

sc(Mloc
γ2,α, Q, α) = O

(
γ2(W,α/2)2 log k

ε2α2

)
,

and the mechanism runs in time which is polynomial in n, k, and |X |.

The focus of this chapter will be in showing that this mechanism is nearly optimal among all

non-interactive locally differentially private mechanisms. The following result an informal version of

our main lower bound which hides some technicalities.

Theorem 9 (Informal). Let α, ε,> 0 be smaller than some absolute constants and let Q be a
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workload of statistical queries with workload matrix W . Then, for some α′ = Ω(α/ log(1/α)),

scℓ∞ε-LDP(Q,α′) = Ω

(
γ2(W,α/2)2

ε2α2

)
.

To interpret the theorem, it helps to start by imagining that γ2(W,α′/2) = γ2(W,α/2), in which

case the theorem would show that the sample complexity of answering queries up to error α′ is

Ω

(
γ2(W,α′/2)2

ε2α2

)
,

which differs from the sample complexity of the approximate factorization mechanism, given in

Theorem 23, by a factor of just O(log(1/α′)2 log |Q|). The fact that we take α′ < α means that

γ2(W,α/2) can be much smaller than γ2(W,α′/2).1 Nevertheless, for many natural families of queries

and choices of α, γ2(W,α/2) will be relatively stable to small changes in α, in which case our lower

bound will be tight up to this O(log(1/α)2 log |Q|) factor. In contrast, existing characterizations for

the central model [HT10, BDKT12, NTZ16, Nik15, BBNS19] lose a poly(1/α) factor, or else they

lose a polylog|X | factor that is typically large.

Remark 10. Our proof of Theorem 9, in fact, shows that the lower bound holds in the distributional

setting where X is sampled i.i.d. from an unknown distribution µ, and the goal is to estimate the

quantity q(µ) = E
X∼µ

[q(X)] for every query q ∈ Q up to error at most α.

Using Theorem 9, we obtain new lower bounds for three well studied families of queries:

1. Threshold queries, which are also known as range queries, and equivalent to computing the

CDF of the data.

2. Parity queries, which capture the covariance and higher-order moments of the data.

3. Marginal queries, also known as conjunctions, which capture the marginal distribution on

subsets of the attributes.

The research represented by this chapter was originally originally published in [ENU19], and is

joint work with Aleksandar Nikolov and Jonathan Ullman.

5.2 Upper bound

Here we give details of the approximate factorization mechanism, which was sketched in the intro-

duction. We derive sample-complexity characterizations in terms of the factorization norm

γ̂2(W,α) = min{γ2(Ŵ , α) : Ŵ = W + c1T , c ∈ Rk}, (5.1)

where 1T is the horizontal all-ones vector of length k so that Ŵ = W + c1T is obtained by shifting

each row q of W by a distinct constant cq. The factorization norm γ2(Ŵ , α) is given by

γ2(Ŵ , α) = min{γ2(W̃ ) : ∥Ŵ − W̃∥1→∞ ≤ α}, (5.2)

1For example, if every entry of W is at most α in absolute value, then γ2(W,α) = 0 whereas γ2(W,α′) can be
arbitrarily large for α′ < α, but this behavior typically does not happen for “non-trivial” values of α.
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where

γ2(W̃ ) = min{∥R∥2→∞∥A∥1→2 : W̃ = RA}. (5.3)

Matrices Ŵ , W̃ , R, and A achieving the minimum to any degree of accuracy can be computed in

polynomial time via semidefinite programming, as shown in [LS09]. Although we initially derive

upper and lower bounds for answering the queries associated with W in terms of γ̂2(W,α), we will

ultimately translate these upper and lower bounds so that they are expressed in terms of γ2(W,α).

This is achieved by noting that γ̂2(W,α) and γ2(W,α) are approximately equal when the queries

associated with W are bound, which is to say W ∈ [−1, 1]Q,X .

Our main positive result shows that the sample complexity of the corresponding approximate

factorization mechanism is bounded above by the approximate γ2 norm. As sketched in the in-

troduction, this can be achieved via a local version of the Gaussian noise mechanism, which can

then be transformed into a purely private mechanism using the results of [BNS18]. This gives a

slightly suboptimal bound however, so instead we use the local randomizer from [BBNS19], which

is a variant of a local randomizer from [DJW18]. The relevant properties of this local randomizer

are captured by the next lemma. We recall that a random variable Z over R is σ-subgaussian if

E exp(Z2/σ2) ≤ 2, and a random variable Z over Rd is σ-subgaussian if θ⊤Z is σ-subgaussian for

every vector θ such that ∥θ∥2 = 1.

Lemma 11 ([BBNS19]). There exists an ε-DP mechanism M which takes as input a single data

point x ∈ Rd such that ∥x∥2 ≤ 1, and outputs a random Yx := M(x) ∈ Rd such that

1. Yx can be sampled in time polynomial in d on input x,

2. E [Yx] = x,

3. Yx − x is σ-subgaussian with σ = O(ε−1).

Given this local randomizer, and approximate factorizations, we are ready to prove our upper

bound.

Theorem 12 (Approximate Factorization Mechanism). There exists an ε-LDP mechanism Mγ̂2

such that, for any k statistical queries Q with workload matrix W , we have

scℓ∞(Mγ̂2
, Q, α) = O

(
γ̂2(W,α/2)2 log k

ε2α2

)
,

and the mechanism runs in time polynomial in n, k, and |X |.

Proof. Let Ŵ , W̃ , R and A witness (5.1), (5.2) and (5.3) so that Ŵ = W + c1T for some c ∈ Rk,

W̃ ≤ α/2, W = RA, and ∥R∥2→∞∥A∥1→2 = γ̂2(W,α). Without loss of generality, we may assume

∥A∥1→2 = 1 and ∥R∥2→∞ = γ̂2(W,α) since tR and A/t are valid witnesses whenever R and A are.

Moreover, Ŵ , W̃ , R and A can be computed in polynomial time via semidefinite programming, as

noted above.

Let x = (x1, . . . , xn) be the data set, and let h be its histogram. Each agent i holds a data point

xi, and the histogram for the single point data set containing xi is hi := exi , i.e. the standard basis

vector of RX corresponding to xi. Agent i releases Mi(xi) according to the local randomizer of
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Lemma 11. Then Y = 1
n

∑n
i=1 Mi(xi) has expectation

1

n

n∑
i=1

Ahi =
1

n
A

n∑
i=1

hi =
1

n
Ah.

Moreover, since Y − 1
nAh = 1

n

∑n
i=1 (YAhi

−Ahi) is the average of n independent σ-subgaussian

random variables, where σ = O(ε−1) is as in Lemma 11, Y − 1
nAh is O

(
σ√
n

)
-subgaussian (see

e.g. [Ver18, Proposition 2.6.1.]).

Post-processing Y by our reconstruction matrix R gives an approximation of Wh = RAh. In

particular,

E [RY ] = RAh =
1

n
W̃h.

Since ∥W̃ − Ŵ∥∞ ≤ α/2, then∥∥∥∥E[RY ]− 1

n
Ŵh

∥∥∥∥
∞

=
1

n
∥(W̃ − Ŵ )h∥∞ ≤ 1

n
∥W̃ − Ŵ∥1→∞∥h∥1 ≤ α

2
. (5.4)

Every coordinate of R(Y − 1
nAh) = RY − E[RY ] is the inner product of Y − 1

nAh and a row

of R, the latter having ℓ2 norm at most ∥R∥2→∞. Since Y − 1
nAh is O

(
σ√
n

)
-subgaussian, every

coordinate (RY −E[RY ])q for every q ∈ Q, is O
(

σ∥R∥2→∞√
n

)
-subgaussian. It is then a standard fact

(see e.g. [Ver18, Exercise 2.5.10]) that

E∥RY − E[RY ]∥∞ = O

(
σ∥R∥2→∞

√
log k√

n

)
= O

(
γ̂2(W,α)

√
log k

ε
√
n

)
.

Combining with (5.4), and applying the triangle inequality, we get

E∥RY − Ŵh∥∞ ≤ ∥E[RY ]− 1
nŴh∥∞ + E∥RY − E[RY ]∥∞

=
α

2
+O

(
γ̂2(W,α/2)

√
log k

ε
√
n

)
.

The number of samples n is chosen so that the second term is at most α
2 .

The final output of our mechanism is obtained by post-processing RY to reverse the row trans-

lations by which Ŵ was obtained from W . In particular, define

M(x) = RY − c1T .

Then,

E∥M(x)−Wh∥∞ = E∥(RY − c1T )− (Ŵh− c1T )∥∞ = E∥RY − Ŵh∥∞ ≤ α.

5.3 Lower bound

In this section, we present our lower bound against answering statistical queries under non-interactive

LDP. For notational convenience, we will assume that the queries in our workload are enumerated,

so that Q = {q1, . . . , qk}. Our lower bound will rely on constructing, for each query qv, a pair of
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‘hard’ distributions λv and µv on X . Together with these, we construct a parameter distribution π

on [k].

5.3.1 Application KL-divergence bound

We approach the task of showing that λ1, . . . , λk and µ1, . . . , µk are hard distributions for Q in

two steps. First, we wish to argue that being able to estimate Q on the distributions λ1, . . . , λk

and µ1, . . . , µk enables us, for each v ∈ [k], to distinguish between λn
v and µn

v . Second, we show

a lower bound on the number of samples required of a non-interactive LDP mechanism which is

able to perform such a distinguishing task. The second of these objectives is shown by way of our

KL-divergence bound, Lemma 2.

Being able to distinguish, for all v ∈ [k], between TM(λn
v ) and TM(µn

v ) with probability 1
2 +Ω(1)

implies

dTV(λ
n
v , µ

n
v ) = Ω(1),

from which it follows by Pinsker’s inequality that

DKL(TM(λn
v )∥TM(µn

v )) ≥ Ω(1).

Together with Lemma 2, this would imply

n = Ω

(
1

ε2 · ∥M∥2ℓ∞→L2(π)

)

where M ∈ C ×X is the matrix with entries mc,x = λc(x)− µc(x). For this reason, our goal will be

to define our distributions so that that ∥M∥2ℓ∞→L2(π)
is small while still meeting the requirement

that estimating the queries Q allows us to distinguish between λn
v and µn

v for all v ∈ [k].

It is worth noting that Lemma 2 is not known to hold when the protocol is allowed to be

sequential. Indeed, this is the bottleneck in generalizing our lower bound to the case of sequential

local privacy. If Lemma 2 were to hold for sequential LDP, then our lower bound would apply to

that setting. Alternatively, it may be possible to generalize our result to the interactive setting by

taking advantage of the closely related KL-divergence bound of Lemma 3. Applying this result would

rely on modifying our construction of the hard distributions to make each of the distributions µq

identical, while the distributions λq would still be allowed to be distinct. See the proof of Lemma 2

for further discussion of the technical barriers involved in generalizing this result of to the interactive

setting.

5.3.2 Duality for γ̂2(W,α)

Recall that our goal is to prove a lower bound on the sample complexity of mechanisms in the local

model in terms of the approximate γ2 norm. We will do so via Lemma 2, and the distributions

{λ1, . . . , λk} and {µ1, . . . , µk} will serve as a certificate of a lower bound on the sample complexity.

On the other hand, convex duality can certify a lower bound on the approximate γ2 norm. In the

proof of our lower bounds, we will show that these dual certificates for which the approximate γ2

norm is large can be turned into hard families of distributions to use in Lemma 2.
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The key duality statement follows. Its derivation will closely follow the derivation of the dual

of γ2(W,α) which was given in [LS09] for the special case when W has entries in {−1, 1}.2 See

Lemma 32 for the dual of γ2(W,α).

Lemma 13. For W ∈ Rk×T and α > 0,

γ2(W,α) = max

{
W • U − α∥U∥1

γ∗
2(U)

: U ∈ Rk×T , U ̸= 0, ∀q ∈ Q,
∑
x∈X

uq,x = 0

}
,

where γ∗
2 is the dual norm to γ2 given by

γ∗
2 (U) = max{U • V : V ∈ Rk×T , γ2(V ) ≤ 1}

= max
a1,...,ak
b1,...,bT

k∑
i=1

T∑
j=1

ui,ja
⊤
i bj ,

where a1, . . . , ak and b1, . . . , bT range over vectors with unit ℓ2 norm in Rk+T .

Proof of Lemma 13. Consider an arbitrary non-zero matrix U ∈ Rk×T satisfying∑
x∈[T ]

uv,x = 0.

By definition of γ̂2(W,α), there exists some c ∈ Rk such that Ŵ = W + c1T achieves γ̂2(W,α) =

γ2(Ŵ , α), and there also exists a matrix W̃ satisfying ∥Ŵ − W̃∥1→∞ ≤ α such that γ2(Ŵ , α) =

γ2(W̃ ). It follows that

W • U = Ŵ • U − c1T • U

= Ŵ • U (5.5)

= W̃ • U + (Ŵ − W̃ ) • U

≤ γ2(W̃ )γ∗
2(U) + ∥Ŵ − W̃∥1→∞∥U∥1 (5.6)

≤ γ2(Ŵ , α)γ∗
2(U) + α∥U∥1

= γ̂2(W,α)γ∗
2 (U) + α∥U∥1.

Equality (5.5) follows from the fact that the each row of U sums to zero since this implies c1T •U = 0.

Inequality (5.6) follows by the trivial case of Hölder’s inequality, and the definition of γ∗
2 . Rearranging

gives

γ̂2(W,α) ≥ W • U − α∥U∥1
γ∗
2(U)

.

Taking the supremum over all choices of U gives

γ̂2(W,α) ≥ sup

W • U − α∥U∥1
γ∗
2 (U)

: U ∈ Rk×T , U ̸= 0,
∑
x∈[T ]

uv,x = 0

 .

Let us now show that this inequality in the other direction. We do so by showing that, for t ≥ 0,

2Note that in [LS09], Linial and Shraibman use the notation γα
2 (W ) = inf{γ2(W̃ ) : 1 ≤ w̃ijwij ≤ α ∀i, j}. For

sign matrices W , this is equal to α+1
2

γ2(W, (α− 1)/(α+ 1)) in our notation.
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if γ̂2(W,α) > t, then there exists some non-zero U ∈ Rk×T with entries satisfying
∑

x∈[T ] uv,x = 0

such that W•U−α∥U∥1

γ∗
2 (U) > t. Let

S = {B ∈ Rk×T : γ2(B) ≤ t}

and

T = {B ∈ Rk×T : ∃c ∈ Rk, ∥W − (B − c1T )∥1→∞ ≤ α}.

Then γ2(W,α) > t equivalently means S ∩ T = ∅. Since both S and T are convex and compact,

and S ∩ T = ∅, the hyperplane separator theorem [Roc97, Corollary 11.4.2] implies that there is a

hyperplane separating them, i.e. there is a matrix U ∈ Rk×T \ {0} such that

max{B • U : B ∈ S} < min{B • U : B ∈ T}. (5.7)

The left-hand side equals tγ∗
2 (U), by definition. The right-hand side equals

min{B • U : B ∈ T}

= min{(B′ + c1T ) • U : c ∈ Rk, B′ ∈ Rk×T , ∥W −B′∥1→∞ ≤ α}

= min{W • U − (W −B′) • U + c1T • U : c ∈ Rk, B′ ∈ Rk×T , ∥W −B′∥1→∞ ≤ α}

= W • U −max{(W −B′) • U : B′ ∈ Rk×T , ∥W −B′∥1→∞ ≤ α}+min{c1T • U : c ∈ Rk}

= W • U − α∥U∥1 +min{c1T • U : c ∈ Rk}

where the last equality again uses the trivial case of Hölder’s inequality. In short, (C.1) implies

tγ∗
2(U) < W • U − α∥U∥1 +min{c1T • U : c ∈ Rk}.

This inequality implies that the entries of U satisfy
∑

x∈[T ] uv,x = 0 since otherwise

min{c1T • U : c ∈ Rk} = −∞,

which would contradict the fact that the left-hand side is non-negative. It follows that c1T • U = 0

for all c ∈ Rk, and hence

tγ∗
2(U) < W • U − α∥U∥1.

Therefore, (C.1) is equivalent to tγ∗
2 (U) < W • U − ∥U∥1. We have shown, for all t ≥ 0,

that, whenever γ̂2(W,α) > t, then there exists some non-zero U ∈ Rk×T with entries satisfying∑
x∈[T ] uv,x = 0 such that W•U−α∥U∥1

γ∗
2 (U) > t. Since γ̂2(W,α) ≥ 0, this implies

γ̂2(W,α) ≤ sup

W • U − α∥U∥1
γ∗
2 (U)

: U ∈ Rk×T , U ̸= 0,
∑
x∈[T ]

uv,x = 0

 .

The expression

γ∗
2 (U) = max

k∑
i=1

T∑
j=1

ui,ja
⊤
i bj ,
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with the max over unit vectors a1, . . . ak and b1, . . . , bT can be easily formulated as a semidefinite

program, and, in fact, is exactly the semidefinite program that appears in Grothendieck’s inequality

(see, e.g., [KN12, Pis12]). It is straightforward to check (just take all the ai and bj co-linear) that

γ∗
2 (U) ≥ max{y⊤Uz : y ∈ {−1, 1}m, z ∈ {−1, 1}N} = ∥U∥∞→1. (5.8)

Moreover, Grothendieck showed that this inequality is always tight up to a universal constant [Gro53],

although this fact will not be used here. Instead, we will need the following lemma, which can be

derived from SDP duality, and is also due to Grothendieck. For a proof using the Hahn-Banach

theorem, see [Pis12].

Lemma 14 ([Gro53]). For any k×T matrix U , γ∗
2(U) ≤ t if and only if there exist diagonal matrices

P ∈ Rk×k and Q ∈ RT×T , and a matrix Ũ ∈ Rk×T such that Tr(P 2) = Tr(Q2) = 1, U = PŨQ, and

∥Ũ∥2→2 ≤ t.

By (5.8), the γ∗
2 (·) norm is an upper bound on the ∥ · ∥∞→1 norm. We use Lemma 14 to show

a similar upper bound on the ∥ · ∥∞→2, which allows projecting out some of the rows of the matrix,

but is quantitatively stronger. The reason we are interested in the ∥ · ∥∞→2 norm is that this is the

norm that appears in the statement of Lemma 2.

Lemma 15. For any matrix U ∈ Rk×T , there exists a set S ⊆ [k] of size |S| ≥ k
2 such that√

k
2∥πSU∥∞→2 ≤ γ∗

2(U), where πS is the projection onto the subspace RS.

The next lemma slightly strengthens Lemma 15 to allow for weights on the rows of the matrix.

This is the key fact about the γ∗
2 norm that we need for our lower bounds.

Lemma 16. Let U and M be k × T matrices, and let π be a probability distribution on [k] where,

for any i ∈ [k], j ∈ [T ], we have ui,j = π(i)mi,j. Then there exists a probability distribution π̂ on

[k], with support contained in the support of π, such that ∥M∥ℓ∞→L2(π̂) ≤ 4γ∗
2(U).

Lemmas 15 and 16 are proved in Appendix B.1.

5.3.3 Construction of hard distributions based on dual solution

In this section we put together the different tools we have already set up – the KL-divergence lower

bound, and the duality of the approximate γ2 norm – in order to prove our main lower bound,

Theorem 9.

For this section, it is convenient to consider the enumeration q1, . . . , qk of the queries of a workload

Q with workload matrix W ∈ R[k]×X . Let U ∈ Rk×T be the dual witness to the lower bound on

γ2(W,α), as given by Lemma 13, so that

γ̂2(W,α) =
W • U − α∥U∥1

γ∗
2(U)

(5.9)

while each row v ∈ [k] of U has entries with sum
∑

x∈X uv,x = 0. By dividing each entry of U by

∥U∥1 if necessary, then we may assume without loss of generality that ∥U∥1 = 1. In this case,

γ̂2(W,α) =
W • U − α

γ∗
2(U)

. (5.10)
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Let us make a first attempt at constructing our collection of ‘hard’ distributions λ1, . . . , λk and

µ1, . . . , µk for Q. Since ∥U∥1 = 1, then

π(v) =
∑
x∈X

|uv,x| (5.11)

defines a valid probability distribution over [k]. For each v ∈ [k], we then define a pair of distributions

λv and µv given, for x ∈ X , by

λv(x) =

2|uv,x|/π(v) if uv,x ≥ 0

0 otherwise

µv(x) =

2|uv,x|/π(v) if uv,x ≤ 0

0 otherwise
(5.12)

In particular, each λv is defined by the positive entries of row v of U while each µv is defined by the

negative entries of row v of U . Since ∥U∥1 = 1 while each row of U sums to zero, these define valid

probability distributions on X .

Moreover,

W • U = E
V∼π

[qV (λV )− qV (µV )].

If γ̂2 is positive, then the numerator in its dual formulation (5.10) must be positive. Hence W •U > 0

and thereby

E
V∼π

[qV (λV )− qV (µV )] ≥ α.

