
Example
Let   be the number of subset of          that don't contain two consecutive numbers. 
Determine for all    

n subsets   

0  1

1      2

2          3

3                    5

Let   be the collection of all such subsets of          
Let   be the collection of these sets     for which    
Then           is a disjoint union of subsets. 
So                    
The set   is in bijection with     

 
                            

                              

Hence                 

Hence                     

Fibonacci Numbers
                              
So for us,               

Get a formula for   as a function of n.

Generating Function

            

 

   

From the initial conditions and the recurrence we get the following:
            

     
   

                  
 

 

   

           
 

 

   

       
 

 

   

         
   

 

   

     
   

 

   

                 
     
           

          

 

   

 
 

      
          

Now get expression for individual terms
                       

  
 

 
                    

    
             

                

 
                     

     
    

 
        

By partial fractions                 
 

      
           

 

    
       

 

    
      

     

 

   

 
 

    
       

 

    
             

 

   

       

 

   

             

 

   

So
               

Initial Conditions
        

       
    

   

 
          

     
   
 

 
         

Solve for A, B

     
   

 
 

    
   

 

Geometric Series Expansion
             
               
       

   
 

   
                 

Enumeration
September-12-11 1:36 PM
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Generating Function to Recurrence Relation
Convention:            
Clear denominators

                

 

    

        

     

 

 

         

 

 

         

 

 

      

 

 

        
 

 

 

        
 

 

 

                  
 

 

 

        

                            
             
                        
For all    ,                 
Hence
              
For                  

Recurrence Relation to Generating Function 
              
              

           

            

 

 

                       
 

 

   

                
 

 

   

        
 

 

   

              
   

 

   

      
   

 

   

                       

     
       

         
             

Generating Function to Coefficient Formula

Works only when      
    

    
   with          

Uses partial fraction expansion. 

Factor the denominator, identifying inverse roots.
                                     

                                
 

 
  

                          

Since                                      
       

         
              

 

    
       

 

   
      

 

      
        

                                    
           
                 

  
 

 
   

 

 
   

 

 
                

       

         
              

 

    
       

 

   
      

 

      
        

Aside

 

      
         

 

   
      

 

   
          

 

   

     

 

   

         

 

   

 

 

   

  
 

  

 

     
       

 
  

 

   

     

 

   

   

 

   

       

 

   

  

 

      
                    

 

   

       

 

   

         

 

   

              

 

   

               

 

   

Thus
               

Generating Functions
September-14-11 1:28 PM
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Higher Powers

 

      
                  

 

   

 

   

 

   

The coefficient is the number of solutions        to the equation      where           
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Partial Fractions Example
                         
                         

    has degree   
By partial fractions
              such that
    

    
     

 

    
       

 

    
       

 

       
          

 

    
       

 

       
          

 

       
         

General Problem
 

      
     as a power series in x.

    
 

   
         

 

   

    
 

      
                 

 

   

 

               
 

   
      

 

     

 

   

 

 

       

 

    

 

 

   

                

 

  

 

  

 

  

             

 

               

 

      
         

 
  

 

               

            

 
  

 

   

The coefficient of   in 
 

      
     is the number of n-tuples                such that    

 
     

Example of multisets
Multiset of size 3 with 3 types of elements: A, B, C
For each type of element      let   be the number of times that element of type I occurs in the multiset.

Multiset         

A,A,A
A,A,B
A,A,C
A,B,B
A,B,C
A,C,C
B,B,B
B,B,C
B,C,C
C,C,C

3,0,0
2,1,0
2,0,1
1,2,0
1,1,1
1,0,2
0,3,0
0,2,1
0,1,2
0,0,3

Proof of Proposition
Establish a bijection between the set of t-type multisets of size n and the set of      -element subsets of 
             

Informally
Write a sequence of      spaces.
Example:        
_ _ _ _ _ _ _ _ _ _ 
Cross out    of those spaces. Count empty spaces between/around the X's 
_ _ X _ X _ _ X _ _ 
This creates 4 groups with a total of 7 elements. 
         

Formally
Let B be the set of      -element subsets of              
Let  be the set of t-type multisets of size n.

     
Input                 
Let                                  
             

Output             

     
Input               
For                            
Output               

Check 
 for all              

* for all              

 

Back to General Problem
We've seen that for all    

 

                
     

   
   

 

   

Coefficient is a polynomial in n of degree    

Partial Fractions

             
  

 

 

                   

 

 

    

    
       

   

       
 

        

  

   

 

 

Generating Function

 

      
          

     
   

   

 

   

Multisets
Intuitively: sets with repeated elements 
t "types" of element
each type can occur any number of times.
size of multiset = total # of occurrences of elements. 

