Electric Charge, Force, Field

September-13-11 9:03 AM

Charging by Conduction

Charge is transferred by contact

Charging by Induction

Charge separation is induced by nearby charge, then target is connected to ground where it becomes charged. When ground is disconnected net charge remains.

Coulomb's Law

$$\vec{F}_{12} = \frac{kq_1q_2}{r_{12}^2}\hat{r}_{12}$$

$$k = 8.99 \times 10^9 \frac{Nm^2}{C^2}$$

Coulomb, quite large: 6×10^{18} protons

Coulomb's Law: (1776-1806)

• Like charges repel, opposite charges attract

•
$$F \propto q_1 q_2, F \propto \frac{1}{r_{12}^2}$$

$$\vec{F}_{12} = \frac{kq_1q_2}{r_{12}^2}\hat{r}_{12}$$

 $\hat{r}_{12} = \text{unit vector from 1 to 2} = \frac{\vec{r}_{12}}{\|\vec{r}_{12}\|}$ k = Coulomb's constant $\vec{F}_{12} = \text{Force on 2 due to 1}$

 F_E is a central force, that is $|F_E| = F(r)$

Extends to multiple points, example for 4 points

$$\vec{F}_3 = \sum_{j \neq 3} \vec{F}_{j3}$$

The Electric Field

September-20-11 8:35 AM

Coordinate system

Assume Right-Handed, that is \hat{k} comes out of the page.

Electric Dipole

$$\vec{F} = q\vec{E} \Rightarrow \vec{E} = \frac{\vec{F}}{q} = \frac{kQ}{r^2}\hat{r}$$

In a field, have source charge Q, and field point q \hat{r} is always from the source point to the field point

Visualize the \vec{E} field by means of electric field lines. Electric field lines always start on a positive charge and end on a negative charge, or go to infinity. For several charges use superposition.

Example. Consider an electric dipole, +q and -q separated by a fixed distance 2a lying along x centered on the origin. Find \vec{E} along the \vec{y} -axis

$$\begin{split} \vec{E}_p &= 2E_{1x}(-\hat{\imath}) = 2E_2\cos\theta \,(-\hat{\imath}) = \frac{2kq}{a^2 + y^2} \times \frac{a}{\sqrt{a^2 + y^2}}(-\hat{\imath}) = -\frac{2kqa}{(a^2 + y^2)^{\frac{3}{2}}}\hat{\imath}\\ p &= 2aq = dipole \ moment\\ \vec{E}_p &= -\frac{kp}{(a^2 + y^2)^{\frac{3}{2}}}\hat{\imath} \end{split}$$

For $y \gg a$ $\vec{E}_p \approx \frac{2kqa}{y^3}\hat{\iota}$

Electric Dipole in Uniform E Field $\vec{\tau}_0 = 2aqE\sin\theta - \hat{k} = \vec{p}x\vec{E}$

Uniform Charge Distribution

 $d\vec{E} = \frac{k(dq)}{r^2} \hat{r}, \vec{E}_P = \int d\vec{E}$ Note that dq could be a function of r Will consider simple cases Charge density? $\rho \equiv volume \ charge \ density$ $= \frac{Q}{V} \left[\frac{c}{m^3} \right]$ $dq = \rho dV$

 $\sigma \equiv area \ charge \ density$ $= \frac{Q}{A} \left[\frac{c}{m^2} \right] \ dq = \sigma dA$ $\lambda \equiv linear \ charge \ density$ $= \frac{Q}{l} \left[\frac{c}{m} \right] \ dq = \lambda dl$

On exams, won't consider $\rho = \rho(x, y, z)$

Uniform Electric Field

September-27-11 8:40 AM **Electric field of disk**

 $\vec{E} = 2\pi k\sigma \left(1 - \frac{x}{\sqrt{x^2 + R^2}}\right)\hat{i}$ As $R \to \infty$ (or $x \ll R$), $\vec{E} \to 2\pi k\sigma$ $E = \frac{\sigma}{2\epsilon_0}$ **Coulomb's Constant** $k = \frac{1}{4\pi\epsilon_0}$ $\epsilon_0 \equiv \text{permittivity of free space}$ $= 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$

Parallel Plate Capacitor

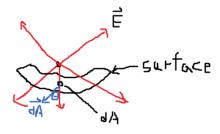
Two parallel plates of opposite charge +Q, -Q, plate dimensions >> separation

 $\sigma = \pm \frac{Q}{A}$

Outside the plates, the electric fields produced by both plates are equal in magnitude and opposite in direction ($\sigma/2\epsilon_0$). Within the plates, the electric fields add, to form a uniform electric field of $E = \frac{\sigma}{\epsilon_0}$

Gauss' Law:

Electric Flux



 $\mathrm{d}\Phi = \vec{E} \cdot \mathrm{d}A$ Flux, represents # of electric field lines passing through an area

$$\Phi = \int_A \vec{E} \cdot d\vec{A}$$

In problems involving Gauss' Law we are interested in finding Φ through a closed surface. Then $\Phi = \oint \vec{E} \cdot d\vec{A} = \oint E_n dA \ (E_n is \ component \perp to \ surface)$

Not that $d\vec{A}$ is always taken to point outward.