Suppose, instead of holding on average over V ∼ π, this inequality were to hold in the worst case

over all v ∈ [k], so that

qv(λv)− qv(µv) ≥ α.

This implies that a mechanism M answering qv with accuracy α/4 would have to output different

answers for λv versus µv. Doing so with probability Ω(1) would imply

DKL(TM(λn
v )∥TM(µn

v )) ≥ Ω(1).

Taking the expectation with respect to π gives

E
V∼π

[DKL(TM(λn
V )∥TM(µn

V ))] ≥ Ω(1).

This inequality may be combined with the KL-divergence bound of Lemma 2 to obtain a sample-

complexity lower bound. The following result modifies our distributions in a way that resolves this

issue. This result also introduces scaling byW •U/α which ultimately will have the effect of removing

the dependence on W • U/α in our lower bound.

Lemma 17. Let Q be a collection of queries with workload matrix W ∈ R[k]×X . Let U ∈ R[k]×X be

the dual witness so that (6.2) is satisfied. Then there exist probability distributions λ̃1, . . . , λ̃k and

µ̃1, . . . , µ̃k over X , and a distribution π̃ over [k] such that:
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1. for all v in the support of π̃, qv(λ̃v)− qv(µ̃v) ≥ α
O(log(1/α)) ;

2. the matrix Ũ ∈ R[Q]×X with entries ũv,x = π̃(v)(λ̃v(x)− µ̃v(x)) satisfies γ∗
2 (Ũ) ≤ αγ∗

2 (U)
W•U .

The proof of Lemma 17 will take advantage of the following exponential binning lemma.

Lemma 18. Suppose that a1, . . . , ak ∈ [0, 1] and that π is a probability distribution over [k]. Then

for any β ∈ (0, 1], there exists a set S ⊆ [k] such that π(S) ·minv∈S av ≥
∑k

v=1 π(v)av−β

O(log(1/β)) .

Proof. Let Sℓ = {v : 2−ℓ−1 < av ≤ 2−ℓ} for ℓ ∈ {0, . . . , L}, where L = log2(1/β) − 1, and let

S∞ = {v : av ≤ β}. Then, because
∑

v∈S∞
π(v)av ≤ β, we have

L∑
ℓ=1

∑
v∈Sℓ

π(v)av ≥
k∑

v=1

π(v)av − β.

Therefore, there exists ℓ such that

∑
v∈Sℓ

π(v)av ≥
∑m

v=1 π(v)av − β

L
.

The lemma now follows by taking S = Sℓ, since minv∈Sℓ
av ≥ 1

2 maxv∈Sℓ
av.

Proof of Lemma 17. Let λ1, . . . , λk, µ1, . . . , µk, and π be as given by equations (5.11) - (5.12). We

may assume that the dot product of row v of W with row v of U is non negative. Otherwise,

replacing row v of U with its negation would increase the expression for the dual formulation (5.10)

of γ̂2. This implies qv(λv) − qv(µv) ≥ 0 for all v ∈ [k]. Hence, we may apply Lemma 18 with

av = qv(λv)− qv(µv) and β = α/4 to obtain a subset S ⊆ [k] for which

π(S) ·min
v∈S

[qv(λv)− qv(µv)] ≥
E

V∼π
[qv(λv)− qv(µv)]− α/4

O(log(1/α))
=

W • U − α/4

O(log(1/α))
.

Now define π̃ as π conditional on S. In particular,

π̃(v) =

π(v)/π(S), if v ∈ S

0, otherwise.
(5.13)

Let τ = α
W•U . Then, for all v ∈ [k], define λ̃v = λv and µ̃v = τπ(S)µv +(1− τπ(S))λv. This implies

λ̃v − µ̃v = τπ(S) ·
(
λ̃v − µ̃v

)
. (5.14)

Hence,

min
v∈S

[
qv(λ̃v)− qv(µ̃v)

]
= τπ(S) ·min

v∈S
[qv(λv)− qv(µv)] ≥ τ · W • U − α/4

O(log(1/α))
≥ α

O(log(1/α))
,

with the last inequality using the definition of τ and the fact that W • U > α. Furthermore, by
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(5.13) and (5.14), the entries of the matrix Ũ defined by ũv,x = π̃(v)(λ̃v(x)− µ̃v(x)) satisfy

ũv,x =

τuv,x, if v ∈ S

0, otherwise.

In other words, Ũ is obtained from U by replacing some of its rows with the zero-vector. It is easy

to see from the definition of γ∗
2 that this implies γ∗

2 (Ũ) ≤ τγ∗
2 (U).

Consider now the matrix M̃ ∈ R[k]×X with entries m̃v,x = λ̃v(x) − µ̃v(x). Since M̃ is obtained

from the matrix Ũ of Lemma 17 by scaling each row v of Ũ by 1
π(v) , it follows by (5.8) that

∥M̃∥ℓ∞→L1(π̃) = ∥Ũ∥∞→1 ≤ γ∗
2 (Ũ) ≤ αγ∗

2(U)

W • U
.

This is not quite the quantity

∥M̃∥2ℓ∞→L2(π̃)
= max

f∈RX :∥f∥∞≤1
E

V∼π

[(
Ex∼λ̃V

[fx]− Ex∼µ̃V
[fx]
)2]

which Lemma 2 would have us bound. For comparison, note

∥M̃∥ℓ∞→L1(π̃) = max
f∈RX :∥f∥∞≤1

E
V∼π

[∣∣∣∣ E
x∼λ̃V

[fx]]− E
x∼µ̃V

[fx]

∣∣∣∣].
Since the trivial case of Holder’s inequality implies that the L1(π̃) norm is always bounded above

by the L2(π̃) norm, it holds that ∥M̃∥ℓ∞→L1(π̃) ≤ ∥M̃∥ℓ∞→L2(π̃). However, this inequality goes in

the wrong direction for our requirements. This issue is remedied by taking advantage of Lemma 16.

Lemma 19. Let Q be a collection of queries with workload matrix W ∈ R[k]×X . Let U ∈ R[k]×X be

the dual witness so that (6.2) is satisfied. Then there exist probability distributions λ̃1, . . . , λ̃k and

µ̃1, . . . , µ̃k over X , and a distribution π̂ over [k] such that:

1. λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̂ satisfy criteria 1 of Lemma 17;

2. the matrix M̃ with entries m̃v,x = λ̃v(x)− µ̃v(x) satisfies

∥M̃∥ℓ∞→L2(π̂) ≤
4α · γ∗

2(U)

W • U
.

Proof. Let λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ be the distributions guaranteed to exist by Lemma 17, and

let Ũ ∈ R[k]×X be the corresponding matrix with entries ũv,x = π̃(v)(λ̃v(x)− µ̃v(x)). The entries of

the matrix M̃ satisfy π(v)m̃v,x = ũv,x, so we may apply Lemma 16 to obtain a distribution π̂ such

that

∥M̃∥ℓ∞→L2(π̂) ≤ 4γ∗
2 (Ũ) ≤ 4α · γ∗

2 (U)

W • U
.

Lemma 16 further guarantees that the support of π̂ lies within the support of π̃, which together

with the properties of the distributions λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ gives the first condition of our

lemma.
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5.3.4 Lower bound derivation

At last, we have all the components needed to prove our lower bound. First, we give a distributional

lower bound against the problem of estimating the true mean Q(µ). See Section 2.3 for relevant

definitions.

Theorem 20. Let α, ε ∈ (0, 1]. Let Q be a workload of statistical queries with workload matrix

W ∈ R[k]×X . Then, for some α′ = Ω(α/ log(1/α)), we have

dist-scℓ∞ε-NILDP(Q,α′) = Ω

(
γ̂2(W,α)2

ε2α2

)
.

Proof. Let λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̂ be the distributions, and M̃ ∈ R[k]×X the matrix, guaranteed

to exist by Lemma 17.

Lemma 17 guarantees that for all v in the support of π̂,

qv(λ̃v)− qv(µ̃v) ≥
W • U − α/4

O(log(1/α))
.

Let

α′ =
1

16
min
v

[
qv(λ̃v)− qv(µ̃v)

]
.

where the minimum is taken over those v ∈ [k] which lie in the support of π̂. Suppose now that M
is a non-interactive LDP protocol satisfying dist-errℓ∞(M, Q, n) ≤ α′.

For v which lies in the support of π̂, let Sv = {z ∈ Rk : ∥z − Q(λ̃v)∥∞ ≤ 4α′} and let

Tv = {z ∈ Rk : ∥z − Q(µ̃v)∥∞ ≤ 4α′}. By the definition of α′, together with the fact that α′ is

positive, it follows that Sv ∩ Tv = ∅. Furthermore, since dist-errℓ∞(M, Q, n) ≤ α′, we may apply

Markov’s inequality to obtain

P
X∼λ̃n

v

[
M(X) ∈ Sv

]
≥ 3

4

and

P
X∼µ̃n

v

[
M(X) ∈ Tv

]
≥ 3

4
.

The last inequality, together with the disjointness of Sv and Tv, gives

P
X∼µ̃n

v

[
M(X) ∈ Sv

]
≤ P

X∼µ̃n
v

[
M(X) ∈ T c

v

]
≤ 1

4
.

By definition, the total variation between the distribution of M(X) when X ∼ λ̃n
v and the distribu-

tion of M(X) when X ∼ µ̃n
v is at least∣∣∣∣∣ P

X∼λ̃n
v

[
M(X) ∈ Sv

]
− P

X∼µ̃n
v

[
M(X) ∈ Sv

]∣∣∣∣∣ ≥ 1

2
.

Bounding KL-divergence below by total variation, this gives

DKL(TM(λ̃n
v )∥TM(µ̃n

v )) ≥
1

2
. (5.15)



CHAPTER 5. CHARACTERIZATION OF STATISTICAL QUERY RELEASE UNDER NON-INTERACTIVE LDP42

Lemma 19 further guarantees that the the matrix M̃ with entries m̃v,x = λ̃v(x)− µ̃v(x) satisfies

∥M̃∥ℓ∞→L2(π̂) ≤
4α · γ∗

2 (U)

W • U
=

4α

W • U
· W • U − α

γ̂2(W,α)
≤ 4α

γ̂2(W,α)
.

By Lemma 2, this implies

E
V∼π̂

[
DKL(TM(λ̃n

V )∥TM(µ̃n
V ))
]
≤ O(nε2) ·

(
α

γ̂2(W,α)

)2

. (5.16)

By (5.15), the expression under the expectation is bounded below by a constant. Since this is true

of all v in the support of π̂, the bound (7.7) implies

n = Ω

(
γ̂2(W,α)

ε2α2

)
.

We can use uniform convergence to get a lower bound for the case of empirical error.

Theorem 21. Let α, ε ∈ (0, 1]. Let Q be a workload of statistical queries with workload matrix

W ∈ R[k]×X . Then, for some α′ = Ω(α/ log(1/α)), if γ̂2(W,α)2

ε2α2 ≥ C log 2k
(α′)2 for a large enough constant

C, we have

scℓ∞ε-NILDP(Q,α′) = Ω

(
γ̂2(W,α)2

ε2α2

)
.

Proof. Consider running an ε-LDP protocol M on n = max
{
scℓ∞(M, Q, α′), C′ log 2k

(α′)2

}
samples

drawn i.i.d. from some distribution µ on X . By classical uniform convergence results,

E
x∼µn

[∥Q(x)−Q(µ)∥∞] ≤ α′.

Together with the mechanism’s accuracy guarantee, this implies

E
x∼µn

M

[∥M(x)−Q(µ)∥∞] ≤ 2α′.

Applying Theorem 20, this implies that we can choose α′ = Ω(α/ log(1/α)) so that we get the lower

bound n = Ω
(

γ̂2(W,α)2

ε2α2

)
. Then max

{
scℓ∞(M, Q, α′), C′ log 2k

(α′)2

}
= Ω

(
γ̂2(W,α)2

ε2α2

)
, which implies the

theorem by the assumption on γ̂2(W,α)2

ε2α2 .

For the special case of anwering parities, we give a tight characterization which follows from a

more direct proof in Appendix B.3.

5.3.5 γ2(W,α) versus γ̂2(W,α)

The previous section stated and derived our upper and lower bounds for answering a workload

statistical queries given by the matrix W ∈ RQ×X under non-interactive LDP in terms of γ̂2(W,α).

However, γ2(W,α) is a more standard notion, and is useful for applications since it may be computed
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more directly. To be able to state our results in terms of γ2(W,α), we derive the relationship between

the two quantities as given by the following result. The proof may be found in Appendix B.2.1.

Lemma 22. Let W ∈ [−1, 1]Q×X be workload matrix. Let α ∈ [0, 1]. Then

γ̂2(W,α) ≤ γ2(W,α) ≤ 2γ̂2(W,α) + 1 + α

Now we may restate Theorem 12 and Theorem 21 in terms of γ2(W,α).

Theorem 23 (Approximate Factorization Mechanism). There exists an ε-LDP mechanism Mγ2

such that, for any k statistical queries Q with workload matrix W , we have

scℓ∞(Mγ2
, Q, α/2) = O

(
γ2(W,α/2)2 log k

ε2α2

)
,

and the mechanism runs in time polynomial in n, k, and |X |.

Theorem 24. Let α, ε ∈ (0, 1]. Let Q be a workload of statistical queries with workload matrix

W ∈ R[k]×X . Then, for some α′ = Ω(α/ log(1/α)), if γ2(W,α)2

ε2α2 ≥ C log 2k
(α′)2 for a large enough constant

C, we have

scℓ∞ε-NILDP(Q,α′) = Ω

(
γ2(W,α)2

ε2α2

)
.

5.3.6 Applications of the lower bounds

In this subsection we apply Theorem 21 to several workloads of interest, and, using known bounds

on the approximate γ2 norm, prove new lower bounds on the sample complexity of these workloads.

We start with the threshold queries Qcdf
T for some T ∈ N, consisting of queries over the domain [T ]

given by qt(x) = I{x ≤ t}. We see that the corresponding workload matrix W is a lower triangular

matrix, with entries equal to 1 on and below the main diagonal. Let us consider a different matrix

W ′ = 2W − J , where J is the all-ones T × T matrix. Forster et al. [FSSS03] showed a lower bound

on the margin complexity of W ′, which implies that for any Ŵ where ŵt,xw
′
t,x ≥ 1 holds for all

t, x ∈ [T ], we have

γ2(Ŵ ) = Ω(log T ). (5.17)

Note that if W̃ satisfies ∥W̃ − W ′∥1→∞ ≤ 1
2 , then we can take Ŵ = 2W̃ , and (5.17) implies

γ2(W
′, 1/2) = Ω(log T ). Finally, homogeneity and the triangle inequality for γ2, and γ2(J) = 1

imply that γ2(W, 1/2) ≥ 1
2γ2(W

′, 1/2) − 1
2 = Ω(log T ). Together with Theorem 24, this gives the

following result, which should be compared to the upper bound of O(log3 T ) that can be obtained

from the local analogue of the binary tree mechanism [DNPR10, CSS11]. Ours is the first lower bound

to go beyond the Ω(log T ) lower bound for this problem, which follows via a packing argument.

Corollary 25 (Thresholds / CDFs). Let Qcdf
T be the family of statistical queries over the domain

X = [T ] that, for every 1 ≤ t ≤ T , contains the statistical query qt(x) = I{x ≤ t}. Then for every

T ∈ N and ε, α smaller than an absolute constant,

scℓ∞ε-NILDP(Q
cdf
T , α) = Ω

(
log2 T

)
.
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Next, we consider the parity queries Qparity
d,w . Note that the workload matrix W of these queries

is a submatrix consisting of
(
d
w

)
rows of the 2d×2d Hadamard matrix. Let s = 2d

(
d
w

)
be the number

of entries in W . To prove a lower bound on γ2(W,α), we can use Lemma 13 with U = W . The rows

of a Hadamard matrix are pairwise orthogonal and have ℓ2 norm 2d/2, and, so, Lemma 14, used with

P and Q set to appropriately scaled copies of the identity matrices of the respective dimensions,

implies that γ∗
2 (U) ≤

√
s2d. Moreover, W • U = ∥U∥1 = s, and, by Lemma 13, we have

γ2(W, 1/2) ≥
√
s

2(d/2)+1
= Ω

((
d

w

)1/2
)
.

This gives the following result, which implies that adding independent Gaussian noise to each query

is optimal up to a O(w log(d/w)) factor. Appendix B.3 gives a more direct proof of a lower bound

for parities which is tight up to constant factors.

Corollary 26 (Parities). Let Qparity
d,w be the family of statistical queries over the domain X = {±1}d

that, for every S ⊆ [d], |S| ≤ w, contains the statistical query qS(x) =
∏

j∈S xj. Then for every

k ≤ d ∈ N and ε, α smaller than an absolute constant,

scℓ∞ε-NILDP(Q
parity
d,w , α) = Ω((d/w)w).

Finally, we treat marginal queries, which have been well studied in differential privacy [BCD+07,

KRSU10, GHRU11, HRS12, TUV12, CTUW14, DNT15]. We define Qmarginal
d,w to consist of the

queries qS,y(x) =
1
n

∑n
i=1

∏
j∈S I[xi,j = yj ], with S ranging over subsets of [d] of size at most w, and

y ranging over {0, 1}d. To prove a lower bound for Qmarginal
d,w , we use the pattern matrix method of

Sherstov [She11]. We will omit a full definition of a pattern matrix here, and refer the reader to

Sherstov’s paper. Instead, we remark that, denoting by f the AND function on w bits, a (d,w, f)-

pattern matrix W ′ is a ((2d)w/ww) × 2d submatrix of the workload matrix W for Qmarginal
d,w . Let

s = 2d (2d)w

ww be the number of entries in W ′. By Theorem 8.1. in [She11], we have that, for any

α ≤ 1
6 ,

min

{
1√
s
∥W̃∥tr : ∥W̃ −W ′∥1→∞ ≤ α

}
= Ω

(
d

w

)deg1/3(f)/2

,

where ∥W̃∥tr is the trace norm, i.e., the sum of singular values of W̃ , and deg1/3(f) is the (1/3)-

approximate degree of f , which is known to be Ω(
√
w) [NS94]. Since 1√

s
∥W̃∥tr is a lower bound on

γ2(W̃ ) (see [LMSS07, Lemma 3.4]), this implies

γ2(W, 1/6) ≥ 1√
s
∥W̃∥tr = Ω

(
d

w

)Ω(
√
w)

,

giving us the following lower bound. Corollary 27 shows that a natural local analogue of the algo-

rithm of [TUV12] is optimal for answering marginal queries up to the hidden constant factor in the

exponent.

Corollary 27 (Marginals). Let Qmarginal
d,w be the family of statistical queries ver the domain X =

{0, 1}d that, for every S ⊆ [d], |S| ≤ w, contains the statistical query qS(x) =
∏

j∈S xj. Then for
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every k ≤ d ∈ N and ε, α smaller than an absolute constant,

scℓ∞ε-NILDP(Q
marginal
d,w , α) = (d/w)Ω(

√
w).

5.4 Open problems

It is not known whether the lower bound of Theorem 20 for statistical query release in terms of

γ2(W,α) holds for interactive LDP. We leave it as an open problem whether the lower bound can be

generalized to allow for sequential interactivity. Our arguments fail to generalize to the interactive

setting due to their reliance on the KL-divergence bound of Lemma 2, which is only known to hold

for non-interactive LDP. This motivates the related open problem of whether there is a generalization

of Lemma 2 to the interactive setting,



Chapter 6

Characterization of agnostic

learning under non-interactive

LDP

6.1 Overview

In this chapter, we study two related basic statistical tasks, agnostic learning and agnostic refutation,

in the setting of non-interactive LDP. For both tasks, we have an unknown distribution λ on labeled

data points in the universe U ×{−1, 1}, and we receive samples from λ. We are also given a concept

class C ⊆ {−1, 1}U , which, hopefully, is capable of capturing the labels given by λ. We define our

two tasks as follows.

• Learning requires finding a concept that best fits λ. In particular, using the binary loss function

Lλ(h) = E
(A,B)∼λ

[I[h(A) ̸= B]], the goal of agnostic learning with accuracy α is to produce

some h : U → {−1, 1} which, with probability 1− β, satisfies Lλ(h) ≤ minc∈C Lλ(c) +α. If an

algorithm solves this problem for any distribution λ, then we say it (α, β)-learns C agnostically.

• Refutation requires distinguishing between data distributions λ that are well correlated with

some concept c ∈ C, vs. data distributions where the labels are random. I.e., the goal of

agnostic refutation with accuracy α is to distinguish, with probability 1 − β, between the

following two cases: (i) minc∈C Lλ(c) ≤ 1
2 − α; versus, (ii) for all h : U → {−1, 1}, Lλ(h) =

1
2 .

If an algorithm solves this problem for any distribution λ, then we say it (α, β)-refutes C for

threshold 1
2 .