For each type of element      let   be the number 
of times that element of type i occurs in the multiset.

The size of the multiset is           , where m is 
the multiplicity for element  

So the coefficient of      
 

      
     is 

    
 

                 

We can regard a multiset of size n with elements of t 
types as its sequence of multiplicities. 

               with             

Fact
There are 

 
 
 
  

  

        
         

k-element subsets of          

Proposition

For     and    there are  
     

   
 multisets of 

size n with elements of t types. 

Partial Fractions
September-16-11 1:31 PM
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Example
 

    
       

 

    
       

 

       
          

 

       
         

       

 

     

       

 

   

    
   

 
     

 

     

    
   

 
      

 

   

                     
    

 

   

    
   

 
 is a polynomial of degree   
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Player wagers n dollars•
Player flips a fair coin n times•
If Player hits a run of 3 (or more) heads, he wins $10•
Otherwise he loses the wager ($n) •

A game

1st question: What is the smallest value of n for which this is profitable for Player? 
2nd question: Suppose House pays the player     dollars when Player hits HHH. What function 
    makes the game completely fair? 

Example, n=3
Expected profit of Player is 
             

 
                    

  

 
   

n=4
  outcomes
  outcom s hav      h a s
Expected profit
              

  
                     

  

  
     

  

 
   

Let   be the number of binary strings of length n which do not contain 000 as a substring.
        is the set of all binary strings that don't contain 000 as a substring. 

Proof of Sum Lemma

      

 

     

       

 

   

       

 

   

          

 

Proof of Product Lemma

      

 

    

             

 

   

 

   

        

 

   

        

 

   

          

Proof of Iteration Lemma
Generating function for   is 

      

 

    

              

 

             

 

   

                          

 

    

 

    

 

    

 

     

         

 

   

 

  

   

       

 

   

 
 

      
        

 

Binary Strings
      is the set of all finite strings of 0s and 1s
         with each         is a word

        is a language

Length
The length of a word         is the number 
of letters in it,     

Language Generating Function
Generating Function of a language  is

           

 

   

  
 

  

 

   
      

 
  

 

   

For every    : the coefficient of   in     is 
the number of words in  of length n.

Constructing Languages
Union
                         

Concatenations
                   
is the concatenation of A and B

Unambiguous Concatenation
The concatenation AB is unambiguous if each 
word AB is constructed exactly once in the form  
    with        .
That is,   is in bijection with    

Iteration
If A is a language then A* is the iteration of A, 
consisting of all words          for some 
   , with     for each      

Ex:       is an instance of iteration

Unambiguous Iteration
  is unambiguous if every word     can be 
written as          for a unique value of 
   and              

Sum Lemma
If           and      then the 
generating function for              

Product Lemma
For           , if AB is unambiguous then the 
the generating function for AB is         

Iteration lemma
If         and   is unambiguous, then the 

generating function for   is 
 

      
     .

Binary Strings
September-19-11 1:30 PM
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         are rational languages.•
If A, B are rational then so are          •

Rational Languages

Regular Expression
Any expression involving                 that is well-formed. 
Every regular expression determines a rational language. 

Unambiguous
Every string can be constructed in exactly one way

Theorem
Every rational language has an unambiguous regular expression.

Proof: Take a graduate CS course

Notation
      instead of           

     string of length 0
    - null set

Block
A block in a binary string          is a substring of 
consecutive equal letters that is maximal w.r.t length. 

Note:
Maximal, not maximum
Blocks are always non-empty

Block Decompositions
0*(1*10*0)*1* and 1*(0*01*1)*0* are block decompositions for 
the set of all binary strings. Block decompositions always 
unambiguous. 

Examples of regular expressions
                 is an unambiguous regular expression.
The generating function of        is    

By iteration:

       has      at     u ct o 
 

    
            

 

   

                                
has generating function

 
 

   
      

 

   
       

Blocks
Want to split a binary string into blocks. Can have a block of 1s followed by a block of 0s, all 
repeated.

block of 0s: 0*0
block of 1s: 1*1

Regular expression:

Block of 1s followed by block of 0s: (1*1)(0*0)

Therefore, the regular expression (1*10*0)* allows constructing of any string that does not 
start with 0 or end with 1

Claim: 0*(1*10*0)*1* produces all strings unambiguously 
Generating function: 

      
 

   
     

         
 

   
      

 

             
 

   
      

 

   
 

   
      

             
 

   
      

 

         
             

 

    
      

Coin Flipping Game
Let         be the set of binary strings that don't contain 000 as a substring. 