• For \vec{E} lines entering, flux is negative

• For \vec{E} lines exiting, flux is positive.

Take sphere about a charge. Gaussian surface

$$\Phi_{GS} = \oint E \cdot dA = \oint |E| \cdot |dA| = \left(\frac{Q}{4\pi\epsilon_0 r^2}\right) (4\pi r^2) = \frac{Q}{\epsilon_0}$$

Gauss' Law

September-29-11 8:50 AM

Gaussian Surface

Any closed surface about some charge distribution with total charge Q has flux

$$\Phi_{GS} = \frac{Q}{\epsilon_0}$$

Can use Gaussian Surface flux to determine E field under special circumstances

Spherical Symmetry

Insulator. Charge Q Consider inside of sphere. By symmetry the E field must point along or against the radial vector.

Imagine spherical shell inside charged sphere

$$\Phi_{GS} = \oint_{GS} \vec{E} \cdot d\vec{A}$$

Have $\vec{E} \parallel d\vec{A}, \cos \theta = \pm 1,$
$$\Phi_{GS} = \frac{q_{int}}{\epsilon_0} = 0 = \vec{E} \oint_{GS} d\vec{A} = \vec{E} 4\pi r^2 \Rightarrow \vec{E} = 0$$

Outside

$$|\vec{E}| 4\pi r^2 = \frac{q_{int}}{\epsilon_0} = \frac{Q}{\epsilon_0}$$
$$|\vec{E}| = \frac{Q}{4\pi\epsilon_0 r^2}$$

As for point charge

Line Symmetry

Find the electric field at point p a distance r from an infinitely long, thin, uniformly charged rod with linear charge density.

Draw a cylindrical Gaussian surface and consider a point on its outside surface (not caps) Exercise: work this out

$$\vec{E} = \frac{\lambda}{2\pi\epsilon_{0r}}\hat{r}$$

The same answer applies equally to lines and cylindrical charge distributions.

Plane Symmetry

Find the electric field above and below a non-conducting, infinite plane sheet of charge with uniform positive charge per unit area σ

Consider a cylinder perpendicular to the plane.

$$\Phi = \frac{q_{enc}}{\epsilon_0} = 2EA_0$$
$$E = \frac{\sigma A_0}{2\epsilon_0 A_0} = \frac{\sigma}{2\epsilon_0}$$

Conductors in Electrostatic Equilibrium

The electric field inside must be 0.

E on outside of the surface must be perpendicular to surface. Charges accumulate more on sharper points where the radius of curvature is the largest.

Work and Potential

October-06-11 8:36 AM

Work

 $W = -\int \vec{F}_E \cdot d\vec{s}$

For force in direction of movement

$$W = -\int_{i}^{f} |\vec{F}_{E}| |d\vec{r}| = -\int_{i}^{f} \frac{kq_{0}Q}{r^{2}} = -kq_{0}Q\left(\frac{1}{r_{f}} - \frac{1}{r_{i}}\right)$$

Conservative Force

$$\oint \vec{F}_{ext} \cdot d\vec{r} = 0 = -\oint \vec{F}_E d\vec{r} = -q \oint \vec{E} \cdot d\vec{r}$$
$$\oint \vec{E} \cdot d\vec{r} = 0$$

Potential Energy

Only ΔU has physical meaning, not U Could take any reference point in the field

Take reference point at infinity for example $\Delta U = U_f - U_i = U_f$ (U_i at infinity is usually 0)

$$U(r) = \frac{kQ_1q_0}{r}$$

Electric Potential

 $V = \frac{U}{q_0}$ $V(r) = \frac{kQ_1}{r}$

$$\Delta V = \frac{U_B - U_A}{q_0} = V_B - V_A = \Delta_{BA} = -\int_A^B \vec{E} \cdot d\vec{r}$$

Infinity as a reference point
$$V(r) = -\int_\infty^r \vec{E} \cdot d\vec{r}$$

Electron Volt $1eV = 1.6 \times 10^{-19}J$

Potential Function of Capacitor

Plates have charge density $+\sigma$, $-\sigma$ and separation *d* Want to find *V*(*x*) where x = 0 at one plate, and v = d at the other.

$$\vec{E} = \frac{\sigma}{\epsilon_0} \hat{\imath}$$

$$V(x) = -\int \vec{E} \cdot d\vec{s}$$

$$V_p - V_0 = -\int_0^p \vec{E} \cdot d\vec{x} = -Ex = -\frac{\sigma}{\epsilon_0} x$$
Set $V(0) = 0$

$$V(p = (x, y)) = -\frac{\sigma}{\epsilon_0} x$$

$$\Delta V = -\frac{\sigma}{\epsilon_0 d} = -Ed \Rightarrow E = \frac{\Delta V}{d}$$