The definition of agnostic learning above is classical. Refutation is a more recent notion, and was

studied by [KL18] (and in the realizable setting by [Vad17]), where it was shown that computationally

efficient refutation is equivalent to computationally efficient agnostic learning. Refutation captures

a subproblem of evaluating the choice of model in supervised learning, that is to say, of estimating

the best achievable loss minc∈C Lλ(c) by the concept class C. While agnostic learning is well-defined

for any concept class, it is less meaningful when the best achievable loss is large, which may be an

46
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indication that we should be learning a different concept class. For this reason, we would ideally

like our learning algorithm to also tell us what loss it is able to achieve. Refutation is a more basic

version of this problem, in which we merely want to distinguish data distributions with labels which

are well approximated by our concept class from distributions with random labels, for which no

model can achieve good results. Being able to solve the refutation problem is at least as hard as

estimating minc∈C Lλ(c).

Our main goal is to characterize, for any given concept class C, the sample complexity of learning

and refutation under the constraints of non-interactive LDP. Moreover, we aim to understand how

these two problems are related to each other.

In many settings, it is trivial to take an algorithm for learning and use it to obtain an algorithm

for refutation, by executing the learning algorithm for accuracy α/4, and estimating the loss of the

returned hypothesis within α/4. A converse of this simple reduction was established by [KL18], and

by [Vad17]. Unfortunately, neither of these reductions applies to the setting of non-interactive LDP,

since they rely on interacting with the distribution λ adaptively.

This leaves open the question of whether learning and refutation in the non-interactive LDP

setting are equivalent with respect to sample complexity. In the forward (typically easier) direction,

can non-interactive learning algorithms solve non-interactive refutation without a significant increase

in sample complexity, and conversely, can the reductions from refutation to learning from [KL18]

and [Vad17] be extended to the setting of non-interactive protocols?

We note that, by the equivalence proved in [KLN+11] between LDP and the statistical query

(SQ) model of [Kea93], this also means that the relationship between the query complexity of non-

adaptive SQ learning versus refutation is open. Similarly, all our results extend to the non-adaptive

SQ model. Adaptive SQ learning has been characterized by [Fel17], and this in turn implies a

characterization for sequential LDP (LDP protocols in which each participant sends one message,

which can depend on the messages of previous participants).

Recall that Theorem 23 of the previous chapter guarantees the existence of non-interactive LDP

protocol for estimating a workload of statistical queries. This provides one approach to solving either

the agnostic learning or the agnostic refutation problem. Indeed, we may consider, for each concept

c ∈ C, the corresponding “correlational query” qc : (U × {−1, 1}) → {−1, 1} given by

qc(a, b) = b · c(a).

Then the loss of the concept c on a data set X = ((a1, b1), . . . , (an, bn)), denoted LX(c), is given by

LX(c) =
1

2
− 1

2
qc(X).

In this way, estimating LX(c) is equivalent to estimating qc(X). More generally, if we consider

the query workload Q consisting of all such queries qc obtained from some concept c of C as such,

then estimating Q(X) is equivalent to estimating (LX(c))c∈C for each c ∈ C. When X consists

of sufficiently many samples drawn i.i.d. from some distribution λ, then LX(c) provides a good

approximation of Lλ(c). Given this information for each c ∈ C, we are able to solve either the

learning or refutation problem, yielding the following result, bounding the sample complexity for

these tasks in terms of the approximate γ2 norm of the concept matrix WC .
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Definition 28. Let C ⊆ {−1, 1}U be a concept class. The concept matrix WC ∈ {−1, 1}C×U of C is

the matrix with entries given by wc,a = c(a).

Theorem 29. Let C ⊆ {±1}U be a finite concept class with concept matrix WC ∈ {±1}C×U Let

ε, α, β > 0. Then, to either (α, β)-learn C agnostically, or (α, β)-refute C agnostically under non-

interactive ε-LDP, it suffices to have a data set of size

n = O

(
γ2(WC , α/2)

2 · log(|C|/β)
ε2α2

)
.

However, the lower bound against statistical query release in the previous chapter does not apply

to either the refutation or learning problem since the hard task against which that lower bound was

obtained, when applied to the workload of correlational queries corresponding to C, would require

estimating the minimum loss of a concept in the concept class on the underlying distribution. One

of the primary goals of this chapter is to develop the machinery we used to give lower bounds against

statistical query release towards giving the following lower bounds against agnostic refutation and

learning.

Theorem 30. Let α, ε ∈ (0, 1]. Let C ⊆ {−1, 1}U be a concept class with concept matrix WC ∈
{−1, 1}C×U Then, for some α′ = Ω(α/ log(1/α)), if M is a non-interactive LDP protocol which

(α′, 1
2 +Ω(1))-refutes C agnostically, we have

n = Ω

(
γ2(WC , α/2)

2

ε2α2

)
.

Theorem 31. Let ε, α ∈ (0, 1]. Let C ⊆ {−1, 1}U be a concept class with concept matrix WC ∈
{−1, 1}C×U . Then, for some α′ = Ω

(
α

log(1/α)

)
, under non-interactive ε-LDP, the number of

samples required to
(
α′, 1

2 +Ω(1)
)
-learn C agnostically is at least

n = Ω

(
(γ2(W,α)− 1)2

ε2α2

)
Theorem 30 as well as the refutation lower bound of Theorem 31 were originally published in

[ENU19], joint work with Aleksandar Nikolov and Jonathan Ullman. The learning lower bound of

Theorem 31 was originally published in [ENP22], and is joint work with Aleksandar Nikolov and

Toniann Pitassi.

6.2 Agnostic learning and refutation upper bounds

Let C ⊆ {−1, 1}U be a concept class. For a concept c ∈ C, we consider the corresponding correlational
query qc : (U × {−1, 1}) → {−1, 1} given by

qc(a, b) = b · c(a).

Then the loss of the concept c ∈ C on a distribution λ is

Lλ(c) = E
(a,b)∼

[I[c(ai) ̸= bi]] = E
[
1

2
− b · c(a)

2

]
=

1

2
− 1

2
qc(λ).
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In this way, estimating Lλ(c) is equivalent to estimating qc(λ). Indeed, we may consider the query

workload QC consisting of all such queries qc, c ∈ C. In this way, estimating Q(λ) is equivalent

to estimating the loss of each concept. Recall that Theorem 23 allows us to answer a workload of

statistical queries on a data set X ∼ λn. When X consists of at least C log 2|Q|
(α′)2 samples for some

universal constant C, classical uniform convergence results guarantee that E
[
Q(X)−Q(λ)

]
≤ α′.

Together with a Hoeffding bound, this implies the upper bound on learning and refutation given by

Theorem 29.

6.3 Agnostic refutation lower bound

In this section we present our lower bound against agnostic refutation under non-interactive LDP.

We first present the local approximate factorization mechanism. The lower-bound techniques applied

will be similar to those of the previous chapter, invoking the same KL-divergence bound, Lemma 2,

and using a dual formulation of the approximate γ2 norm to construct our ‘hard’ distributions.

6.3.1 Duality for γ2(W,α)

The dual formulation of γ2(W,α) we rely on is given in Lemma 32. This dual formulation was

also given in [LS09] for the special case when W has entries in {−1, 1}. For completeness, here we

rederive it in Appendix C.1 by directly applying the hyperplane separator theorem.

Lemma 32. For any W ∈ Rk×T and α > 0,

γ2(W,α) = max

{
W • U − α∥U∥1

γ∗
2 (U)

: U ∈ Rk×T , U ̸= 0

}
, (6.1)

where γ∗
2 is the dual norm to γ2 given by

γ∗
2 (U) = max{U • V : V ∈ Rk×T , γ2(V ) ≤ 1}

= max
a1,...,ak
b1,...,bT

k∑
i=1

T∑
j=1

ui,ja
⊤
i bj ,

where a1, . . . , ak and b1, . . . , bT range over vectors with unit ℓ2 norm in Rk+T .

6.3.2 Symmetric workloads

The query workload QC has additional structure which we will take advantage of. Consider the

following definition.

Definition 33. Let Q be a workload of statistical queries with workload matrix W ∈ RQ×X . Suppose

there exists a partition of X into sets X+ and X−, |X+| = |X−|, where each element x of X+ is

identified with a distinct element of X−, denoted −x, such that, for all q ∈ Q, for all x ∈ X ,

q(−x) = −q(x). In other words, W can be expressed as (W+,W−), where W+ ∈ RQ×X+

and

W− ∈ RQ×X−
are the restrictions of W to Q×X+ and Q×X− respectively, with each entry w+

q,x of

W+ and the corresponding entry w−
q,−x of W− satisfying w−

q,x = −w+
q,−x. Also write Q+ to denote

the collection of queries with workload matrix W+ so that the queries q+ : X+ → R of Q+ are
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obtained by restricting queries q : X → R of Q to the input space X+; define Q− analogously. Then

Q, and also W , are called symmetric.

By taking X+ = U × {1} and X− = U × {−1}, we can see that QC is a symmetric workload.

In particular, given an element x = (a, 1) of X+, we let −x = (a,−1). Each query qc is symmetric

since, for all x = (a, 1) ∈ X+,

qc(−x) = −c(a) = −qc(x).

Lemma 34 allows us to relate γ2(W ) and γ2(W
+) and their witnesses. Its proof is also given in

Appendix C.2.

Lemma 34. Let α > 0 and let W ∈ RQ×X be a symmetric workload matrix with X+ and W+ as

given by Definition 33. Then it holds that γ2(W ) = γ2(W
+) and γ2(W,α) = γ2(W

+, α). Moreover,

if, for some U+ ∈ RQ×X+

,

γ2(W
+, α) =

W+ • U+ − α∥U+∥1
γ∗
2 (U

+)
,

then

γ2(W,α) =
W • U − α∥U∥1

γ∗
2(U)

,

where U = 1
2 (U

+, U−) is a matrix in RQ×X such that the submatrix U− is indexed by X− and has

entries u−
q,−x = −u+

q,x for all x ∈ X+ and q ∈ Q.

6.3.3 Construction of hard distributions based on dual solution

In this section, we construct our hard distributions based on the dual witness to the approximate

γ2 norm. This section will consider a generic symmetric query workload Q with workload matrix

W rather than focus on the special case of learning a concept class. Indeed, these techniques may

be used to get lower bounds against answering an arbitrary symmetric workload of queries, though

such a result is already subsumed by the lower bound of the previous chapter. It will be notationally

convenient in this section to consider the enumeration q1, . . . , qk of the queries in Q and view W as

a matrix in R[k]×X .

Let U ∈ R[k]×X be the dual witness to γ2(W,α), as given by Lemma 32, so that

γ2(W,α) =
W • U − α∥U∥1

γ∗
2(U)

. (6.2)

By Lemma 34, we may assume without loss of generality that U is of the form (U+, U−) where each

entry of U− is the additive inverse of the corresponding entry of U+. Furthermore, by dividing each

entry of U by ∥U∥1 if necessary, we may assume without loss of generality that ∥U∥1 = 1. In this

case,

γ2(W,α) =
W • U − α

γ∗
2(U)

.

Let us make a first attempt at constructing our collection of “hard” distributions λ1, . . . , λk and

µ1, . . . , µk for Q. Since ∥U∥1 = 1, then

π(v) =
∑
x∈X

|uv,x|
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defines a valid probability distribution over [k]. For each v ∈ [k], we then define a pair of distributions

λv and µv given by

∀x ∈ X+ : λv(x) = λv(−x) = |uv,x|/π(v)

∀x ∈ X+ : µv(x) =

2|uv,x|/π(v) if uv,x ≥ 0

0 if uv,x < 0

µv(−x) =

0 if uv,x ≥ 0

2|uv,x|/π(v) if uv,x < 0

Then, for all v ∈ [k], for all x ∈ X+, λv(x) = λv(−x). At the same time, it holds for all v ∈ [k]

that

qv(µv) =
∑
x∈X

qv(x)µv(x) =
∑

x∈X+

qv(x)(µv(x)− µv(−x)).

Hence,

E
V∼π

[qV (µV )] = 2W+ • U+ = W • U.

Since W • U = γ∗
2 (U)γ2(W,α) + α ≥ α by Lemma 32, then

EV∼π[qV (µV )] ≥ α.

However, we want the inequality

qv(µv) ≥ α

to hold for all v ∈ [k], as opposed to merely on average. The following result modifies our distributions

in a way that resolves this issue.

Lemma 35. Let Q be a collection of symmetric queries with workload matrix W ∈ R[k]×X . Let

U ∈ R[k]×X be the dual witness so that (6.2) is satisfied. Then there exist probability distributions

λ̃1, . . . , λ̃k and µ̃1, . . . , µ̃k over X , and a distribution π̃ over [k] such that:

1. for all v ∈ [k], for all x ∈ X λv(x) = λv(−x);

2. for all v in the support of π̃, qv(µ̃v) ≥ α
O(log(1/α)) ;

3. the matrix Ũ ∈ R[Q]×X with entries ũv,x = π̃(v)(λ̃v(x)− µ̃v(x)) satisfies γ∗
2 (Ũ) ≤ αγ∗

2 (U)
W•U .

Proof. Let λ1, . . . , λk, µ1, . . . , µk, and π be as given by equations (6.3.3) - (6.3.3). Since qv(µv) > 0

for all v, we may apply Lemma 18 with av = qv(µv) and β = α/4 to obtain a subset S ⊆ [k] for

which

π(S) ·min
v∈S

qv(µv) ≥
E

V∼π
[qV (µV )]− α/4

O(log(1/α))
=

W • U − α/4

O(log(1/α))
.

Now define π̃ as π conditional on S. In particular,

π̃(v) =

π(v)/π(S), if v ∈ S

0, otherwise.
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Let τ = α
W•U . Then, for all v ∈ [k], define λ̃v = λv and µ̃v = τπ(S)µv +(1− τπ(S))λv. This implies

∀v ∈ [k], ∀x ∈ X+ : λv(x) = λv(−x)

∀v ∈ [k] : qv(µ̃v) = τπ(S)qv(µv) ≥
α

W • U
· W • U − α/4

O(log(1/α))
≥ α

O(log(1/α))
(6.3)

∀v ∈ [k] : µ̃v − λ̃v = τ · π(S)(µv − λv)

where (6.3) uses the fact that W • U ≥ α.

By the last of these facts, together with the definition of π̃, it follows that the entries ũv,x =

π̃(v)(λ̃v(x)− µ̃v(x)) of the matrix Ũ satisfy

ũv,x =

τuv,x, if v ∈ S

0, otherwise.

In other words, Ũ is obtained from U by replacing some of its rows with the zero-vector. It is easy

to see from the definition of γ∗
2 that this implies γ∗

2 (Ũ) ≤ τγ∗
2 (U).

Consider now the matrix M̃ ∈ R[k]×X with entries m̃v,x = λ̃v(x) − µ̃v(x). Since M̃ is obtained

from the matrix Ũ of Lemma 35 by scaling each row v of Ũ by 1
2π(v) , it follows that

∥M̃∥ℓ∞→L1(π̃) =
1

2
∥Ũ∥∞→1 ≤ γ∗

2(Ũ) ≤ τγ∗
2(U) =

α

W • U
· W • U − α/4

O(log(1/α))
≥ α

O(log(1/α))
.

This is not quite the quantity

∥M̃∥2ℓ∞→L2(π̃)
= max

f∈RX :∥f∥∞≤1
E

V∼π

[(
Ex∼λ̃V

[fx]− Ex∼µ̃V
[fx]
)2]

which Lemma 2 would have us bound. For comparison, note

∥M̃∥ℓ∞→L1(π̃) = max
f∈RX :∥f∥∞≤1

E
V∼π

[∣∣∣∣ E
x∼λ̃V

[fx]]− E
x∼µ̃V

[fx]

∣∣∣∣].
Since the trivial case of Holder’s inequality implies that the L1(π̃) norm is always bounded above

by the L2(π̃) norm, it holds that ∥M̃∥ℓ∞→L1(π̃) ≤ ∥M̃∥ℓ∞→L2(π̃). However, this inequality goes in

the wrong direction for our requirements. This issue is remedied by taking advantage of Lemma 16.

Lemma 36. Let Q be a collection of symmetric queries with workload matrix W ∈ R[k]×X . Let

U ∈ R[k]×X be the dual witness so that (6.2) is satisfied. Then there exist probability distributions

λ̃1, . . . , λ̃k and µ̃1, . . . , µ̃k over X , and a distribution π̂ over [k] such that:

1. λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̂ satisfy criteria 1. and 2. of Lemma 35;

2. the matrix M̃ with entries m̃v,x = λ̃v(x)− µ̃v(x) satisfies

∥M̃∥ℓ∞→L2(π̂) ≤
4α

γ2(W,α)
.

Proof. Let λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ be the distributions guaranteed to exist by Lemma 35, and
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let Ũ ∈ R[k]×X be the corresponding matrix with entries ũv,x = π̃(v)(λ̃v(x)− µ̃v(x)). The entries of

the matrix M̃ satisfy π(v)m̃v,x = ũv,x, so we may apply Lemma 16 to obtain a distribution π̂ such

that

∥M̃∥ℓ∞→L2(π̂) ≤ 4γ∗
2 (Ũ) ≤ 4αγ∗

2 (U)

W • U
=

4α(W • U − α)

(W • U)γ2(W,α)
≤ 4α

γ2(W,α)
.

Lemma 16 further guarantees that the support of π̂ lies within the support of π̃, which together

with the properties of the distributions λ̃1, . . . , λ̃k, µ̃1, . . . , µ̃k and π̃ gives the first condition of our

lemma.

6.3.4 Lower bound derivation

At last, we have all the components needed to prove our lower bound against agnostic refutation,

Theorem 30.

Proof of Theorem 30. As described in Section 6.3.2, take X+ = U × {1}, X− = U × {−1}, and
X = X− ∪ X+, associating each element x = (a, 1) ∈ X+ with −x = (a,−1) ∈ X−. Then,

QC = {qc}c∈C , consisting of queries qc(a, b) = b·c(a) is a symmetric workload. Let W C ∈ {−1, 1}C×X

denote the corresponding workload matrix.

Apply Lemma 36 to the queries QC to obtain collections {λ̃c}c∈C , and {µ̃c}c∈C of distributions on

X as well as a distribution π̂ on C. The matrix M̃ ∈ {−1, 1}C×X with entries m̃c,x = λ̃c(x)− µ̃c(x)

satisfies

∥M̃∥ℓ∞→L2(π̂) ≤
4α

γ2(W C , α)
.

Equivalently,

max
f∈RX :∥f∥∞≤1

E
c∼π̂

[(
E

X∼λ̃c

[fX ]− E
X∼µ̃c

[fX ]

)2
]
≤
(

4α

γ2(W C , α)

)2

.

By Lemma 2, this implies

DKL(TM(λ̃n
π̂)∥TM(µ̃n

π̂)) ≤ O(nε2) ·
(

4α

γ2(W C , α)

)2

. (6.4)

Lemma 36 guarantees further that there exists some

α′ ≥ α

O(log(1/α))

such that, for all c ∈ C, qc(π̃) ≥ α′. This implies Lµc(c) ≤ 1
2 − 1

2α
′. At the same time, λc(a,+1) =

µc(a,−1) for all a ∈ U . Hence, if a non-interactive LDP protocol M (α′, 1
2 + Ω(1))-refutes C

agnostically, then it distinguishes between λc and µc with probability 1
2 +Ω(1). Hence,

dTV(TM(λn
v )∥TM(µn

v )) = Ω(1).

By Pinsker’s inequality,

DKL (TM(λn
v ) ∥ TM(µn

v )) = Ω(1).
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Combining this lower bound on KL-divergence with the upper bound given by (7.7), we obtain

n = Ω

(
γ2(W C , α)

2

ε2α2

)
.

Finally, by application of Lemma 34, we have γ2(W,α) = γ2(W C , α).

6.4 Agnostic learning lower bound

In this section, we present our results for agnostic learning under non-interactive LDP. The lower

bound will use similar machinery to that used to obtain our lower bounds against statistical query

release and against agnostic refutation, relying on the KL-divergence bound of Lemma 2 and using

the dual to the measure of the concept class’s complexity to construct hard distributions for agnostic

learning of the given concept class. One novel aspect of the argument will be the consideration of

the concept class’s “difference matrix,” defined in the next section.

6.4.1 Difference matrix

Theorem 31 is given in terms of the concept matrix associated with the concept class; however, our

proof of this result will focus instead on the difference matrix associated with the concept class,

defined below.

Definition 37. The difference matrix of a concept class C : U → {−1, 1} is the matrix DC ∈
{−1, 1}C2×U with entries given, for c, c′ ∈ C, a ∈ U , by

d(c,c′),a =
1

2
(c(a)− c′(a)) =


0 if c(a) = c′(a)

−1 if c(a) = −1, c′(a) = +1

+1 if c(a) = +1, c′(a) = −1.

(6.5)

The difference matrix is one of the key ideas that enables the proof of Theorem 31. We will use

a dual formulation of γ2(DC , α) to construct pairs of hard distributions for our lower bound, each

pair corresponding to a pair of concepts c, c′ ∈ C. The structure of the difference matrix will help

us ensure that no correct agnostic learning algorithm can output, with high probability, the same

hypothesis for both distributions in a pair. It is not apparent how to guarantee this property when

working directly with the concept matrix WC .