                   
 
  

A block decomposition for G
Generating function:

         
 

   
 

   
             

                     
 

   
      

      

         
                    

 

   

Now use partial fractions to get a formula for   

    
            
               
                  

Player wages $n to flip n coins•
If no HHH, then player loses $n•
If there is some HHH player wins   dollars•

Fair Game

Chose   so that the game is fair - expected value is 0

        , strings that do not contain HHH
  : number of strings of length n in G
Block decomposition:

             
 
        

          

 

   

 
      

         
              

Expected value of coin-flipping game, wagering $n 

  
 

  
                      

             

   
   

     
       

                            
                   
       
By partial fractions
                                  
Since              
  

  
            

    
  

  

 

  
  
  

          

Language Expressions
September-21-11 1:32 PM
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Since 
   

  
             l'Hopital's Rule

Fair reward for n coin flips is
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Example
What is the expected number of blocks among all binary strings of length n? 

For each string, two pieces of  information: the length     and the # of blocks     

Use Two-Variable generating function

                  

 

        

Block decomposition of {0,1}*: 0*(1*10*0)1*
0*0 and 1*1 produce blocks of 0s or 1s respectively
0* =      
1* =      

               
  

   
   

Blocks o   s  *                   

  
  

   
   similarly

Blocks o   s  *                    

        
  

   
        

  

   
      

        

   
           

       

From the block decomposition, 

          
  

   
      

 

 
 

   
  

         
              

         

            
                

      

      
          

             

 

        

            

 

        

 
 

    
      

 

  
           

   
                  

 

        

  
   

           

 

        

  
 

     

 

        

      

 
  

 

   

For every    , the total number of blocks among all binary string of length n is 

    
 

  
            

   

 

  
    

      

      
             

   
  

 

      
           

                

         
                       

   
 

         

       
             

      

       
         

 
  

       
          

   

       
         

    
   

 
       

 

   

    
   

 
       

 

   

                         

 

   

So  o       th  total # o  blocks amo   all b  a y st    s o  l   th    s               
         

So the average # of blocks per binary string of length n is
         

  
            

   

 
     

Alternate Method
Number of blocks, for string of length n
         

First bit gives 2 possible blocks, every successive bit either is the same block or ads another block.

      

 

        

                              

 

  
               

   
            

   
                  

   
                  

So average     among all           is 
   

 
   

Similarly, for strings             

      

 

           

                

Average # of blocks among all             is 
 

  
   

 

  
                    

   

2-Variable Generating Function
September-23-11 1:35 PM
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Proposition
If         is a rational language, then 

           

 

   

is a rational function (quotient of two polynomials).

Context Free Grammars
Initial symbol I
Production rules

Binomial Series Expansion
For an    

         
 
 
   

 

   

 h     
 
 
  

              

  
                   

Proof
Taylor series expansion of       . Coefficient of       
 

  
  

  

   
            

   
 

 

  
                  

 
 
 

Proofoid of Proposition
                     

By induction,          are rational functions. Each operation takes rational functions to 
rational functions, so     is rational too.  

Converse is false
                                 

M is a set of binary strings with generating function      
 

        a rational function. 

But M is not a rational language. 

Context Free Grammar Example
Initial symbol I
Production rule        
Terminal symbols 0,1
Replace I by either  or OI1

Keep doing that until only terminal symbols remain
I    I      I        I      
       01       0011        000111

Let         be generated by the CFG:
        
                                            
Equivalently replace 0 by ( and 1 by )
    (I)I
This generates all well-formed parenthesizations. 

  t            

 

   

Th  CFG I    0I1I implies that
   x  I         x  I      

               
 

        

          

  
                

   
           

How to expand               
as a power series in x?