Potential to Electric Field

$$\Delta V = -\int \vec{E} \cdot d\vec{s}$$

$$dV = -\vec{E} \cdot d\vec{s}$$

$$|\vec{E}| = -\frac{dV}{|d\vec{s}|} \cos \theta$$

$$dV = -E_s |d\vec{s}|, E_s \text{ is component parallel to } d\vec{s}$$

$$E_s = -\frac{dV}{ds}, \vec{E}_s = E_s \hat{s}$$

E is the -ve gradient of V $\vec{E} = -\vec{\nabla}V = -\left(\frac{\delta V}{\delta x}\hat{x} + \frac{\delta V}{\delta y}\hat{y} + \frac{\delta V}{\delta z}\hat{z}\right)$

Capacitance

October-27-11 8:41 AM

Capacitance

$$Q = CV \Rightarrow C = \frac{Q}{V}$$

Parallel Plate Capacitor

Charge *Q* on plate with area *A*, charge density $\sigma = \frac{Q}{A}$ Plate separation d

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$$
$$V = Ed = \frac{Qd}{\epsilon_0 A} \Rightarrow Q = \left(\frac{A\epsilon_0}{d}\right) V$$
$$C = \epsilon_0 \frac{A}{d}$$

Energy in Capacitors

Consider moving a charge dQ from the negative to the positive plate. $dW = VdQ, dQ = CdV \Rightarrow dW = CVdV$

$$U = W = \int dW = \int CV dV = \frac{1}{2}CV^2$$

Dielectric

Insulators can have differing electrical permittivities (dipoles in the substance align with the electric field)

$$\kappa = \frac{\epsilon}{\epsilon_0} \Rightarrow \epsilon = \kappa \epsilon_0$$

For parallel plate capacitor:
$$C = \frac{\epsilon A}{d} = \kappa \frac{\epsilon_0 A}{d}$$

Capacitors in Circuits Parallel

$$C = \sum_{i=1}^{n} C_i$$

Series
$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Electric Current

October-27-11 8:41 AM

 ΔV appears across ends of wire

- \vec{E} set up inside wire
- Free e^- accelerate against 'current' direction. $a = \frac{F_E}{m_e} = \frac{eE}{m_e}$

Electron move around mostly random with small bias against electric field. $u = \sim 10^6 \frac{m}{2}$ = average thermal velocity, function of temperature

 λ = mean free path = average distance between collisions

 τ = mean free time (between collisions)

 $\tau = \lambda/u$

 v_d = drift velocity = average velocity due to E

Just after a collision
$$v_i = 0$$

Just before the next collision $v_f = a\pi$
 $v_{avg} = \frac{v_i + v_f}{2} = \frac{0 + a\tau}{2} = \frac{eE}{2m}\tau$
We call this the drift velocity
 $v_d = \frac{eE}{2m}\tau = \frac{e\lambda}{2mu}E$

Current

Instantaneous Current

 $I = \frac{dq}{dt} \left[\frac{C}{s} = A \right]$ $I = qnv_d A$

Where n is the number of charge carriers in some volume.

Current density

 $\vec{J} = \frac{I}{A} \left[\frac{A}{m^2} \right]$ $\vec{J} = nqv_d$

Resistance and Ohm's Law

 $J \propto v_d$ and $v_d \propto E$ $\therefore J \propto E$ $\vec{J} = \frac{1}{\rho}\vec{E}$ where $\rho = \frac{|E|}{|J|}$ = resistivity of conductor [*Ohm* · *Meter*] $\frac{1}{\rho} = \sigma =$ conductivity of conductor

Useful to recast the above ideas in terms of I and ΔV $E = \frac{V_{ab}}{l} = \frac{V}{l}, J = \frac{I}{A}$

$$E = \frac{v_{ab}}{l} = \frac{v}{l}, J = \frac{1}{2}$$
$$\vec{E} = \rho \vec{J}$$

$$V = lE = l\rho J = \frac{\rho l}{A}I$$

Resistance: $R = \frac{\rho l}{A} [\Omega]$
 $V = IR$

 $R \propto \rho, R \propto l, R \propto A^{-1}$

Power

$$\begin{aligned} & \frac{dU}{dt} = \frac{dQ\Delta V}{dt} \\ & \frac{dU}{dt} = \frac{dQ}{dt}\Delta V \\ & \Rightarrow P = I\Delta V \left[\frac{J}{S} = W\right] \end{aligned}$$

Electromotive Force (emf, Potential Difference)

A battery has internal resistance a,b terminals of battery, r internal resistance, ϵ chemical emf emf across terminals: $\Delta V = \epsilon - IR$

Kirchhoff's Rules

Label junction points in a circuit. The algebraic sum of current at each of those points is 0.

Algebraic sum of potential difference around each loop is 0.

Magnetic Fields

November-08-11 8:59 AM

$$\vec{F_q} = q\vec{v} \times \vec{B}$$

$$[B] = \frac{N}{C \cdot \frac{m}{s}} = \frac{N}{A \times m} = T = \frac{Wb}{m^2}$$

$$T := Tesla$$

$$W := Weber$$