To the motivate the definition of the difference matrix, consider the symmetrizationD ∈ {−1, 1}C×(U×{−1,1})

of DC with entries given by dc,(a,b) = b · da,b. By answering the workload of queries {qc,c′}c,c′∈C rep-

resented by D we obtain, for each c, c′ ∈ C, an estimate of

qc,c′(λ) = E
(A,B)∼λ

[
B · d(c,c′),A

]
= E

(A,B)∼λ

[
b

2
· (c(A)− c′(A))

]
= Lλ(c)− Lλ(c

′).

In other words, answering these queries gives the difference in loss for each pair of concepts. This

provides sufficient information to agnostically learn the concept class. Estimating these queries with

the approximate factorization mechanism for statistical query release of [ENU19] gives an upper
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bound for agnostic learning under in terms of γ2(DC , α). Indeed, this provides an alternate approach

to obtaining a non-interactive LDP protocol for agnostic learning, with the sample complexity of the

protocol dependent on γ2(DC , α). However, the following lemma shows that γ2(DC , α) and γ2(WC , α)

are essentially the same. (See Appendix C.3 for the proof.)

Lemma 38. Let C be a concept class with concept matrix WC ∈ RC×U and difference matrix DC ∈
RC2×U . Then γ2(DC , α) ≤ γ2(W,α). Conversely, γ2(W,α) ≤ 2γ2(DC , α/2) + 1, and if C is closed

under negation then γ2(W,α) ≤ γ2(DC , α).

Despite this equivalence, the dual witness to γ2(DC , α) will be especially useful in the construction

of our lower bound. In particular, we obtain our lower bound first in terms of γ2(DC , α), giving

Lemma 39, and we will then apply Lemma 38 to get a lower bound in terms of γ2(W,α).

Lemma 39. Let C ⊆ {−1, 1}U be a concept class with concept matrix DC ∈ {−1, 1}C×U . Then

Theorem 31 holds with WC replaced by the difference matrix, DC.

The rest of this section is devoted to the proof of Lemma 39.

6.4.2 Duality and hard distributions

For the construction of hard families of distributions, it will be convenient to make use of the dual

formulation given by Lemma 32, applying it to the difference matrix instead of the concept matrix.

In particular, for an arbitrary concept class C ⊆ {−1, 1}U with difference matrix DC , let U ∈ RC2×U

be the dual witness to γ2(DC , α) so that

γ2(DC , α) =
DC • U − α∥U∥1

γ∗
2 (U)

. (6.6)

By normalizing U , we may assume, without loss of generality, that ∥U∥1 = 1. Moreover, we can

assume that, for any c, c′ ∈ C,
∑

a∈U d(c,c′),au(c,c′),a ≥ 0. Otherwise, U cannot achieve the maximum

of (6.1), since we can multiply the row of U indexed by (c, c′) by −1, which increases DC • U and

does not change ∥U∥1 or γ∗
2(U).

We will consider the matrices U+, U− ∈ RC2×U with non-negative entries which satisfy U =

U+ −U−, so that U+ and U− correspond to the positive and negative entries of U respectively. We

define the distribution π on C2 by

π(c, c′) =
∑
a∈U

u(c,c′),a. (6.7)

Then, for c, c′ ∈ C, consider the distribution λc,c′ on U × {−1, 1} given by

λc,c′(a, 1) =
u+
(c,c′),a

π(c, c′)
, λc,c′(a,−1) =

u−
(c,c′),a

π(c, c′)
(6.8)

Similarly, let µc,c′ be the distribution on U × {−1, 1} given by

µc,c′(a, 1) =
u−
(c,c′),a

π(c, c′)
, µc,c′(a,−1) =

u+
(c,c′),a

π(c, c′)
. (6.9)

Since U has unit ℓ1 norm, the above distributions are well-defined. Note that λc,c′ and µc,c′ have the

same marginal on U which we denote κ(c,c′). In particular, κ(c,c′)(a) =
|u(c,c′),a|
π(c,c′) . Meanwhile, λc,c′
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always gives a the label b = sign(u(c,c′),a), while µc,c′ always gives a the label b = −sign(u(c,c′),a).

It will be useful to have notation for one of these labelling functions, so define sc,c′ : U → {−1, 1}
by sc,c′(a) = sign(u(c,c′),a).

Consider the following relationship between U and the distributions we have constructed.

u(c,c′),a = π(c, c′) (λc,c′(a, 1)− µc,c′(a, 1)) = π(c, c′)κc,c′(a)sc,c′(a)

Note that ∑
a∈U

d(c,c′),au(c,c′),a = π(c, c′) ·
∑
a∈U

1

2
· κc,c′(a) · [c(a)sc,c′(a)− c′(a)sc,c′(a)]

= π(c, c′) ·
(
Lλc,c′ (c)− Lλc,c′ (c

′)
)
. (6.10)

Similarly, ∑
a∈U

d(c,c′),au(c,c′),a = π(c, c′) ·
(
Lµc,c′ (c

′)− Lµc,c′ (c)
)
. (6.11)

Hence,

DC • U = E
(c,c′)∼π

[(
Lλc,c′ (c

′)− Lλc,c′ (c)
)]

= E
(c,c′)∼π

[(
Lµc,c′ (c)− Lµc,c′ (c

′)
)]

.

Whenever C contains at least two distinct concepts, γ2(DC , α) > 0, and then (6.6) implies

DC • U > α. By the equations above, this implies that, on average with respect to (c, c′) ∼ π, the

loss of c is greater by α than the loss of c′ on λc,c′ . Likewise, on average, the loss of c′ is greater by

α than the loss of c on µc,c′ . We will see that, if we can obtain these properties in the worst case

over all (c, c′), rather than only on average, then no hypothesis can fit both λc,c′ and µc,c′ for any

c, c′ ∈ C. By applying exponential binning, we give such worst-case bounds.

Lemma 40. Let C be a concept class. Let DC be the matrix given by (6.5). Let U ∈ RC2×U ,

∥U∥1 = 1, satisfy (6.6). Then there exist probability distributions λ̃c,c′ and µ̃c,c′ over U × {−1, 1},
and a distribution π̃ over C2 such that:

1. For all (c, c′) in the support of π̃, Lλ̃c,c′
(c)− Lλ̃c,c′

(c′) ≥ α
O(log(1/α)) .

2. For all (c, c′) in the support of π̃, Lµ̃c,c′
(c′)− Lµ̃c,c′

(c) ≥ α
O(log(1/α)) .

3. The matrix Ũ ∈ RC2×U with entries ũ(c,c′),a = π̃(c, c′)(λ̃c,c′(a) − µ̃c,c′(a)) satisfies γ∗
2(Ũ) ≤

αγ∗
2 (U)

DC•U .

Proof. Let π, together with λc,c′ and µc,c′ , be defined as in (6.7), (6.8) and (6.9). We will apply

Lemma 18 to the values given, for c, c′ ∈ C, by

ac,c′ = Lλc,c′ (c)− Lλc,c′ (c) = Lµc,c′ (c)− Lµc,c′ (c).

Recall that we may assume, that for all c, c′ ∈ C the following inequality holds∑
a∈U

d(c,c′),au(c,c′),a ≥ 0.
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Together with (6.10), this gives ac,c′ ≥ 0 for all c, c′ ∈ C.
By Lemma 18, there exists some S ⊂ C2 such that

π(S) · min
(c,c′)∈S

(
Lλc,c′ (c)− Lλc,c′ (c

′)
)
≥

E
(c,c′)∼π

[
Lλc,c′ (c)− Lλc,c′ (c

′)
]
− α/4

O(log(1/α))
=

DC • U − α/4

O(log(1/α))
.

By applying (6.11), we get the similar

π(S) · min
(c,c′)∈S

(
Lµc,c′ (c

′)− Lµc,c′ (c)
)
≥ DC • U − α/4

O(log(1/α))
.

Let π̃ be defined by

π̃(c, c′) =

π(c, c′)/π(S), if c, c′ ∈ S

0, otherwise.

Let also τ = α
DC•U ∈ (0, 1). For (c, c′) ∈ S, let λ̃c,c′ = λc,c′ and µ̃c,c′ = (1− τπ(S))λc,c′ + τπ(S)µc,c′ .

It holds then, for (c, c′) ∈ S, that

λ̃c,c′ − µ̃c,c′ = τ · π(S) · (λc,c′ − µc,c′)

Hence, the matrix Ũ ∈ RC2×U with entries defined by

ũv,a = π̃(v) · (λ̃v(a, 1)− µ̃v(a, 1)) = −π̃(v) · (λ̃v(a,−1)− µ̃v(a,−1))

satisfies

ũ(c,c′),a =

τu(c,c′),a, if (c, c′) ∈ S

0, otherwise.

It is easy to see from the definition of γ∗
2 that this implies γ∗

2(Ũ) ≤ τγ∗
2(U) =

αγ∗
2 (U)

DC•U .

We will also want to bound the operator norm, which appears in Lemma 2, in terms of γ∗
2(U).

To do so, we use Lemma 16 which relates γ∗
2 and the ∞ → 2 operator norm.

At the same time, we want to obtain a lower bound on dTV(TM(λn
c,c′)∥TM(µn

c,c′)) when M is a

learning algorithm for C. For this purpose, we apply the following lemma, whose proof is deferred

to Appendix C.4. The main observation in the proof is, for any hypothesis h : C → {−1, 1}, and any

distributions λ and µ satisfying the conditions of the lemma, we have Lλ(h) + Lµ(h) = 1.

Lemma 41. Let λ and µ be distributions on U × {−1, 1}. Assume that λ and µ have the same

marginal on U . Also assume that λ is labelled by some s : U → {−1, 1} while µ is labelled by

−s. Finally, assume that for some c, c′ ∈ C, Lµ(c
′) − Lµ(c) > α. If h : U → {−1, 1} satisfies

Lλ(h) ≤ Lλ(c
′) + α/4, then Lµ(h) > Lµ(c) + 3α/4. Hence, if M is an algorithm which (α/4, β)-

learns C from n samples, then dTV(M(λn),M(µn)) ≥ 1− 2β.

6.4.3 Lower bound derivation

Finally, with these results at our disposal, we may obtain the lower bound of Lemma 39.
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Proof of Lemma 39. Let U ∈ RC2×U , ∥U∥1 = 1, satisfy (6.6). Let π̃, together with λ̃c,c′ and µ̃c,c′ be

the distributions guaranteed to exist by Lemma 35 and let Ũ ∈ RC2×U be the corresponding matrix

with entries

ũ(c,c′),a = π̃(c, c′)
(
λ̃c,c′(a, 1)− µ̃c,c′(a, 1)

)
= −π̃(c, c′)

(
λ̃c,c′(a,−1)− µ̃c,c′(a,−1)

)
Let M be the matrix with entries m(c,c′),a = ũ(c,c′),a/π̃(c, c

′). By Lemma 16, there exists some

distribution π̂ with support contained in that of π̃ such that

∥M∥ℓ∞→L2(π̂) ≤ 4γ∗
2(Ũ) ≤ 4αγ∗

2(U)

DC • U
,

where the last inequality follows from Lemma 35. Combining Lemma 2 with the dual formulation

(6.6) gives

E
(C,C′)∼π̂

[
DKL(TM(λ̃n

C,C′)∥TM(µ̃n
c,c′))

]
≤ O(nε2) · ∥M∥2ℓ∞→L2(π̂)

≤ O(nε2) ·
(
αγ∗

2(U)

DC • U

)2

= O(nε2) ·
(

α

γ2(DC , α)

)2

.

Now let

α′ =
1

4

(
min
c,c′

Lµc,c′ (c
′)− Lµc,c′ (c)

)
≥ α

O(log(1/α))
,

where the last inequality is by Lemma 35. By Lemma 41, if M (α′, 1 + Ω(1))-learns C, then

E
(C,C′)∼π̃

[
DKL(TM(λ̃n

c,c′)∥TM(µ̃n
c,c′))

]
= Ω(1). This implies n = Ω

(
γ2(DC,α)

2

ε2α2

)
, as was to be proved.

6.5 Open problems

This work, together with [ENU19], largely completes the picture of agnostic refutability and learn-

ability under non-interactive LDP.

As with the lower bound for statistical query release in Chapter 5, the lower bounds in this

chapter for agnostic learning and refutation, do not hold against interactive LDP. We leave it as an

open problem whether these lower bounds can be generalized to allow for sequential interactivity.

Further, the relationships obtained between the sample complexities of refutability and learn-

ability in this work are indirect, via characterizations of these tasks in terms of the approximate

γ2 norm. For example, although realizable refutability implies realizable learnability under non-

interactive LDP, it remains open to show how to construct a non-interactive LDP protocol for

learnability directly from one for refutability.



Chapter 7

Characterization of realizable

refutation under non-interactive

LDP

7.1 Overview

Realizable learning is a special case of agnostic learning, where the underlying distribution λ on

U × {−1, 1} is guaranteed to be labelled by a concept c ∈ C, i.e., Lλ(c) = 0. Correspondingly, we

say that an algorithm M : (U × {−1, 1})n → {−1, 1} (α, β)-refutes C realizably if, with probability

1 − β, it distinguishes the case where there exists some concept which achieves zero loss from the

case where all concepts have loss at least α.

The lower bounds of the previous chapter do not apply to realizable refutation which requires

additional structure of the hard distributions. Meanwhile, though the upper bounds of the previous

chapter can be applied to the realizable problems, it is possible that they can be improved by taking

advantage of the additional structure. Indeed, some concept classes may require exponentially fewer

samples to learn in the realizable case than to learn agnostically. For example, the class of conjunc-

tions over U = {0, 1}d can be learned with polynomial in d query complexity using a non-adaptive

SQ algorithm [Kea93], and, therefore, also with polynomial sample complexity by a non-interactive

LDP algorithm. The γ2 norm of the matrix associated with this class is, however, exponential in

d, as shown in Chapter 5. Therefore, conjunctions require exponential sample complexity to learn

agnostically under non-interactive LDP.

While we are not able to characterize realizable learning, we give a characterization of a realizable

refutation, and show that realizable learning is no harder than realizable refutation.

[DF19] showed that (for C closed under negation) the sample complexity of realizable learning

under non-interactive LDP is bounded from below by the margin complexity of C. They left open

the question whether one can prove a matching upper bound. This question was resolved in the

negative by [DF20]. The problem of characterizing the sample complexity of realizable learning

under non-interactive LDP thus remains open.

In this work, we give a non-interactive LDP protocol which may be applied towards both re-

59
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alizable learning and realizable refutation. This gives a sample complexity upper bound for these

problems in terms of a new efficiently computable quantity η(C, α) which we define. This quantity

combines elements of both the γ2 norm and of margin complexity, and is sandwiched between them.

Further, we derive a lower bound for realizable refutation in terms of η(C, α), showing that our

protocol is nearly optimal for realizable refutation, and that the sample complexity of realizable

refutation is an upper bound on the sample complexity of realizable learning under non-interactive

LDP. Our main theorem for realizable learning is stated next. See Section 7.2 for the definition of

η(C, α).

Theorem 42. Let α, ε, β > 0. Let C ⊆ {±1}U be a finite concept class. Let ε > 0, α, β ∈ (0, 1/2].

Then, to either (α, β)-learn C realizably, or (α, β)-refute C realizably under non-interactive ε-LDP,

it suffices to have a sample of size

n = O

(
η(C, α/2)2 · log(|C|/β)

ε2α2

)
.

Theorem 43. Let α, ε > 0. For some α′ = Ω
(

α
log(1/α)

)
, the number of samples required to

(α′,Ω(1))-refute C realizably under non-interactive ε-LDP is at least

n = Ω

(
η(C, α/2)2

ε2α2

)
.

The research represented by this chapter was originally originally published in [ENP22], and is

joint work with Aleksandar Nikolov and Toniann Pitassi.

7.2 Upper bound

In this section, we present our algorithm for realizable learning and refutation for non-interactive

LDP. For a concept class C : U → {−1, 1}, we define a quantity η(C, α) and argue that it gives an

upper bound on the sample complexity for realizable learning of C.

Definition 44. Let C : U → {−1, 1} be a concept class. Let

KC =
{
W ∈ RC×(U×{−1,1}) : |wc,(a,c(a))| ≤ α and wc,(a,−c(a)) ≥ 1 ∀c ∈ C, a ∈ U

}
. (7.1)

Let

K ′
C =

{
W̃ ∈ RC×(U×{−1,1}) : ∃W ∈ KC , ∃θ ∈ RC , W̃ = W + θ1T

}
, (7.2)

where 1T is the all-ones row vector indexed over C, so that W̃ = W + θ1T is the matrix obtained by

shifting each row c of W in each entry by θc.

Then define

η(C, α) = min
{
γ2(W̃ ) : W̃ ∈ K ′

C

}
.

The idea is that each row of W defines a statistical query corresponding to a concept, qc(a, b) =

wc,(a,b). The statistical query corresponding to the true concept that was used to label the data

will have a small value, whereas any query corresponding to a concept with large loss will have a

large value. The next theorem formalizes this argument. Intuitively, this works because W assigns
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a penalty for each labeled sample, and the penalty is at most α for correctly labeled samples, and at

least 1 for incorrectly labeled ones. Moreover, if W̃ is obtained from W ∈ KC by translating every

row c of W by some θc ∈ R in each dimension, then answering the queries given by W̃ allows us

to answer the queries given by W by just shifting the query answers. Applying these ideas gives us

Theorem 42.

Proof of Theorem 42. As per Definition 44, let W̃ ∈ K ′
C be the matrix that witnesses η(C, α) and

let W ∈ KC and θ ∈ RC be the matrix and vector which witness W̃ ∈ K ′
C . If we can answer the

statistical queries given by W̃ , then we can answer the queries given by W with the same accuracy

by subtracting θc from the answer to the query for concept c.

By the definition of W , if, for some c ∈ C, λ is supported on on those (a, b) ∈ U × {−1, 1} which

satisfy c(a) = b, then the value of the query corresponding to c is bounded as

E
(A,B)∼λ

[
wc,(A,B)

]
= E

(A,B)∼λ

[
wc,(A,c(A))

]
≤ α.

Meanwhile, for an arbitrary distribution λ on U × {−1, 1}, the value of the query corresponding to

c ∈ C may be bounded as

E
(A,B)∼λ

[
wc,(A,B)

]
≥ P

(A,B)∼λ
[b ̸= c(A)]− α · P

(A,B)∼λ
[B = c(A)] ≥ Lλ(c)− α.

In particular, if Lλ(c) ≥ 3α, then E
(A,B)∼λ

[
wc,(A,B)

]
≥ 2α.

It follows that, by approximating the statistical queries given by W with worst-case error α
4 , we

can distinguish the case where λ agrees with some c ∈ C from the case where, for all concepts c ∈ C,
Lλ(c) ≥ 3α. In the former case, returning some c′ ∈ C where our estimate of E

(A,B)∼λ

[
wc,(A,B)

]
is

strictly less than 2α guarantees Lλ(c) < 3α.

To complete the proof, it suffices to apply the upper bound from [ENU19] which says that, to

answer the collection of statistical queries given by W̃ under non-interactive ε-LDP, with accuracy

α/4 and probability of failure at most β, the number of samples required is at most

O

(
γ2(W̃ ) log(|C|/β)

ε2α2

)
= O

(
η(C, α) log(|C|/β)

ε2α2

)
.

7.3 Lower bound

Our lower bound will follow a similar strategy as in the agnostic case. However, our construction of

hard distributions will be tailored to η(C, α) and its dual.

7.3.1 Duality

We will again use convex duality in our lower bound. We will express η(C, α) as a maximum over dual

matrices U , and we will use an optimal U to construct ‘hard distributions’ for realizable refutation.

To this end, consider the following duality lemma.
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Lemma 45. For any concept class C ⊆ {−1, 1}U and any α,

η(C, α) = max
U∈SC

∑
c∈C,a∈U (uc,(a,−c(a)) − α|uc,(a,c(a))|)

γ∗
2 (U)

, (7.3)

where we define

SC :=

{
U ∈ RC×(U×{−1,1}) : ∀c ∈ C,

∑
a∈U

(uc,(a,c(a)) + uc,(a,−c(a))) = 0

and, ∀c ∈ C,∀a ∈ U , uc,(a,−c(a)) ≥ 0

}
.

Proof. Let LC = {G ∈ RC×(U×{−1,1}) : γ2(G) ≤ t}. Let KC and K ′
C be as defined by equations (7.1)

and (7.2). By definition, η(C, α) > t if and only if LC and K ′
C are disjoint.

Given some U ∈ RC×(U×{−1,1}), we are interested in the quantities max{U · G : G ∈ LC} and

min{U · G : G ∈ K ′
C}. In particular, by the hyperplane separation theorem, since LC and K ′

C are

convex and LC is also compact, they are disjoint exactly when there exists some U ∈ RC×(U×{−1,1})

such that

max{U ·G : G ∈ LC} < min{U ·G : G ∈ K ′
C}.

By definition,

max{U ·G : G ∈ LC} = tγ∗
2(U).