      
        

        
 
      

 

 
  

 
         

 

   

     
 

 
 

 
        

    

 
 

 
  

 
       

 
 
 
    

 
 
      

 
 
       

 
 
       

  
                                     

 
                       

  
                                   

              

  
                        

  

  
  

  
                               

    
                                             

            

    
               

 

 
   

    
   

 

In summary

      
        

     
 

 
   

    
   

    

 

   

Take -ve sign in     to get nonnegative results

     
 

   
           

 

 
   

    
   

    

 

   

    
 

 
   

    
   

      

 

   

  
 

   
      

  
 

    

 

   

Thus for all    the number of well-formed parenthesizations with n '(' and n')' is 
 

   
      

  
 

 

Context-Free Grammars
September-26-11 1:32 PM
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Binomial Series

         
 
 
   

 

   

for any    

 
 
 
  

              

  
                   

Special Cases
1.
   a positive integer

 
 
 
   if n > d

So          
 
 
   

 

   

2.
    a negative integer

 

      
          

     
   

   

 

   

Check that (exercise)

      
  
 

   
     

   
 

Catalan Numbers
 

   
      

  
 

 

Lattice Path
A path on the grid which can only move N or E.

There are  
   

 
   

   
 

 lattice paths 

from (0, 0) to (a,b)

Dyck Path
A lattice path which always stays above the 
   line. 

There are 
 

   
    

  
 

 Dyck paths from (0, 0) to 

(n, n)

Catalan Numbers
 

   
      

  
 

 

is the formula for the Catalan numbers. e.g. the number of well-formed parenthesizations. 
(()(())())()
Interpret as a lattice path
                  
                 
Start at      and end at      

So the set of all well-formed parenthesizations is equivalent to the number of lattice paths from 
(0, 0) to (n, n) that stays above the    line. 
This is a Dyck Path.

Second Proof of # of Dyck Paths
Consider       the set of all lattice paths from (0, 0) to (n, n)
Let   be the Dyck paths from (0, 0) to (n, n)
let   be the others. 

So             is a disjoint union

          
  
 

 

We need only count     and subtract.
Consider any lattice path
                

Since     there is a first E step at which P goes below the diagonal    . Call it   for some   
    

Construct the path
  :         

    

           
                      
                      

Claim:   is a lattice path from (0, 0) to (n+1, n-1)

Conversely, every lattice path           from (0, 0) to (n+1, n-1) has a first E step   that goes 

below the diagonal x=y.  Reverse the procedure     Result   is in   (exercise)

We have a bijection              hence                    
  

   
 

Hence finally

      
  
 

   
  

   
  

     

    
      

     

            
                

  
 

  
 

   
      

  
 

  
 

   
      

  
 

 

Analogously, lattice paths from (0, 0) to (a, b) where      that stay on or above the line x=y
How many such paths are there?

There are  
   

 
 lattice paths from (0, 0) to (a, b)

Consider such a lattice path P that does go below the line    .              

Let   be the first step at which P goes below the diagonal
Let     and     and                                       
p* ends at (b+1, a-1), strictly below    since    
This is a bijection between bad lattice paths to (a, b) and all lattice paths to (b+1, a-1)

Hence the number of good lattice paths to (a, b) is  
   

 
   

   
   

 

Where    equal formula for dyck path

Paths
September-28-11 1:30 PM
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Example
Enumerate strings in {a, b, c}* that don't contain aa as a substring

Look at block decomposition for binary string
0*(1*10*0)*1*
Interpret 0 as a, 1 as    

                  
 
      

Is a regular expression for         that produces as block by block.
Just need to modify this to avoid substring aa

                   
 
     

      

 

   

       
 

   
 

                  
                     

 

    
        

   

                                       

or

                
     
      
      

    
             
              

n 0 1 2 3 4 5

  1 3 8 22 60 164

Example
Enumerate strings in {a, b, c}* with no two consecutive equal letters,  
Low tech solution
    
    
                       

     

 

   

           

 

   

   
  

    
       

   

    
      

More information
Keep track of #a, #b, #c in string
      # of a's in string  
Similarly for      

                            

 

   

                

 

   

 

   

 

   

Consider any string          . "Squish" each block into a single letter.
E.g.                                      

The set of words   {a, b, c}* that get squished onto    is obtained by regarding
A as a block of a's  A=a*a, B=b*b, C=c*c
        is a regular expression for         

 

         
                                  

 

          

                      

 

             

 

 

   

   
 

   
      

     

 
 

   
      

     

 
 

   
      

     
 

   

   
 

   
      

 

   
      

 

   
      

Change variables

  
 

   
        

 

   
        

 

   
     

                       
 

   
     

         
 

   
 

   
      

 
   
      

 
   
      

                         

A quotient of polynomials in X,Y,Z

More generally for strings             with no two consecutive equal letters
 

              
                       

  

    
       

  

    
         

  

    
       

                  
  

    
      

 

   

 

  

 

Ternary Strings
September-30-11 1:47 PM
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Example
Among all   binary strings of length n, what is the average number of times that 011 occurs as a 
substring. 