Also,

min{U ·G : G ∈ K ′
C}

= min
G∈K′

C

∑
c∈C,a∈U

(uc,(a,c(a))gc,(a,c(a)) + uc,(a,−c(a))gc,(a,−c(a)))

= min
G∈KC
θ∈RC

∑
c∈C,a∈U

(uc,(a,c(a)) · (gc,(a,c(a)) + θc) + uc,(a,−c(a)) · (gc,(a,−c(a)) + θc))

= min
G∈KC

∑
c∈C,a∈U

(uc,(a,c(a)) · gc,(a,c(a)) + uc,(a,−c(a)) · gc,(a,−c(a)))

+ min
θ∈RC

∑
c∈C

θc ·
∑
a∈U

(uc,(a,c(a)) + uc,(a,−c(a)))

If, for some c ∈ C, it holds that
∑

a∈U (uc,(a,c(a)) + uc,(a,−c(a))) ̸= 0, then

min
θc∈R

θc ·
∑
a∈U

(uc,(a,c(a)) + uc,(a,−c(a))) = −∞.

Also, if there exist c ∈ C and x ∈ U such that uc,(a,−c(a)) < 0, then

min
G∈KC

uc,(a,−c(a))gc,(a,−c(a)) = −∞.
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However, in the remaining case where U is in the set SC , then

min{U ·G : G ∈ K ′
C} = min

G∈KC

∑
c∈C,a∈U

(uc,(a,c(a)) · gc,(a,c(a)) + uc,(a,−c(a)) · gc,(a,−c(a)))

=
∑

c∈C,a∈U
(−α|uc,(a,c(a))|+ uc,(a,−c(a))).

With these facts at our disposal, we obtain

η(C, α) > t ⇔ K ′
C ∩ LC = ∅

⇔ ∃U ∈ RC×(U×{±1}), max{U ·G : G ∈ LC} < min{U ·G : G ∈ KC}

⇔ ∃U ∈ SC , tγ∗
2(U) <

∑
c∈C,a∈U

(−α|uc,(a,c(a))|+ uc,(a,−c(a)))

⇔ max
U∈SC

∑
c∈C,a∈U (uc,(a,−c(a)) − α|uc,(a,c(a))|)

γ∗
2(U)

> t

Since the equivalence holds for all t ∈ R, it follows that

η(C, α) = max
U∈SC

∑
c∈C,a∈U (uc,(a,−c(a)) − α|uc,(a,c(a))|)

γ∗
2 (U)

.

7.3.2 Hard distributions

Let U ∈ RC×(U×{−1,1}) witness (7.3). By normalizing, we may assume without loss of generality that

∥U∥1 = 1. We will consider the matrices U+, U− ∈ Rm×N with non-negative entries which satisfy

U = U+−U− so that U+ and U− correspond to the positive and negative entries of U respectively.

We define the distribution π on C given by π(c) =
∑

(a,b)∈U×{−1,1} uc,(a,b). Then, for each c ∈ C, let
λc and µc be the distributions on U × {−1, 1} given by

λc(a, b) =
2u+

c,(a,b)

π(c)
and µc(a, b) =

2u−
c,a,b

π(c)
.

Since the rows of U each sum to zero and have unit ℓ1 norm, the distributions λc and µc are well-

defined. Moreover, since uc,(a,−c(a)) ≥ 0 for all c ∈ C, a ∈ U , the only negative entries of U are those

of the form uc,(x,c(x)). This implies that the distribution µc always labels samples a ∈ U by c(a).

7.3.3 Warm-up: single-concept case

Consider the case where C consists of a single concept c. Since η(C, α) > 0, then (7.3) implies∑
a∈U

uc,(a,−c(a)) >
∑
a∈U

α|uc,(a,c(a))|. (7.4)

Hence,

P
(A,B)∼λc

[c(A) ̸= B]− P
(A,B)∼µc

[c(A) ̸= B] > α ·
(

P
(A,B)∼λc

[c(A) = B] + P
(A,B)∼µc

[c(A) = B]

)
.
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Using

P
(A,B)∼µc

[c(A) = B] = 1 (7.5)

and rearranging, this gives

Lλc(c) = P
(A,B)∼λc

[c(A) ̸= B] >
2α

1 + α
.

In other words, if we can distinguish a distribution on U × {−1, 1} which labels samples according

to c from one which disagrees with c with probability greater than 2α
1+α , then we can distinguish

between λc and µc.

7.3.4 General case

It remains to generalize the lower bound of the previous section to the general case where the concept

class is not restricted to a single concept.

The first issue which needs to be addressed in the general case is that (7.4), rather than holding

in worst case over all concepts, holds on average. In particular,∑
c∈C,a∈U

uc,(a,−c(a)) >
∑

c∈C,a∈U
α|uc,(a,c(a))|.

Equivalently,

E
C∼π

[Lλ(C)] >
2α

1 + α
. (7.6)

This issue is handled by applying the binning result of Lemma 18.

The second issue which needs to be addressed is that, while each c ∈ C is guaranteed not to

fit the corresponding distribution λc, as with (7.5), it may hold that some other h : U → {−1, 1}
has small loss on λc. This is remedied by mixing a distribution σc which agrees with c into the

distribution λc. This guarantees that every h : U → {−1, 1} has large loss on σc.

The first issue is resolved in Lemma 46 by applying the binning result of Lemma 18. The second

issue will be resolved in Lemma 47.

Lemma 46. Suppose there exist families {λc}c∈C and {µc}c∈C of distributions over U , together with
a parameter distribution π over C, such that

∆ = E
C∼π

[LλC
(c)] >

2α

1 + α

while, for all c ∈ C, Lµc
(c) = 0. Further, let U ∈ RC×U be the matrix with entries uc,a = π(c)(λc(a)−

µc(a)).

Then there exist families {λ̃c}c∈C and {µ̃c}c∈C of distributions over U × {−1, 1}, together with a

parameter distribution π̃ over C, such that, for all c in the support of π̃,

Lλ̃c
(c) ≥ Ω

(
α

1 + α

/
log

(
1 + α

α

))
,

while still Lµ̃c
(c) = 0 for all c ∈ C. Moreover, the matrix Ũ ∈ RC×U with entries ũc,a = π̃(c)(λ̃c(a)−
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µ̃c(a)) satisfies

γ∗
2 (Ũ) ≤ 2αγ∗

2(U)

(1 + α)∆
.

Proof. Apply Lemma 18, with ac = Lλc
(c) for all c ∈ C, and β = α

1+α < ∆
2 , to obtain S ⊆ C such

that

π(S) ·min
c∈S

ac ≥
∆− β

O(log(1/β)
≥ ∆

O(log((1 + α)/α)
.

Let π̃ be π conditional on membership in S. Thus,

π̃(v) =

π(v)/π(S), if v ∈ S

0, otherwise.

Let τ = 2α
(1+α)∆ ∈ (0, 1). For all c ∈ C, define µ̃c = µc and λ̃c = τπ(S)λc + (1− τπ(S))µc. Then, for

all c in the support of π̃,

Lµ̃c
(c) = Lµc(c) = 0

Lλ̃c
(c) = τ · π(S) · Lλc

(c) ≥
α

1+α

O(
(
log
(
1+α
α

)) .
Moreover, the matrix Ũ ∈ RC×U with entries ũc,a = π̃(v)(λ̃v(a) − µ̃v(a)) is obtained from

the matrix τU by replacing some of its rows with the zero-vector. It follows immediately that

γ∗
2 (Ũ) ≤ τγ∗

2 (U) =
2αγ∗

2 (U)
(1+α)∆ .

Lemma 47. Suppose we have distributions λc and µc on U × {−1, 1} for each c ∈ C where:

(a) Lµc
(c) = 0;

(b) Lλc
(c) > α.

Then there exist distributions λ̃c and µ̃c for each c ∈ C such that:

(c) Lµ̃c
(c) = 0;

(d) ∀h : U → {−1, 1}, Lλ̃c
(h) > α

2 ;

(e) λ̃c − µ̃c =
1
2 (λc − µc).

Proof. For c ∈ C, let σc be the distribution on U × {−1, 1} which has the same marginal on U as

does λc, and which satisfies c(a) = b for all (a, b) in the support of σc. Also, let λ̃c =
1
2λc +

1
2σc and

µ̃c =
1
2µc +

1
2σc. Properties (c) and (e) follow immediately.

To establish property (d), notice first that, for any a ∈ U in the support of λc,

P
(A,B)∼λ̃c

[B = c(A) | A = a] ≥ 1

2
,

and also

P
(A,B)∼λ̃c

[B ̸= c(A) | A = a] =
1

2
· P
(A,B)∼λc

[B ̸= c(A) | A = a].
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For any function h : U → {−1, 1}, then

Lλ̃c
(h) = P

(A,B)∼λ̃c

[h(A) ̸= B]

=
∑

(a,b)∈U×{−1,1}

P
(A,B)∼λ̃c

[A = a] · P
(A,B)∼λ̃c

[h(A) ̸= B | A = a]

≥
∑

(a,b)∈U×{−1,1}

P
(A,B)∼λ̃c

[A = a] ·min

{
P

(A,B)∼λ̃c

[c(A) = B | A = a], P
(A,B)∼λ̃c

[c(A) ̸= B | A = a]

}

≥
∑

(a,b)∈U×{−1,1}

P
(A,B)∼λ̃c

[A = a] ·min

{
1

2
,
1

2
· P
(A,B)∼λc

[c(A) ̸= B | A = a]

}
=

1

2
·

∑
(a,b)∈U×{−1,1}

P
(A,B)∼λ̃c

[A = a] · P
(A,B)∼λc

[c(A) ̸= B | A = a]

=
1

2
· Lλc

(c)

>
α

2
.

Equipped with Lemmas 46 and 47, we are ready to prove our lower bound against realizable

refutation, Theorem 43.

Proof of Theorem 43. We define the parameter distribution π over C, and the distribution families

{λc}c∈C and {µc}c∈C over U×{−1, 1}, as in Section 7.3.2. We denote ∆ = Ec∼π [Lλc
(c)] . By equation

(7.6), together with Lemmas 46 and 47, we obtain modified families of distributions {λ̃c}c∈C and

{µ̃c}c∈C , together with a parameter distribution π̃ over C, such that, for all c in the support of π̃,

and for all functions h : U → {±1},

Lλ̃c
(h) = Ω

(
α

1 + α

/
log

(
1 + α

α

))
while Lµ̃c

(c) = 0 for all c ∈ C. By Lemmas 16, 46 and 47, we may assume further that the matrix

M̃ ∈ RC×(U×{±1}) with entries mc,(a,b) = λ̃c(a, b)− µ̃c(a, b) satisfies

∥M̃∥ℓ∞→L2(π̃) ≤
4αγ∗

2 (U)

(1 + α)∆
.

Now let M be an ε-LDP protocol which is able to distinguish a labeling by some c ∈ C from

a distribution with which every function h : U → {±1} disagrees with the labels with probability

Ω
(

α
1+α

/
log
(
1+α
α

))
. If this is true, then, for every c ∈ C in the support of π̃,

DKL(TM(λ̃n
c )∥TM(µ̃n

c )) = Ω(1). (7.7)

Meanwhile, Lemma 2 guarantees

E
C∼π̃

[
DKL(TM(λ̃n

C)∥TM(µ̃n
C))
]
≤ O(nε2) · ∥M̃∥2ℓ∞→L2(π)

,
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whereby we obtain

n = Ω

(
1

ε2 · ∥M̃∥2ℓ∞→L2(π)

)
= Ω

(
(1 + α)2∆2

ε2α2γ∗
2(U)2

)
. (7.8)

Now we may use

γ∗
2(U) =

∑
c∈C,a∈U (uc,(a,−c(a)) − α|uc,(a,c(a))|)

η(C, α)
. (7.9)

Note that, for any c ∈ C, since Lµc
(c) = 0,

1

π(c)

∑
a∈U

uc,(a,−c(a)) − α|uc,(a,c(a))|

= P
(A,B)∼λc

[c(A) ̸= B]− P
(A,B)∼µc

[c(A) ̸= B]

− α ·
(

P
(A,B)∼λc

[c(A) = B] + P
(A,B)∼µc

[c(A) = B]

)
= (1 + α) · P

(A,B)∼λc

[c(A) ̸= B]− 2α

= (1 + α) · Lλc
(c)− 2α.

Taking expectations over c ∼ π, we have∑
c∈C,a∈U

uc,(a,−c(a)) − α|uc,(a,c(a))| = (1 + α) · E
c∼π

[Lλc
(c)]− 2α

= (1 + α) ·∆− 2α. (7.10)

Putting equations (7.8), (7.9), and (7.10) together, we have

n = Ω

(
(1 + α)2∆2η(C, α)2

ε2α2((1 + α)∆− 2α)2

)
= Ω

(
η(C, α)2

ε2α2

)
.

As a corollary of Theorem 42 and Theorem 43, it follows that realizable refutability implies

realizable learnability. In particular, by Theorem 43, a sample complexity upper bound for realizable

refutability of concept class C gives an upper bound on η(C, α). Then the sample complexity upper

bound of Theorem 42 in terms of η(C, α) gives an upper bound on the number of samples required

for realizable learning of C.

Corollary 48. Let C ⊆ {−1, 1}U be a concept class. Let ε > 0, α ∈ (0, 1]. Then, for some

α′ = Ω

(
α

1 + α

/
log

(
1 + α

α

))
,

if there exists a mechanism M′ : (U × {−1, 1})n′ → {−1, 1} which (α′, 1− Ω(1)-refutes C realizably

with n′ samples, then there exists a mechanism M : (U × {−1, 1})n → {−1, 1}U which (α, β)-learns

C realizably with sample size n = O (n′ · log(|C|/β)) .
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7.4 Open problems

For the non-interactive setting, we have characterized realizable refutability, and shown that realiz-

able refutability implies realizable learnability. It is an interesting open problem to determine the

converse - whether realizable learning implies refutation. Secondly, for an arbitrary concept class C,
can we obtain a characterization of realizable learnability in terms of a quantity which is efficiently

computable from the definition of C?



Chapter 8

Equivalence between sequential

LDP and single-intrusion

pan-privacy

8.1 Overview

Pan-private mechanisms are streaming algorithms which protect against a stronger adversarial model

than does central DP, allowing for the possibility that the internal state of the algorithm may be

revealed to the adversary and guaranteeing privacy nevertheless. At the same time, pan-private

mechanisms do not impose the strong requirement of LDP where privacy is guaranteed even against

the central party responsible for aggregrating individuals’ data. Pan-private algorithms may be

categorized according to the number of intrusions which can be tolerated without compromising

privacy. In this chapter, we focus on single-intrusion pan-privacy, where privacy is guaranteed

against an adversary who observes the internal state of the mechanism at only a single point in time

during the mechanism’s execution.

Part of the initial motivation in the study of pan-privacy was the hope that it would allow for some

of the flexibility of the central model, while also protecting against a stronger adversarial model.

However, in contrast to central differential privacy which, for various learning problems, enables

exponential improvements in sample complexity relative to the local model [KLN+11, DF19] it has

been previously shown that polynomial improvements are the most one can hope for in the case

of r-intrusion pan-privacy relative to sequential local privacy when r ≥ 2. Indeed, any 2-intrusion

pan-private mechanism may be translated into a sequential local protocol with at most polynomial

blow-up in the number of samples required [AJM20]. This result is obtained by the observation that

if the internal state can be observed at two consecutive moments in time, then it must be essentially

behave as a local randomizer.

We derive a result which applies specifically to realizable and agnostic learning as opposed

to giving a general simulation. However, for these specific tasks, we obtain a surprising sample-

complexity equivalence between even single-intrusion pan-privacy and sequential LDP, showing that

the former can offer only limited sample-complexity advantages. We show, for α ∈ (0, 1], given

69
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a single-intrusion ε-pan-private mechanism which realizably (α, 1
2 + Ω(1))-learns the concept class

C ⊆ {−1, 1}U with n samples, there exists a sequential ε-LDP protocol which realizably (2α, β)-learns

C with n′ = poly(n, log |U|, 1/α) samples (Theorem 54).

This result is obtained by taking advantage of statistical query dimension (SQ dimension) which

is typically used to characterize the query complexity of learning under the statistical query model.

In particular, we rely on variants of statistical query dimension as presented in [Fel17], adapting the

definitions in that work slightly to suit our purposes. We show that, just as the query complexity of

learning via statistical queries is characterized by statistical query dimension, so too is the sample

complexity of learning under either sequential LDP or single-intrusion pan-privacy. Lower bounds

in terms of statistical query dimension for LDP and single-intrusion pan-privacy are obtained by

taking advantage of the respective information theoretic bounds which hold for these models, namely

Lemma 3, due to [DR18], and Lemma 5, due to [CSU+19]. As it turns out, the quantity which

appears in those bounds is closely related to statistical query dimension. Meanwhile, the upper

bound in terms of statistical query dimension for LDP is obtained by simulating an SQ algorithm

for learning due to [Fel17].

The relationship we derive between the sample complexities of sequential LDP and single-

intrusion pan-privacy are obtained by comparing the respective sample-complexity characterizations

of learning under these models, rather than by giving a direct reduction.

The research represented by this chapter has not been published elsewhere and is the result of

joint work with Aleksandar Nikolov and Toniann Pitassi.

8.2 LDP lower bound for realizable learning in terms of sta-

tistical query dimension

Upper and lower bounds for realizable learning may be obtained in terms of the quantity which we

will refer to as SQDR(C, α). This quantity is defined in [Fel17] where it is referred to as cRSDκ̄1

rather than SQDR. In that work, an emphasis is placed on variants of this quantity which use a tail

probability in place of an expectation, though an expectation version of statistical query dimension

is used in that work to analyze certain decision problems. Using expectation allows the quantity to

be more easily related to the information theoretic bounds we use.

Definition 49 (Statistical query dimension for realizable learning, [Fel17]). Consider a concept

class C ⊆ {−1, 1}U and an accuracy parameter α ∈ (0, 1]. Let {λv}v∈V consist of all distributions

λv on U × {−1, 1} where ∃c ∈ C, Lλv (c) = 0. Let {µw}w∈W consist of all distributions µw on

U × {−1, 1} where ∀h ∈ {−1, 1}U , Lµw(h) > α. Then the (realizable) statistical query dimension of

C for parameter α is given by

SQDR(C, α) =

(
inf

w∈W
sup
ζ

inf
v∈V

E
F∼ζ

[∣∣∣∣ E
X∼λv

[FX ]− E
X∼µw

[FX ]

∣∣∣∣]
)−1

where the supremum is taken over the distribution ζ of a random function F ∈ RU×{−1,1} satisfying

∥F∥∞ ≤ 1.
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Lemma 50. Let X = U × {−1, 1}. Consider a concept class C ⊆ {−1, 1}U and an accuracy

parameter α ∈ (0, 1].

1. C can be realizably
(
α, 1

2 − Ω(1)
)
-refuted under sequentially interactive ε-LDP with a data set

of size n;

2. SQDR(C, α) = ω
(
1
α

)
and C can be realizably

(
α
3 ,

1
2 − Ω(1)

)
-learned under sequentially interac-

tive ε-LDP with a data set of size n.

Then,

n′ = Ω

(
SQDR(C, α)2

ε2

)
.

Proof. Any choice of w ∈ W and parameter distribution π determine, along with {µv}v∈V , the

matrix Uπ,w ∈ [−1, 1]V×X with entries given by

uπ,w
v,x = π(v)(λv(x)− µw(x)).

By Lemma 16 together with Grothendieck’s inequality [Gro53], there exists a distribution π̂ with

support contained in that of π such that the matrix Mw ∈ [−1, 1]V×X with entries

mw
v,x = λv(x)− µw(x)

satisfies ∥Mw∥ℓ∞→L2(π̂) ≤ KG · ∥Uπ,w∥∞→1 for some universal constant KG. In other words,

sup
f∈RX :∥f∥∞≤1

E
V∼π̂

[(
E

X∼λV

[fX ]− E
X∼µw

[fX ]

)2
]

≤ K2
G · sup

f∈RX :∥f∥∞≤1

E
V∼π

[∣∣∣∣ E
X∼λV

[fX ]− E
X∼µw

[fX ]

∣∣∣∣]2. (8.1)

Moreover, if there exists a sequential protocol M : Xn → Z which
(
α, 1

2 − Ω(1)
)
-refutes C then it

may be used to distinguish a data set drawn from λn
π versus one drawn from µn

w. In this case, the

KL-divergence bound of Lemma 3 implies a lower bound of Ω
(

1
ε2n

)
on the left-hand side of the

previous inequality. By consequence,

sup
f∈RX :∥f∥∞≤1

E
V∼π

[∣∣∣∣ E
X∼λV

[fX ]− E
X∼µw

[fX ]

∣∣∣∣] = Ω

(
1

ε
√
n

)
.

Since this holds for any choice of distribution π, we obtain

inf
π

sup
f∈RX :∥f∥∞≤1

E
V∼π

[∣∣∣∣ E
X∼λV

[fX ]− E
X∼µw

[fX ]

∣∣∣∣] = Ω

(
1

ε
√
n

)
where the infimum is taken with respect to all distributions π on V.

By Von Neumann’s Minimax Theorem,

sup
ζ

inf
v∈V

E
V∼π

[∣∣∣∣ E
X∼λV

[fX ]− E
X∼µw

[fX ]

∣∣∣∣] = Ω

(
1

ε
√
n

)
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where the supremum is taken over the distribution ζ of a random function F ∈ RX which always

satisfies ∥F∥∞ ≤ 1. By Cauchy-Schwarz,

sup
ζ

inf
v∈V

E
F∼ζ

[∣∣∣∣ E
X∼λv

[FX ]− E
X∼µw

[FX ]

∣∣∣∣] = Ω

(
1

ε
√
n

)
Since this inequality holds for all choices of w ∈ W,

inf
w∈W

sup
ζ

inf
v∈V

E
F∼ζ

[∣∣∣∣ E
X∼λv

[FX ]− E
X∼µw

[FX ]

∣∣∣∣] = Ω

(
1

ε
√
n

)

The multiplicative inverse of the quantity on the left-hand side is SQDR(C, α). Thus, our lower

bound against refutation is obtained by rearranging to isolate n.

When sequential interactivity is allowed, it is straightforward to translate a learning algorithm

into a refutation algorithm. In particular, given the output c ∈ C of a mechanism which (α/3, 1
2 −

Ω(1))-learns C in the realizable setting, an additional O
(

1
ε2α2

)
samples suffice to estimate the loss of

c on the underlying distribution within α/3 with failure probability bounded by an arbitrarily small

constant. This allows us to (α, 1
2 − Ω(1))-refute C realizably under sequentially interactive ε-LDP.

Thus, the number of samples required for (α, 1
2 − Ω(1))-learning C under sequentially interactive

ε-LDP is at least

n = Ω

(
SQDR(C, 3α)2

ε2

)
−O

(
1

ε2α2

)
.

When SQDR(C, 3α) = ω
(
1
α

)
, then

n = Ω

(
SQDR(C, 3α)2

ε2

)
.

8.3 Lower bound against single-intrusion pan-privacy for re-

alizable learning in terms of statistical query dimension

Similar to the KL-divergence bound of Lemma 3 which we rely on to give lower bounds against

sequential LDP, this section will rely on the total variation bound of Lemma 5, a generalization

of the result of [CU21] used to obtain lower bounds against that model for a variety of learning

and estimation problems. Following the same approach as in the previous section, we show that

Lemma 5 implies a sample-complexity lower bound against single-intrusion pan-privacy for both

realizable refutation and realizable learning in terms of statistical query dimension.

Lemma 51. Let X = U × {−1, 1}. Consider a concept class C ⊆ {−1, 1}U and an accuracy

parameter α ∈ (0, 1]. Suppose at least one of the following conditions holds:

1. C can be realizably (α, β)-refuted under single-intrusion ε-pan-privacy with a data set of size

n;

2. C = ω
(
1
α

)
and C can be realizably

(
α
3 ,

1
2 − Ω(1)

)
-learned under single-intrusion ε-pan-privacy

with a data set of size n.
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Then,

n = Ω

(
SQDR(C, α)2

ε

)
.

Proof. Consider again the problem of realizable refutation where we wish to distinguish between

distributions {λv}v∈V which agree with C from those distributions {µw}w∈W on which each h ∈
{−1, 1}U has loss at least α. If, for w ∈ W and a distribution π̂ on V, M : Xn → {−1, 1} is able to

realizably
(
α, 1

2 − Ω(1)
)
-refutes by C, then, by Lemma 5,

max
f∈RX :∥f∥∞≤1

E
V∼π̂

[(
E

X∼λV

[fX ]− E
X∼µw

[fX ]

)2
]
= Ω

(
1

nε

)
.

The expression on the left-hand side is identical to the left-hand of (8.1). Hence, we may follow the

derivation of Lemma 50 to obtain our result.

8.4 Upper bounds for realizable learning in terms of SQ di-

mension

In [Fel17], the following upper bound for learning in the statistical query model is obtained in terms

of SQDR.

Theorem 52 ([Fel17]). Let X = U × {−1, 1}. Let C ⊆ {−1, 1}U be a concept class. Let d =

SQDR(C, α) Then C can be realizably (α+ 3/d, β)-learned in the statistical query model with

O
(
d3 · log(|U|) · log(1/β)

)
statistical queries of tolerance 1/

√
d.

Corollary 53. Let X = U × {−1, 1}. Let C ⊆ {−1, 1}X be a concept class. Let ε > 0. Let

α, β ∈ (0, 1]. Let d = (SQDR(C, α)). Then C can be realizably (α+3/d, β)-learned with a sequentially

interactive ε-LDP protocol M : Xn → {−1, 1}U which takes as input a data set of size

n = Õ

(
d4 · log(|U|) · log(1/β)

ε2

)
Proof. By [KLN+11], an adaptive statistical query algorithm, making T statistical queries of toler-

ance τ to an underlying distribution λ, may be simulated by a sequentially interactive ε-LDP protocol

M : Xn → {−1, 1}U which takes as input an i.i.d. data set X ∼ λn of size n = O
(

T log(T/β)
ε2τ2

)
. The

total variation between the distributions on the outputs of the two algorithms is at most β.

By applying this transformation to the statistical query algorithm given by Theorem 52, we

obtain our local protocol.

Proof. An adaptive statistical query algorithm, making T statistical queries of tolerance τ to an

underlying distribution λ, may be simulated by a single-intrusion ε-pan-private protocol M : Xn →
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{−1, 1}U which takes as input an i.i.d. data set X ∼ λn of size n = O
(

T log(T/β)
ετ

)
. The total

variation between the distributions on the outputs of the two algorithms is at most β.

Apply this transformation to the statistical query algorithm given by Theorem 52 when τ =

min(SQDR(C, α)−1, α).

8.5 Equivalence of single-intrusion pan-privacy and sequen-

tial LDP for realizable learning

Combining the lower bound of Lemma 51 and the upper bound of Corollary 53 allows us to derive

the following result, which bounds the number of samples required to learn a concept class C under

single-intrusion pan-privacy in terms of the number of samples required to learn C under sequential

LDP.

Theorem 54. Let β ∈ (0, 1/2) be a constant. Let X = U × {−1, 1}. Let C ⊆ {−1, 1}U be a concept

class. Let α ∈ (0, 1/2). Suppose at least one of the following conditions holds:

1. C can be realizably (α, 1
2 − Ω(1))-refuted under single-intrusion ε-pan-privacy with a data set

of size n;

2. C = ω
(
1
α

)
and C can be realizably

(
α
3 ,

1
2 − Ω(1)

)
-learned under single-intrusion ε-pan-privacy

with a data set of size n.

Then C can also be realizably (α + O(1/
√
εn), β)-learned under sequential ε-LDP with an input of

size

n′ = Õ
(
n2 · log(|U|) · log(1/β)

)
.

Proof. Suppose C can be realizably (α, β)-learned under single-intrusion ε-pan-privacy with an input

of size n. If either conditions 1 or 2 hold, then Lemma 51 implies

n = Ω

(
SQDR(C, α)2

ε

)
.

Equivalently,

SQDR(C, α) = O(
√
εn).

Now, by Corollary 53, C can be realizably (α+O(1/
√
εn), β)-learned under sequentially interactive

LDP given an input of size

n′ = Õ
(
n2 · log(|U|) · log(1/β)

)
.

It is straightforward to transform a sequentially interactive ε-LDP protocol into an r-intrusion

ε-pan-private protocol (for arbitrary r ≥ 1) which simulates its transcript with a data set of the

same size, as shown in [AJM20]. This is done by maintaining the transcript of the local protocol as

the internal state of the pan-private protocol.
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8.6 Characterizations of agnostic learning

While so far we have discussed statistical query dimension only in the context of realizable learning,

it is also possible, following [Fel17], to adapt these techniques to characterize agnostic learning.

Consider the following definition.

Definition 55 (Statistical query dimension for agnostic learning). Consider a concept class C ⊆
{−1, 1}U and an accuracy parameter α ∈ (0, 1]. For θ ∈ [0, 1], let {λv}v∈Vθ

consist of all distributions

λv on U × {−1, 1} where ∃c ∈ C, Lλv
(c) ≤ θ. Let {µw}w∈Wθ+α

consist of all distributions µw on

U × {−1, 1} where ∀h ∈ {−1, 1}U , Lµw
(c) > θ + α. Then the (agnostic) statistical query dimension

of C for parameter α is given by

SQDA(C, α) =

(
inf

θ∈[0,1]
inf

w∈Wθ+α

sup
ζ

inf
v∈Vθ

E
F∼ζ

[∣∣∣∣ E
X∼λv

[FX ]− E
X∼µw

[FX ]

∣∣∣∣]
)−1

where the supremum is taken over the distribution ζ of a random function F ∈ RU×{−1,1} which

always satisfies ∥F∥∞ ≤ 1.

Lower bounds against agnostic learning under sequentially interactive LDP and single-intrusion

pan-privacy in terms of SQDA(C, α) may be obtained by adapting the proofs of Lemma 50 and 51.

This is based on the observation that agnostic learning allows us to distinguish between the classes

of distributions {λv}v∈Vθ
and {µw}w∈Wθ+α

. Meanwhile, in [Fel17], it is observed that the upper

bound for realizable learning under the SQ model (Theorem 52) may be adapted to obtain an upper

bound for agnostic learning in terms of SQDA(C, α). In this way, an analogous result to Theorem 54

may be obtained for agnostic learning.

8.7 Open problems

Though we derive a relationship between the sample complexities of learning under local versus

pan-privacy (Corollary 54), we do not directly show how to translate a given pan-private learner

into a local one. This is similar to the relationship obtained between the sample complexities of

refutability and learnability, discussed in the Open Problems (Section 6.5) of Chapter 6. It would

be interesting to see a direct construction which agrees with our result.



Chapter 9

CSQ learning

9.1 Overview

The correlational statistical query (CSQ) model is a special case of the statistical query model where

each queried function q : U × {−1, 1} → [−1, 1] is required to be of the form

q(a, b) = f(a) · b

for some function f : U → [−1, 1]. Many queries of interest can be expressed in this way. In

particular, estimating the loss of a hypothesis h : U → {−1, 1} on some underlying distribution λ is

equivalent to approximating the correlation of h with λ, since

Lλ(h) =
1

2
− 1

2
· E
(A,B)∼λ

[h(A) ·B].

In this chapter, we demonstrate a close relationship between agnostic learning under the CSQ

model and agnostic learning under non-interactive LDP, enabling query complexity lower and upper

bounds for the CSQ model to be translated into sample complexity lower and upper bounds for

non-interactive LDP. To do so, we show that, just as the approximate γ2 norm characterizes the

sample complexity of agnostic learning under non-interactive LDP, it also characterizes the query

complexity of agnostic learning under the CSQ model. We give the following upper bound.

Theorem 56. There exists a CSQ algorithm such that, for any k statistical queries Q with workload

matrix W , the algorithm returns a random Z ∈ Rk such that

E [∥Wh− Z∥∞] ≤ α

with at most

J = O

(
γ2(W,α/2)2 log k

α2

)
queries of tolerance τ = 1/

√
J .

Denoting by WC the concept matrix associated with a concept class C of size k, then Applying this

result to the query workload with workload matrix (−WC ,WC) gives a CSQ algorithm for learning C

76
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agnostically with at most

J = O

(
γ2(WC , α/2)

2 log k

α2

)
queries of tolerance τ = 1/

√
J .

This may be contrasted with the lower bound which we obtain.

Theorem 57. Let α ∈ (0, 1]. Let C ⊆ {−1, 1}U be a concept class with concept matrix W ∈
{−1, 1}C×U . For some α′ = Ω(α/ log(α)), the number of queries required to learn C agnostically

with accuracy α′ via a CSQ algorithm of tolerance τ is at least

Ω

(
τ2 · γ2(W,α)

α

)
− 1

so long as τ ≤ 2α′. When τ > 2α′, then we cannot learn C agnostically with accuracy α′ via an SQ

algorithm of tolerance τ , unless C consists of only two distinct concepts c1, c2 where, for all a ∈ U ,
c1(a) ̸= c2(a).

Additionally, the algorithm we give for learning under the CSQ framework is non-adaptive while

our lower bound applies even to adaptive CSQ algorithms, implying that adaptivity adds little

additional power in the context of agnostic learning under CSQ.

The research represented by this chapter has not been published elsewhere and is the result of

joint work with Aleksandar Nikolov and Toniann Pitassi.

9.2 Upper bound

Recall that the approximate factorization norm is given by

γ2(W,α) = min{γ2(W̃ ) : ∥W − W̃∥1→∞ ≤ α/2}

where

γ2(W̃ ) = min{∥R∥2→∞∥A∥1→2 : W̃ = RA}.

Answering the linear queries associated with A allows us to reconstruct the answers to W using

R. In Chapter 5, we saw this approach applied under non-interactive LDP. We wish to use the

same approach while guaranteeing that only statistical queries are posed to the oracle. Indeed, it is

tempting to ask the statistical query oracle for the answers to the queries given by A. After all, they

are correlational statistical queries. However, doing so would cause the query complexity to scale

with the number of rows in A. Instead, we adapt the local randomizer used in that local protocol to

an analogous set of correlational queries. An alternative approach would be to apply the reduction

of [KLN+11]. Indeed it is possible to simulate binary symmetric lower randomizers in this way with

all necessary queries expressible as correlational statistical queries. However, that approach gives

slightly worse bounds.

To prove Theorem 56, we take advantage of the following characterization of subgaussian random

variables. See Chapter 2 of [BLM13] for a proof.

Fact 58. There exist universal constants C1, C2 such that:
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• If Z is a mean zero, σ-subgaussian random variable on Rm, then, for every even p, for every

v ∈ Rm, ∥⟨Z, v⟩∥p ≤ C1σ
√
p∥v∥2.

• If, for every even p, for every v ∈ Rm, the random variable Z ∈ Rm satisfies ∥⟨Z, v⟩∥p ≤
C1σ

√
p∥v∥2, then Z is σ-subgaussian.

An alternative approach to obtaining a similar result is to apply the reduction of [KLN+11] which

translates a local protocol into a statistical query algorithm. In the case where the local randomizers

are binary and symmetric, the statistical queries required for the reduction can be expressed as

correlational queries. However, the result obtained in this way is weaker than Theorem 56.

Proof of Theorem 56. Let λ be the underlying distribution X . Let h denote the probability vector

of λ so that hx is the probability of x under λ.

Similar to our approach in the local model, we take advantage of the factorization W = RA.

Without loss of generality, we may assume ∥A∥1→2 = 1 since we may scale A down by ∥A∥1→2 = 1

and R proportionally up. Furthermore, although each column is guaranteed to have ℓ1 norm at most

1, we may assume, without loss of generality, that each column has ℓ1 norm exactly 1. Otherwise,

we could redefine A ∈ Rd×T to be the matrix A′ ∈ R(d+1)×T with each column (a1, . . . , ad) extended

to (a1, . . . , ad, ad+1) where we define ad+1 =
√
1− a21 − · · · − a2d. At the same time, R ∈ Rk×d can

be redefined to be the matrix R′ ∈ Rk×(d+1) whose last row is the zero vector. In this way, the first

d entries of the answer to R′A′ will provide the answer to W = RA.

Our CSQ algorithm draws the variables Z1, . . . , ZJ from the standard multivariate Guassian

distribution N (0, I) on Rd. For each t ∈ [J ], we ask the query given by qZt
(x) = sign(⟨Zt, Aex⟩),

where ex denotes the standard basis vector of Rx corresponding to x so that Aex is column x of A.

For t ∈ [J ], let rt denote the approximation of qZt
(λ) returned by the oracle so that |rt−qZt

(λ)| ≤ τ .

We will use
√
πrtZt

2 as a proxy for Ah. In particular, we will see that
√
πrtZt

2 has expectation close

to Ah and that it is well-concentrated. Taking the average of these values, namely

1

J

∑
t∈[J]

√
πrtZt

2
,

will give us control over the concentration by our choice of J , to be determined. Using the above

average to approximate Ah, our algorithm returns the matrix product

R

 1

J

∑
t∈[J]

√
πrtZt

2

 ,

so as to obtain an approximation of Wh = RAh.

Correlationality: To see that each of the queries posed by our algorithm is in fact correlational,

note

qZt
(−x) = sign(⟨Zt, Ae−x⟩) = sign(⟨Zt,−Aex⟩) = −sign(⟨Zt, Aex⟩) = −qZt

(x),

where the second equality uses the fact that, since A is a symmetric matrix, its column x is the

additive inverse of its column −x.

Accuracy: We have

rt = qZt
(λ) + ρt(Z1, . . . , Zt),
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where ρt ∈ [−τ, τ ] is the error with which the oracle chooses to answer qZt . We regard ρt as a

random variable which can depend on Z1, . . . , Zt since the oracle may respond adversarially. We

have

R

 1

J

∑
t∈[J]

rtZt√
π

 =
1

J

∑
t∈[J]

qZt(λ)RZt√
π

+
1

J

∑
t∈[J]

ρtRZt√
π

Hence, we may bound the error of algorithm as

E

∥∥∥∥∥∥Wh−R

 1

J

∑
t∈[J]

rtZt√
π

∥∥∥∥∥∥
∞


≤ E

∥∥∥∥∥∥Wh−R

 1

J

∑
t∈[J]

qZt
(λ)Zt√
π

∥∥∥∥∥∥
∞

+ E

∥∥∥∥∥∥R
 1

J

∑
t∈[J]

ρtZi√
π

∥∥∥∥∥∥
∞

. (9.1)

We proceed by bounding each of the terms on the right-hand side, starting with the first term.

We have

E
Zt

[qZt
(λ)Zt] = E

Zt

[
E

x∼λ
[qZt

(x)Zt]

]
= E

x∼λ

[
E
Zt

[qZt
(x)Zt]

]
.

To compute the inner expectation, note that, for all x ∈ X ,

⟨qZt(x)Zt, Aex⟩ = ⟨sign(⟨Zt, Aex⟩)Zt, Aex⟩ = sign(⟨Zt, Aex⟩)⟨Zt, Aex⟩ = |⟨Zt, Aex⟩|.

Hence,

⟨E
Zt

[qZt(x)Zt], Aex⟩ = E
Zt

[⟨qZt(x)Zt, Aex⟩] = E
Zt

[|⟨Zt, Aex⟩|] =
2∥Aex∥2√

π
=

2√
π
.

Meanwhile, for any vector v ⊥ Aex,

⟨E
Zt

[qZt
(x)Zt], v⟩ = E

Zt

[qZt
(x)⟨Zt, v⟩] = E

Zt

[sign(⟨Zt, Aex⟩)⟨Zt, v⟩] = E
Zt

[sign(⟨Zt, Aex⟩)]·E [⟨Zt, v⟩] = 0

since ⟨Zt, Aex⟩ and ⟨Zt, v⟩ are independent. It follows that

E
Zt

[qZt
(x)Zt] =

2√
π
Aex,

which implies

E
Zt

[qZt
(λ)Zt] = E

x∼λ
[Aex] =

2√
π
Ah.

Hence,

E
Zt

R
 1

J

∑
t∈[J]

√
πqZt(λ)Zt

2

 = RAh = Wh.

Now we wish to show that the expression inside the expectation is concentrated around its expecta-

tion. In particular we will show that it is subgaussian. To do so, we take advantage of Fact 58. For

any v ∈ RX and any even integer p ≥ 2, we have

(E [⟨qZt(λ)Zt, v⟩p])1/p ≤ (E [|qZt(λ)|p · |⟨Zt, v⟩|p])1/p ≤ (E [|⟨Zt, v⟩|p])1/p ≤ C2
√
p∥v∥2
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so, by Fact 58, qZt
(λ)Zt is O(1)-subgaussian. Thus, 1

J

∑
t∈[J]

√
πqZt (λ)Zt

2 is O
(

1√
J

)
-subgaussian,

since it is the mean of J independent 1-subgaussian random variables. It follows then that each

co-ordinate of

R

 1

J

∑
t∈[J]

√
πqZt

(λ)Zt

2


is O

(
∥R∥2→∞√

n

)
-subgaussian. Together with the fact that its mean is Wh, this implies

∥∥∥∥∥∥Wh−R

 1

J

∑
t∈[J]

√
πqZt(λ)Zt

2

∥∥∥∥∥∥
∞

= O

(
∥R∥2→∞

√
log k√

J

)
.

It remains to bound the last term on the right-hand side of (9.1). Appealing to Fact 58, we show

the term to be subgaussian by bounding, for t ∈ [J ] for all even p, and every v ∈ RX ,∥∥∥∥∥∥
〈∑

t∈[J]

ρtZt, v

〉∥∥∥∥∥∥
p

≤
∑
t∈[J]

∥⟨ρtZt, v⟩∥p ≤
∑
t∈[J]

∥ρt⟨Zt, v⟩∥p ≤
∑
t∈[J]

τ ∥⟨Zt, v⟩ ≤ C2Jτ∥
√
p∥v∥2.

This proves
∑

t∈[J] ρtZt to be Jτ -subgaussian. Hence, 1
J

∑
t∈[J]

ρtZt√
π

is τ√
π
-subgaussian. It follows

then that each coordinate of

R

 1

J

∑
t∈[J]

√
πρtZt

2


is (

√
πτ∥R∥2→∞/2)-subgaussian. This implies

E

∥∥∥∥∥∥R
 1

J

∑
t∈[J]

√
πρtZt

2

∥∥∥∥∥∥
∞

 ≤ O

(√
πτ∥R∥2→∞

√
log k

2

)
.

Returning to (9.1), we now have

E

∥∥∥∥∥∥Wh−R

 1

J

∑
t∈[J]

√
πrtZt

2

∥∥∥∥∥∥
∞


≤ O

(√
π∥R∥2→∞

√
log k

2

)
+O

(√
πτ∥R∥2→∞

√
log k

2

)
.

In particular, if τ ≤ 1/
√
J , then

E

∥∥∥∥∥∥Wh−R

 1

J

∑
t∈[J]

√
πrtZt

2

∥∥∥∥∥∥
∞


≤ O

(
∥R∥2→∞

√
log k√

J

)
= O

(
γ2(W,α)

√
log k√

J

)
.

This allows us to guarantee that the error is bounded by α with at most

J = O

(
γ2(W,α)2 log k

α2

)
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queries.

9.3 Lower bound

The correlational variance (Definition 59) of a collection {λv}v∈[k] of distributions on U × {−1, 1}
enables lower bounds against those CSQ algorithms which, when acting on some λv, identify a

function which is correlated with λv (Lemma 60).

Definition 59 ([MS20b]). For each v ∈ [k], let λv be a distribution on U × {−1, 1}. Let π be a

distribution on [k]. The correlational variance of {λv}v∈[k] is defined by

c-var
(
{λv}v∈[k]

)
= max

f :U→[−1,1]
E

V∼π

[(
E

(A,B)∼λV

[B · f(A)]

)2
]
.

Lemma 60 (Generalization of [MS20b]). For each v ∈ [k], let λv be a distribution on U × {−1, 1}.
Let π be a distribution on [k]. Suppose we have a CSQ algorithm which, for all v ∈ [k], when

accessing λv with tolerance τ , outputs a function h : U → {−1, 1} such that∣∣∣∣ E
(A,B)∼λv

[B · h(A)]

∣∣∣∣ ≥ α. (9.2)

Then the number of queries posed by the algorithm is at least

τ2 ·

(
1

c-var
(
{λv}v∈[k]

) − 1

α2

)
.

In particular, if α = Ω(τ), then the number of queries is at least

τ2

c-var
(
{λv}v∈[k]

) −O(1).

We will use Lemma 60 to obtain lower bounds against agnostic learners in the CSQ model. In

particular, we will use the fact that (9.2) is implied by

Lλ(h) ≤
1

2
− 1

2
· α

since

Lλv
(h) =

1

2
− 1

2
·
∣∣∣∣ E
(A,B)∼λv

[B · h(A)]

∣∣∣∣ .
Lemma 61 constructs the ‘hard’ distributions for which we will obtain our lower bound. This

construction has parallels to the hard distributions used to obtain lower bounds against agnostic

learning under non-interactive LDP, though various adaptations are necessary for the current setting.

The proof of this result will rely on technical lemmas which we have used before, specifically the

exponential binning of Lemma 18 as well as the relationship between γ∗
2 and the ∞ → 2 operator

norm given by Lemma 16.
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Lemma 61. Let C ⊆ {−1, 1}U be a concept class with concept matrix W ∈ {−1, 1}C×U . Let

U ∈ {−1, 1}C×U , ∥U∥1 = 1, be the dual of W , so that

γ2(W,α) =
W • U − α

γ∗
2(U)

.

Then there exists a distribution π̂ on [k] as well as, for each v ∈ [k], a distribution λ̃v on U×{−1, 1},
such that:

1. for all v in the support of π̂,

E
(A,B)∼λ̃v

[B · cv(A)] ≥ α

O(log(1/α))
;

2. the matrix M̃ ∈ RC×U with entries m̃v,a = λv(a, 1)− λv(a,−1) satisfies

∥M̃∥ℓ∞→L2(π̂) ≤
4αγ∗

2 (U)

W • U
.

Proof. For all v ∈ [k], let

π(v) =
∑
v∈[k]

|uv,a|.

For v ∈ [k], a ∈ U , let

λv(a, 1) = u+
v,a/π(v)

λv(a,−1) = u−
v,a/π(v).

Our dual formulation implies W • U > 0. Thus,

E
V∼π

[
E

(A,B)∼λV

[B · cV (A)]

]
= W • U > 0.

However, we want a lower bound on E
(A,B)∼λV

[B · cV (A)] which holds for all v ∈ [k].

To remedy this issue, apply Lemma 18 with av = E
(A,B)∼λv

[B · cv(A)] and β = α/4 to obtain a

set S ⊆ [k] as guaranteed by the lemma.

Define π̃ as π conditional on S. In particular,

π̃(v) =

π(v)/π(S), if v ∈ S

0, otherwise.

For v ∈ [k], let

λ̃v(a, 1) =
1 + τπ(S) · (λv(a, 1)− λv(a,−1))

2
,

λ̃v(a,−1) =
1− τπ(S) · (λv(a, 1)− λv(a,−1))

2

where τ = α
W•U . In this way,

λ̃v(a, 1)− λ̃v(a,−1) = τπ(S) · (λv(a, 1)− λv(a,−1)) .
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It follows that the matrix Ũ ∈ RC×U with entries ũv,a = π̃(v) (λv(a, 1)− λv(a,−1)) satisfies

ũv,x =

τuv,x, if v ∈ S

0, otherwise.

It is easy to see from the definition of γ∗
2 that this implies γ∗

2(Ũ) ≤ γ∗
2 (U).

Moreover, for all v ∈ [k],

E
(a,b)∼λ̃v

[b · cv(a)] = τπ(S) E
(a,b)∼λ̃v

[b · cv(a)] ≥
α

O(log(1/α))
.

Let M̃ ∈ RC×U be the matrix with entries m̃v,a = λv(a, 1) − λv(a,−1). Applying Lemma 16 to

M̃ and π̃, gives a distribution π̂ on [k] such that

∥M̃∥ℓ∞→L2(π̂) ≤ 4γ∗
2(Ũ) ≤ 4αγ∗

2(U)

W • U
.

Finally, we are equipped to prove the lower bound.

Proof of Theorem 57. Let λ̃1, . . . , λ̃k and π̃ be the distributions guaranteed to exist by Lemma 61.

The matrix M̃ has entries m̃v,a = λ̃v(a, 1)− λ̃v(a,−1) and satisfies

∥M̃∥ℓ∞→L2(π̂) ≤ γ∗
2(U) ≤ 4α

γ2(W,α)
.

In other words,

max
f :U→[−1,1]

E
V∼π̂

( E
(A,B)∼λ̃V

[B · f(A)]

)2
 ≤ 4α

γ2(W,α)
.

At the same time, we have

E
(A,B)∼λ̃v

[B · cv(A)] ≥ α′, for some α′ = Ω

(
α

log(1/α)

)
.

Equivalently,

Lλv (cv) ≤
1

2
− α′

2
.

If we can learn C with accuracy α′/4 on distribution λv, then we can identify some h : U → {±1}
such that

Lλv (h) ≤ min
v∈[k]

Lλv (cv) +
α′

4
≤ 1

2
− α′

4
.

By Lemma 60, achieving this for each v ∈ [k], with a CSQ algorithm making queries of tolerance τ ,

requires the number of queries to be at least

τ2 ·
(
γ2(W,α)

α
− 1

(α′)2

)
.

In the case where τ ≤ α′, this gives the desired bound.
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It remains to consider the trivial case where τ > α′ and the concept class consists of distinct

concepts c1, c2 ∈ C such that, for some a1 ∈ U , c1(a1) = c2(a1). To be distinct, the concepts must also

disagree on some a2 ∈ U so that c1(a2) ̸= c2(a2). Let ρ = α′/2. Consider the distribution λ which

gives the sample (a1, c1(a1)) = (a1, c1(a1)) with probability 1− ρ and gives the sample (a2, c1(a2))

with probability ρ. Consider also the distribution µ which gives the sample (a1, c1(a1)) = (a1, c1(a1))

with probability 1− ρ and gives the sample (a2, c2(a2)) with probability ρ. For q : (U × {−1, 1}) →
[−1, 1], we have |q(λ) − q(µ)| ≤ 2ρ. Hence, a statistical query oracle of tolerance τ > 2ρ = α′ can

give the same answer to the query given by q regardless of whether the underlying distribution is λ

or µ. However, any particular hypothesis h : U → {−1, 1} must have loss at least ρ/2 on at least one

of λ or µ so a learner of accuracy α′ = ρ/2 cannot return the same hypothesis on both distributions.

9.4 Open problems

It has been a recurring theme in this work (see Section 6.5 and Section 8.7) that the equivalences

we show – like the one for learning between the query complexity of CSQ algorithms and the

sample complexity of non-interactive LDP – are indirect, reliant on showing that the given tasks

are characterized by the same quantity. Instead, it would be nice to see a direct reduction which

translates one type of algorithm directly into the other.

It would also be nice to see a tighter characterization of CSQ learning in terms of the approximate

γ2 norm.



Appendix A

Information-theoretic bounds

A.1 Mutual information bound for sequential interactivity

Proof of Lemma 1 for sequential interactivity. Let M : Xn → Z be a sequentially interactive local

protocol. Consider a random dataset X = (X1, . . . , Xn) ∈ Xn. Each agent i returns some random

Yi ∈ Y which depends only on their input Xi and, when i ≥ 2, the outputs Y1, . . . , Yi−1 of the pre-

vious local agents. Without loss of generality, we may assume that Yi is independent of Y1, . . . , Yi−1

conditional on Xi and Yi−1, since, if necessary, we may transform the protocol by having each agent

relay the messages of the previous agents along with their own. Since M is ε-LDP, then

∀i ∈ [n], S ⊆ Y, yi−1 ∈ Y, xi, x
′
i ∈ X ,

Pr(Yi ∈ S | Yi−1 = yi−1, Xi = xi)

Pr(Yi ∈ S | Yi−1 = yi−1, Xi = x′
i)

≤ eε

The key observation we rely on is that each Yi satisfies an analogous privacy criteria when viewed

as a function of the entire sequence of samples X. In particular,

∀i ∈ N, S ⊆ Y, yi−1 ∈ Z, x, x′ ∈ Xn,
Pr(Yi ∈ S | Yi−1 = yi−1, X = x)

Pr(Yi ∈ S | Yi−1 = yi−1, X = x′)
≤ eε. (A.1)

It is worth emphasizing here that x ∈ Xn and x′ ∈ Xn are allowed to be arbitrary datasets,

not necessarily adjacent. The bound is a consequence of our assumptions regarding conditional

independence which imply

Pr(Yi ∈ S | Yi−1 = yi−1, X = x) = Pr(Yi ∈ S | Yi−1 = yi−1, Xi = xi)

Pr(Yi ∈ S | Yi−1 = yi−1, X = x′) = Pr(Yi ∈ S | Yi−1 = yi−1, Xi = x′
i).

We compute mutual information by application of the chain rule.

I
(
Y1, . . . , Yn ; X

)
=

n∑
i=1

I ( Yi ; X | Y1, . . . , Yi−1)

=

n∑
i=1

I ( Yi ; X | Yi−1)

85
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It remains to bound each of the terms in the last expression. Indeed, by (A.1), we have

sup
yi,x

[
log

Pr[(Yi, X) = (yi, x) | Yi−1 = yi−1]

Pr[Yi ⊗X = (yi, x) | Yi−1 = yi−1]

]
(A.2)

≤ sup
yi,x

[
log

Pr[Yi = yi | X = x, Yi−1 = yi−1]

Pr[Yi = yi | Yi−1 = yi−1]

]
≤ sup

yi,x

[
log

Pr[Yi = yi | X = x, Yi−1 = yi−1]∑
x′∈Xn Pr[Yi = yi | X = x′, Yi−1 = yi−1] · P

[
X = x′ | Yi−1 = yi−1

]]
≤ ε

with the supremums taking yi and x over the supports of (Yi | Yi−1 = yi−1) and (X | Yi−1 = yi−1)

respectively. Here, Yi⊗X denotes a random variable from Y ×Xn where its component from Y has

the same marginal distribution as Yi and its component from Xn has the same marginal distribution

as X, while, at the same, the two components are independent of each other. The quantity (A.2) is

sometimes referred to as the “max divergence,” in this case between (Yi, X) = (yi, x) | Yi−1 = yi−1

and Yi ⊗ X = (yi, x) | Yi−1 = yi−1. It corresponds to a worst-case variant of KL-divergence, the

latter being an average-case variant. By Lemma 3.18 of [DR14], an upper bound on max-divergence

can surprisingly be translated into a tighter upper bound on KL-divergence. Applying that result,

we obtain

I
(
Yi ; X | Yi−1 = yi−1

)
=DKL

(
(Yi, X | Yi1 = yi−1) ∥ (Yi ⊗X | Yi−1 = yi−1)

)
= E

(yi,x)∼(Yi,X | Yi−1=yi−1)

[
log

Pr[(Yi, X) = (yi, x) | Yi−1 = yi−1]

Pr[Yi ⊗X = (yi, x) | Yi−1 = yi−1]

]
≤ε · (eε − 1).

Substituting back into (A.1) and using the fact that, for ε = O(1), eε − 1 = O(ε), we obtain

I
(
Y1, . . . , Yn ; X

)
≤ nε(eε − 1) = O(nε2).

It is straightforword to extend this analysis to account for compositional LDP. In particular, each

round may be analyzed in the same way by conditioning on the transcript of previous rounds.

A.2 Total variation bound for single-intrusion pan-private

protocols

Proof of Lemma 5. For i ∈ {0, . . . , n}, define ζi = M(µi, λn−i
π ). Ultimately, we wish to bound

dTV (M(λn
π),M(µn)) = dTV (ζ0, ζn) .

To do so, we apply the triangle inequality to obtain

dTV (ζ0, ζn) ≤
∑
i∈[n]

dTV(ζi−1, ζi) (A.3)



APPENDIX A. INFORMATION-THEORETIC BOUNDS 87

and proceed by bounding each of the terms dTV(ζi−1, ζi).

Let V ∼ π. Conditional on V = v, let X1, . . . , Xn ∼ λn
v . Let X ′

1, . . . , X
′
n ∼ µn. Then a sample

from ζi−1 is given by

Yi = M(X ′
1, . . . , X

′
i−1, Xi, . . . , Xn),

while a sample from ζi is given by

Y ′
i = M(X ′

1, . . . , X
′
i, Xi+1, . . . , xn).

Note that Yi may be viewed as a post-processing of the internal state

Ii(X
′
1, . . . , X

′
i−1, Xi) = Mi(Xi, Ii−1(X

′
1, . . . , X

′
i−1)).

Similarly, Y ′
i may be viewed as the same post-processing of of the internal state

Ii(X
′
1, . . . , X

′
i−1, X

′
i) = Mi(X

′
i, Ii−1(X

′
1, . . . , X

′
i−1)).

For notational simplicity, we allow total variation and KL-divergence to take random variables as

input, in which case we consider those quantities as being applied to the distributions of those

random variables. We have

dTV(ζi−1, ζi)
2

≤ dTV((Ii(X
′
1, . . . , X

′
i−1, Xi), Xi+1, . . . , Xn), (Ii(X

′
1, . . . , X

′
i), Xi+1, . . . , Xn))

2, by post-processing

≤ DKL

(
(Ii(X

′
1, . . . , X

′
i−1, Xi), Xi+1, . . . , Xn) ∥ (Ii(X

′
1, . . . , X

′
i), Xi+1, . . . , Xn)

)
, by Pinsker’s inequality

≤ E
V∼π

[
DKL

(
Ii(X

′
1, . . . , X

′
i−1, Xi), Xi+1, . . . , Xn | V ∥ Ii(X

′
1, . . . , X

′
i), Xi+1, . . . , Xn | V

)]
, by convexity

≤ E
V∼π

[
DKL

(
Ii(X

′
1, . . . , X

′
i−1, Xi) ∥ Ii(X

′
1, . . . , X

′
i) | V

)]
, by independence

≤ O(ε2) · E
V∼π

[
(f(λV )− f(µ))

2
]
.

The last inequality follows by viewing Ii as an ε-private local randomizer, with its input being the

ith element – either Xi or X
′
i – and the random variables X ′

1, . . . , X
′
i and Xi, . . . , Xn being thought

of as components of its internal randomness. In this way, we may apply the same argument as used

in the proof of Lemma 2. Substituting back into (A.3) gives the desired bound.
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Characterization of linear query

release under non-interactive LDP

B.1 Properties of γ∗
2

Proof of Lemma 15. By Lemma 14, there exist diagonal matrices P ∈ Rk×k and Q ∈ RT×T , satis-

fying Tr(P 2) = Tr(Q2) = 1, and a matrix Ũ such that U = PŨQ and ∥Ũ∥2→2 ≤ γ∗
2(U). Define

S = {i : p2ii ≤ 2
k}. Then Markov’s inequality shows that |S| ≥ k

2 . Furthermore,

γ∗
2 (U) ≥ ∥Ũ∥2→2 ≥ ∥ΠSŨ∥2→2 ≥

√
k

2
∥ΠSPŨ∥2→2,

where the first inequality follows because multiplying by a projection matrix can only decrease the

∥ · ∥2→2 norm of the matrix, and the second inequality follows by the definition of S.

To finish the proof, we observe that

∥ΠSPŨ∥2→2 ≥ ∥ΠSPŨQ∥∞→2 = ∥ΠSU∥∞→2.

Indeed, for any x ∈ RT , we have

ΠSPŨQx ≤ ∥ΠSPŨ∥2→2∥Qx∥2
≤ ∥ΠSPŨ∥2→2

√
Tr(Q2)∥x∥∞

= ∥ΠSPŨ∥2→2∥x∥∞,

where the second inequality follows from Hölder’s inequality.

Proof of Lemma 16. Without loss of generality, we may assume π takes rational values. In partic-

ular, let k̃ ∈ Z be such that π(i) · k̃ ∈ Z for all i ∈ [k]. Then M and π may be used to define the

matrix M̃ ∈ Rk̃×X , obtained by taking, for each i ∈ [k], π(i) · k̃ copies of row i from M .

By Lemma 15, there exists a set S ⊆ [k̃], |S| ≥ k̃
2 , such that

√
k̃
2∥ΠSM̃∥∞→2 ≤ γ∗

2(M̃). Use S

to define the function π̃ : [k] → [0, 1] where k̃π̃(i) is the number of rows selected from M̃ by S which

correspond to row i from M . Since |S| ≥ k̃
2 , then

∑
i∈[k] π̃(i) ≥

1
2 .
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The equality
√
k̃∥M∥ℓ∞→L2(π̃) = ∥ΠSM̃∥∞→2 follows because, for all f ∈ RX ,

∥ΠSM̃f∥22 =
∑
i∈S

(M̃v,∗ · f)2 = k̃
∑
v∈[k]

π̃(v)(Mv,∗ · f)2 = k̃∥Mf∥2L2(π̃)

where we have denoted row v of M̃ by M̃v,∗.

To show γ∗
2 (M̃) ≤ k̃γ∗

2(U), let ỹ1, . . . , ỹk, z1, . . . , zT be unit vectors in ℓ2-norm which satisfy

γ∗
2 (M̃) =

k̃∑
i=1

T∑
j=1

m̃i,j ỹ
⊤
i zj ,

as they are guaranteed to exist by Lemma 13. Without loss of generality, we may assume that if

two rows i and i′ of M̃ have identical entries, then ỹi = ỹi′ . Now, for all i ∈ [k], let yi = ỹ̃i, where ĩ

is one of the rows of M̃ which was copied from row i in M . Then

γ∗
2 (M̃) =

k̃∑
i=1

T∑
j=1

m̃i,j ỹ
⊤
i zj = k̃

k∑
i=1

T∑
j=1

π(i)mi,jy
⊤
i zj

= k̃

k∑
i=1

T∑
j=1

ui,jy
⊤
i zj ≤ k̃γ∗

2(U).

Altogether, this gives

∥M∥ℓ∞→L2(π̃) =

√
2

k̃
∥ΠSM̃∥∞→2 ≤ 2

k̃
γ∗
2 (M̃) ≤ 2γ∗

2(U).

Finally, normalize π̃ to obtain the probability distribution π̂, given by π̂(i) = π̃(i)∑
i π̃(i)

. Since∑
i π̃(i) ≥

1
2 , then π̂(i) ≤ 2π̃(i). This implies ∥M∥ℓ∞→L2(π̂) ≤ 2∥M∥ℓ∞→L2(π̃), from which we get

∥M∥ℓ∞→L2(π̃) ≤ 4γ∗
2 (U). Since the rows that were copied from M to obtain M̃ corresponded to

those rows of U which were assigned non-zero probability by π, then, by the definitions of p̃i and π̂,

it follows that the support of π̂ is a subset of the support of π.

B.2 Scaling and subadditivity properties of approximate γ2

Lemma 62 (Scaling properties of γ2). Consider a matrix W ∈ Rk×T . Let α ≥ 0. Let t ∈ [0, 1].

Then,

t · γ2(W,α) = γ2(tW, tα).

When α = 0, this gives t · γ2(W ) = γ2(tW ).

Proof.

t · γ2(W,α) = t ·min{∥R∥2→∞∥A∥1→2 : ∥W −RA∥ ≤ α}

= min{∥R′∥2→∞∥A′∥1→2 : ∥tW −R′A′∥ ≤ t · α}

= γ2(tW, tα)
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Lemma 63 (Subadditivity for γ2). For matrices W1,W2 ∈ Rk×T ,

γ2(W1 +W2) ≤ γ2(W1) + γ2(W1).

Proof. By definition, there exist matrices R1, R2, A1, A2 satisfying W1 = R1A1 and W2 = R2A2

such that γ2(W1) = ∥R1∥2→∞∥A1∥1→2 and γ2(W2) = ∥R2∥2→∞∥A2∥1→2. By rescaling if necessar,

we may assume without loss of generality that ∥R1∥2→∞ = ∥A1∥1→2 =
√
γ2(W1) and ∥R2∥2→∞ =

∥A2∥1→2 =
√

γ2(W2). Now define

R =
[
R1 R2

]
A =

[
A1

A2

]

Then, RA = R1A1 +R2A2 = W1 +W2. Recall also that the 2 → ∞ norm is given by the maximum

ℓ2 norm of a row. Thus,

∥R∥22→∞ = ∥R1∥22→∞ + ∥R2∥22→∞ = γ2(W1) + γ2(W2).

Also, since the 1 → 2 norm is given by the maximum ℓ2 norm of a column, then

∥A∥21→2 = ∥A1∥21→2 + ∥A2∥21→2 = γ2(W1) + γ2(W2).

Therefore,

∥R∥2→∞∥A∥1→2 = γ2(W1) + γ2(W2)

and hence

γ2(W1 +W2) ≤ γ2(W1) + γ2(W2).

Lemma 64 (Subadditivity for approximate γ2). Consider matrices W1,W2 ∈ Rk×T . Let α > 0.

Let t ∈ [0, 1]. Then,

γ2(W1 +W2, α) ≤ γ2(W1, t · α) + γ2(W2, (1− t) · α).

Proof. By definition,

γ2(W1, t · α) = γ2(W1 + E1), γ2(W2, (1− t) · α)) = γ2(W2 + E2)

for some matrices E1, E2 ∈ Rk×T which satisfy ∥E1∥∞ ≤ t · α and ∥E2∥∞ ≤ (1 − t) · α. Thus, by

Lemma 63, we have

γ2(W1, t · α) + γ2(W2, (1− t) · α)) = γ2(W1 + E1) + γ2(W2 + E2)

≥ γ2(W1 +W2 + E1 + E2)

≥ γ2(W1 +W2, α).
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B.2.1 γ2(W,α) versus γ̂2(W,α)

Proof of Lemma 22. First, we prove the upper bound on γ̂2(W,α). Recall that, by definition

γ̂2(W,α) = min{γ2(Ŵ , α) : Ŵ = W + c1T , c ∈ Rk}.

In particular, if c is the zero vector, then

γ̂2(W,α) ≤ γ2(W + c1T , α) = γ2(W,α).

Now, let us prove the lower bound on γ̂2(W,α). Consider an arbitrary vector c ∈ Rk. We have

γ2
(
W + c1T , α

)
≥ max

v,x
|wv,x + cv| − α

≥ max
v

|cv| −max
v,x

|wv,x| − α

≥ max
v

|cv| − 1− α

= γ2
(
c1T

)
− 1− α.

The first inequality uses the property that, for an arbitrary matrix M with entries mv,x, γ2(M) ≥
maxv,x |mv,x|. The equality uses the fact that γ2

(
c1T

)
= maxv |cv|.

Now, the subadditivity property of approximate γ2, as given by Lemma 63, implies

γ2(W ) ≤ γ2(W + c1T , α/2) + γ2(c1
T , α/2)

≤ 2γ2(W + c1T , α/2) + 1 + α.

Since this holds for all choices of c ∈ Rk, we obtain γ2(W ) ≤ 2γ̂2(W,α/2) + 1 + α.

B.3 Parities

To obtain a tight lower bound on answering parities, we take advantage of mutual information upper

bound Lemma 4 from [DJW18], closely related to the KL-divergence bound of Lemma 2. This result

extends the unpublished result of [Ull18].

Theorem 65. Let d ∈ N, d > 3, and let w ∈ N, 1 ≤ w < d. Let ε, α > 0 be bounded above by some

arbitrary constant. Let V = {S ⊆ [d], |S| ≤ w} and let Qparity
d,w be the family of statistical queries over

the domain X = {−1, 1}d which contains, for every s ∈ V, the statistical query qS(x) =
∏

j∈S xj.

Suppose M : Xn → V is an ε-differentially private local protocol which satisfies, for all data sets

x ∈ Xn,

∀x ∈ Xn, P
M

[
qM(x)(x) ≥ max

t∈V
qt − α

]
≥ 2

3
. (B.1)

Then,

n = Ω

((
d
w

)
· log

(
d
w

)
ε2α2

)
.

Proof. To simplify our argument, we consider a symmetric variant of the problem instead. For
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S ∈ V, b ∈ {−1, 1}, consider the distribution over the input space {−1, 1}d defined by

λS,b = α · (µ | qS(·) = b) + (1− α) · µ

where µ is the uniform distribution over {−1, 1}d. Let (S, B) be drawn uniformly at random from

V × {−1, 1}. Conditional on (S, B) = (S, b), let X = (X1, . . . , Xn) ∈ Xn consist of i.i.d. samples

from λs,b. We show a lower bound on the number of samples required to infer (S, B) from x under

local differential privacy. In particular, we will assume M′ : Xn → V×{−1, 1} is an ε-LDP protocol

which satisfies

P
S,B,X,M

[
M′(X) = (S, B)

]
≥ 1

3
. (B.2)

Note that the protocol M which satisfies (B.1) allows us to obtain a protocol ε-LDP M′ which,

conditional on B = 1, succeeds in identifying (S, B) with probability 2/3. Since B is uniform on

{−1, 1}, this implies also that M′ also satisfies (B.2). Thus it suffices to provide a lower bound on

the number of samples required by M′, which we proceed to do now.

By Lemma 1, the transcript of M′ satisfies

I ( TM′(x) ; B,S ) ≤ O(nε2) · max
f∈RX :∥f∥∞≤1

E
S,B

[(
E

x∼λS,B

[fx]− E
x∼λ

[fx]

)2
]

(B.3)

where λ is the mixture of λs,b with respect to the distribution of (S, B). By the symmetry of parities,

namely P
x∼µ

[qS(x) = 1] = P
x∼µ

[qS(x) = −1] for all S ⊆ [d], it follows from the definition of λS,b that

λ = µ. Thus it remains, for arbitrary f ∈ RX satisfying ∥f∥∞ ≤ 1, to bound

E
S,B

[(
E

X∼λS,B

[fX ]− E
X∼µ

[fX ]

)2
]
.

Consider the Fourier transform given for S ⊆ [d], |S| ≤ w, by

f̂S = E
x∼µ

[fx · qS(x)].

We will take advantage of Parseval’s identity which says∑
s⊆[d]

f̂2
S = E

X∼µ

[
f2
X

]
.
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From the definition of λS,b, we get

E
X∼λS,b

[fX ]− E
X∼µ

[fX ]

= α · E
X∼µ

[fX | qS(X) = b]− α · E
X∼µ

[fX ]

= α ·
(
1

2
· E
X∼µ

[fX | qS(X) = b]− 1

2
· E
X∼µ

[fX | qS(X) = −b]

)
(B.4)

= αb ·
(
1

2
· E
X∼µ

[fX · qS(X) | qS(X) = b] +
1

2
· E
X∼µ

[fX · qS(X) | qS(X) = −b]

)
= αb ·

(
E

X∼µ
[fX · qS(X)]

)
(B.5)

= αb · f̂S

where (B.4) and (B.5) make use of the fact Prx∼µ[qS(x) = b] = Prx∼µ[qS(x) = −b]. It follows that

E
S,B

[(
E

X∼λS,B

[fX ]− E
X∼µ

[fX ]

)2
]
= α2 · E

S

[
f̂2
S

]
=

α2(
d
w

) · ∑
S⊆[d]
|S|≤w

f̂2
S

≤ α2(
d
w

) · E
X∼µ

[
f2
X

]
(B.6)

≤ α2(
d
w

)
since (B.6) is a consequence of Parseval’s identity. Together with (B.3), this says

I
(
TM′(X) ; S, B

)
≤ O(nε2) · α2(

d
w

) . (B.7)

The advantage of bounding I
(
TM′(X) ; S, B

)
instead of the KL-divergence quantity of Lemma 2

is that it allows us to apply Fano’s inequality. In particular, for the post-processing function A′

associated with M′, we have

P
[
A′(TM′(X)) ̸= (S, B)

]
≥

H
(
(S, B) | TM′(X)

)
− 1

log(|V × {−1, 1}| − 1)
.

We may apply the identity I
(
TM′(X) ; (S, B)

)
= H ((S, B) | −)H

(
(S, B) | TM′(X)

)
together

with H ((S, B) | =) log(|V × {−1, 1}|) to obtain

P
[
A′(TM′(X)) = (S, B)

]
≤

I
(
TM′(X) ; (S, B)

)
+ 1

log(|V × {−1, 1}| − 1)
.

With our mutual information bound (B.7), this gives

1

3
≤ P

[
A′(TM′(X)) = (S, B)

]
≤ O(nε2α2) + 1(

d
w

)
· log(

(
d
w

)
− 1)

.
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Since d ≥ 3 together with 1 ≤ w < d implies
(
d
w

)
≥ 3, we obtain

n = Ω

((
d
w

)
· log

(
d
w

)
ε2α2

)
.



Appendix C

Characterization of agnostic

learning under non-interactive

LDP

C.1 Duality for γ2(W,α) and the Dual Norm

Proof of Lemma 32. Note that W•U−α∥U∥1

γ∗
2 (U) is scale-free, and

max
U ̸=0

W • U − α∥U∥1
γ∗
2(U)

= max{W • U − α∥U∥1 : γ∗
2 (U) = 1}.

Since the set {U : γ∗
2 (U) = 1} is compact, the maximum is achieved. Let us then define t =

max W•U−α∥U∥1

γ∗
2 (U) for the rest of the proof.

Let us first check that t ≤ γ2(W,α). Let U ̸= 0, and let W̃ achieve γ2(W̃ ) = γ2(W,α) and

∥W − W̃∥1→∞ ≤ α. Then

W • U = W̃ • U + (W − W̃ ) • U

≤ γ2(W̃ )γ∗
2 (U) + ∥W − W̃∥1→∞∥U∥1

≤ γ2(W,α)γ∗
2 (U) + α∥U∥1.

The first inequality follows by the trivial case of Hölder’s inequality, and the definition of γ∗
2 . Rear-

ranging shows that t ≤ γ2(W,α).

Let us now show the harder direction, t ≥ γ2(W,α). Suppose this was false, and we had

γ2(W,α) > t. We will show this implies that there exists a U ̸= 0 such that W•U−α∥U∥1

γ∗
2 (U) > t,

a contradiction. Let S = {B ∈ Rk×T : γ2(B) ≤ t} and T = {C ∈ Rk×T : ∥W − C∥1→∞ ≤ α}.
Then γ2(W,α) > t equivalently means S ∩ T = ∅. Since both S and T are convex and compact,

and S ∩ T = ∅, the hyperplane separator theorem [Roc97, Corollary 11.4.2] implies that there is a

hyperplane separating them, i.e. there is a matrix U ∈ Rk×T \ {0} such that

max{B • U : B ∈ S} < min{C • U : C ∈ T}. (C.1)
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The left-hand side equals tγ∗
2 (U), by definition. The right-hand side equals

min{W • U − (W − C) • U : C ∈ T}

= W • U −max{(W − C) • U : C ∈ T}

= W • U −max{E • U : ∥E∥1→∞ ≤ α}

= W • U − α∥U∥1,

where the last equality again uses the trivial case of Hölder’s inequality. Therefore, (C.1) is equivalent

to tγ∗
2 (U) < W • U − ∥U∥1, which is what we wanted to prove.

C.2 Symmetrization

Proof of Lemma 34. Since the ∥ · ∥2→∞ and ∥ · ∥1→2 norms are both non-increasing with respect to

taking submatrices, the same holds also for the γ2 norm, and, therefore, γ2(W
+) ≤ γ2(W ). In the

reverse direction, if R+A+ = W+ is a factorization achieving γ2(W ), then R+A = W , where A is

defined by aq,x = −aq,−x = a+q,x for any q ∈ Q, and any x ∈ X+. Clearly, ∥A∥1→2 = ∥A+∥1→2,

and, therefore, the factorization R+A certifies γ2(W ) ≤ ∥R+∥2→∞∥A∥1→2 = γ2(W
+). The two

inequalities imply γ2(W ) = γ2(W
+).

Next we show that γ2(W
+, α) ≤ γ2(W,α). Note that if W̃ is the approximation of W that

achieves γ2(W,α), and W̃+ is the submatrix of W̃ consisting of the columns indexed by X+, then

∥W̃+ −W+∥1→∞ ≤ α, and, by the argument above,

γ2(W,α) ≤ γ2(W̃
+) ≤ γ2(W̃ ) = γ2(W,α).

To show the reverse inequality γ2(W,α) ≤ γ2(W
+, α), take an approximation W̃+ achieving γ2(W

+, α),

and extend it to W̃ ∈ RQ×X by defining w̃q,x = −w̃q,−x = w̃+
q,x for all q ∈ Q and x ∈ X .

Then, clearly, ∥W̃ − W∥1→∞ ≤ α, and, by the argument above, γ2(W̃ ) = γ2(W̃
+). By exten-

sion, γ2(W̃ , α) = γ2(W̃
+, α) The remaining part of our claim follows from W • U = W+ • U+,

∥U∥1 = ∥U+∥1, and γ∗
2(U

+) = γ2(U). The only one of these equalities which is non-trivial is the

last one. To see why it holds, note that, first, because γ∗
2 is the dual norm of γ2, it is, indeed, a

norm, and, by homogeneity and the triangle inequality,

γ∗
2 (U) ≤ 1

2
γ∗
2 (U

+) +
1

2
γ∗
2 (U−) =

1

2
γ∗
2 (U

+) +
1

2
γ∗
2(−U+) = γ∗

2(U
+).

In the other direction, let V + ∈ RQ×X+

be such that V + • U+ = γ∗
2(U

+) and γ2(V
+) = 1. Then,

we can extend V + to V ∈ RQ×X by setting vq,x = −vq,−x = v+q,x for all q ∈ Q and x ∈ X+. By the

discussion above, γ2(V ) = γ2(V
+), and, moreover,

γ∗
2 (U) ≥ V • U = V + • U+ = γ∗

2 (U
+).

This completes the proof.
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C.3 Equivalence of approximate γ2 norms of difference and

concept matrices

We prove Lemma 38, the equivalence of the approximate γ2 norm for the concept matrix WC (Defi-

nition 28) and difference matrix DC of C (Definition 37), via the following three lemmas.

Lemma 66. Let C be a concept class with concept matrix W ∈ RC×U and difference matrix DC ∈
RC2×U . Then γ2(DC , α) ≤ γ2(W,α).

Lemma 67. Let C be a concept class closed under negation. Let W ∈ C × U be its concept matrix

and let DC ∈ RC2×U be its difference matrix. Then γ2(W,α) ≤ γ2(DC , α).

Lemma 68. Let C be a concept class. Let W ∈ RC×U be its concept matrix and let DC ∈ RC2×U be

its difference matrix. Then γ2(W,α) ≤ 2γ2(DC , α/2) + 1.

Proof of Lemma 66. Let W̃ ∈ C × U witness γ2(W,α) so that ∥W − W̃∥1→∞ ≤ α and γ2(W,α) =

γ2(W̃ ).

Let W ′ ∈ RC2×U be the matrix with entries w′
(c,c′),a = w̃c,a. Similarly, let W ′′ ∈ RC2×U be the

matrix with entries w′′
(c,c′),a = w̃c′,a. Since W ′ and W ′′ are obtained from W̃ by duplicating rows,

γ2(W,α) = γ2(W̃ ) = γ2(W
′) = γ2(W

′′).

Now consider the matrix D̃C = 1
2 (W

′ −W ′′). By subadditivity and scaling properties,

γ2(D̃C) ≤
1

2
(γ2(W

′) + γ2(W
′′)) = γ2(W̃ ).

Moreover, for all c, c′ ∈ C, a ∈ U , the entry d̃(c,c′),a of D̃C approximates entry d(c,c′),a of DC .

Specifically, ∣∣∣d̃(c,c′),a − d(c,c′),a

∣∣∣ = ∣∣∣∣ w̃c,a − w̃c′,a

2
− c(a)− c′(a)

2

∣∣∣∣
≤
∣∣∣∣ w̃c,a − c(a)

2

∣∣∣∣+ ∣∣∣∣ w̃c′,a − c′(a)

2

∣∣∣∣
≤ α.

Hence ∥DC − D̃C∥1→∞ ≤ α. Together with γ2(D̃C) ≤ γ2(W̃ ), this implies

γ2(DC , α) ≤ γ2(D̃C) ≤ γ2(W̃ ) = γ2(W,α).

Proof of Lemma 67. Row c of W is identical with row (c,−c) of DC . Hence, W is obtained from

DC by deleting some of its rows. Since the γ2 norm is non-increasing under taking submatrices, it

follows that γ2(W,α) ≤ γ2(DC , α).

Proof of Lemma 68. Fix an arbitrary concept c′ ∈ C. Let D′
C be the submatrix of DC which includes

row (c, c′) of DC for each c ∈ C. Then D′
C = 1

2

(
W − 1(c′)T

)
where 1 is the all-ones vector of

dimension |C|, and we identify c′ with a vector in RU . Expressing our concept matrix as W =
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2D′
C + 1(c′)T , we may apply the subadditivity properties of the approximate γ2 norm, as given by

Lemma 63, to obtain

γ2(W,α) = γ2(2D
′
C + 1(c′)T , α)

≤ γ2(2D
′
C , α) + γ2(1(c

′)T , 0)

≤ 2γ2(D
′
C , α/2) + 1.

C.4 Total variation lower bound

Proof of Lemma 41. The main observation is that, since λ and µ share the same marginal on U
but the labels are given by the functions s and −s, for any hypothesis h : C → {±1} we have

Lλ(h) + Lµ(h) = 1. Therefore,

(Lλ(h)− Lλ(c
′)) + (Lµ(h)− Lµ(c)) = ((Lλ(h) + Lµ(h))− (1− Lµ(c

′))− Lµ(c)

= Lµ(c
′)− Lµ(c) > α.

This implies that if Lλ(h)− Lλ(c
′) ≤ α

4 , then Lµ(h)− Lµ(c) >
3α
4 , as required.

Suppose now that M (α/4, β)-learns C agnostically with n samples. Let A ⊆ {±1}U be the set

of hypotheses with loss at most Lλ(c
′) + α/4 on λn. As we just showed, every hypothesis in A has

loss larger than Lµ(c) + 3α/4 under µ. Since

min
c′′∈C

Lλ(c
′′) ≤ Lλ(c

′), min
c′′∈C

Lµ(c
′′) ≤ Lµ(c),

it follows from the definition of agnostic learning that P [M(λn) ∈ A] ≥ 1−β, and P [M(λn) ∈ A] ≤
β. Then, by the definition of total variation,

dTV(M(λn),M(µn)) ≥ P [M(λn) ∈ A]− P [M(µn) ∈ A] ≥ 1− 2β,

completing the proof of the lemma.
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[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized ag-

gregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM Con-

ference on Computer and Communications Security, CCS’14. ACM, 2014.

[Fel17] Vitaly Feldman. A general characterization of the statistical query complexity. In Satyen

Kale and Ohad Shamir, editors, Proceedings of the 30th Conference on Learning Theory,

COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, volume 65 of Proceedings

of Machine Learning Research, pages 785–830. PMLR, 2017.

[FSSS03] Jürgen Forster, Niels Schmitt, Hans Ulrich Simon, and Thorsten Suttorp. Estimat-

ing the optimal margins of embeddings in euclidean half spaces. Machine Learning,

51(3):263–281, 2003.

[GHRU11] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately releas-

ing conjunctions and the statistical query barrier. In Proceedings of the 43rd ACM

Symposium on Theory of Computing, STOC ’11, pages 803–812, San Jose, CA, 2011.
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