Block decomposition:
1*(0*01*1)0* is almost ideal, 1*(0*01u0*(011)1*)*0*

    length of sigma,     number of 011 in  

                  

 

        

  
 

   
       

 

   
  

   
      

  

                
                        

 
 

   
      

                     
  

                       
 

            
                  

Sum of     over all         in 

    
 

  
            

   
 

         

                  
  

                     
   

 
     

 

   

             

 

   

             

 

   

Average # of occurrences of 011 among all         is

 
         

              
   

 
         

       

Block Patterns for b-ary strings
            strings with no two consecutive equal letters.
          variables
     is the # of times letter i occurs in  

Notation:      
     

  
     

   
     

              

 

   

     
  

    
      

 

   

 

  

Proof: 
squish           by replacing each block of i's by a single i
For     the             that gets squished to  are obtained from  by replacing  by    for 

all      generating function for    is 
  

    
   

So
 

              
                        

  

    
       

  

    
          

  

    
       

Invert the variables    
  

    
   iff    

  

    
    

So                   
  

    
      

 

   

 

  

A single  in    -

A block of    in             -

Strings in  are block patterns.   in  marks either 

Example

Blocks of 1s have odd length-

Blocks o   s hav  l   th    -

Blocks o   s hav  l   th    -

What is the generating function for S, strings           such that 

           where   marks a block of is

    *       
  

    
     

  u              
 

 *        
  

 

    
    

                           
  

    
              

   
  

 

    
       

  

    

 

   

If we only want the length of each    e.g.           

               

 

   

    
 

                      
  

   
       

    

                           

                    

 
 
 

 
      

      
      
      

Keep going and get a recurrence relation.

n-ary Strings
October-03-11 1:33 PM
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Example
  crossings n steps from home on a rectangular grid (n is minimum distance)
    
    
    

    
     
      

     

 

   

    
 

              

  crossings n steps from home on a triangular grid (n is minimum distance)
    
    
     

    
     
      

     

 

   

    
 

              

Tile the plan with squares, 5 at a point.
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Regular Tessellations of the Plane
Let    and    . Divide the plane into non-overlapping 
k-gons such that they meet along edges. At each corner d 
edges meet.

Question
Fix a "home vertex"   in the        regular tessellation of the (hyperbolic) plane. 
many vertices are at distance exactly n from   ? Call it   

n 0 1 2 3 4

  1 5 15

Some have 1 neighbour at distance 1•
Some have 2 neighbours at distance 1•

At distance 2 there are 2 kinds of vertices. 

Showed geometrically can't have   neighbours closer to base

Let   be the number of vertices at distance n from the base, with 1 earlier neighbour
Let   be the number of vertices at distance n from the base, with 2 earlier neighbours
For             

      
           

             

    
         

  t           

 

   

           

 

   

           

 

   

                 

 

   

            

          

 

   

                  
 

 

   

               
 

 

   

                 

          

 

   

             

       
           
       
Solv  

  
   

       
           

  
      

       
           

  
       

       
              

  

       
           

                    

    
    

   

 
      

                                  
     
        

            
 

   
         

 

   
     

    
    

   

 
       

    
   

 
         

   

    
   
      

   

       
  
   

    
       

  
   

    
      

         
   

  
     

    

 
         

 

  

 

   

   
   

  
    

   

 
       

 

  

 

   

       
   

 
    

   

 
       

 

   
   

 
    

   

 
       

 

   

 

   

So for    the number of vertices in the        hyperbolic tessellation at distance n 
from the base is 

     
   

 
    

   

 
       

 

   
   

 
    

   

 
       

 

 I t     clos st to   
   

 
    

   

 
       

 

Example
k=5, d=4

Base vertex•
One nbr closer to base, not on an equality (connects to same #) edge : p•
Two nbrs closer to base : q•
One nbr closer to base, is on an equality edge. : r•

Four kinds of vertices in the k=5 d=4 case

          

 

   

     

            
              
       

Tessellations
October-05-11 2:03 PM
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k=5, d=4

Vertex Types
O: Origin 

2 pentagons have apexes (unique vertex closest to origin) at this neighbour
A: 1 neighbour closer to origin, 

B: 1 neighbour closer to origin, 1 neighbour at same distance
C: 1 neighbour closer to origin, that neighbour is of type B
D: 2 neighbours closer to origin

Descendants: 
      
        
       

       
 

 
    

      

          

 

   

  h    th    a      v  t c s o  ty   k at   sta c      om th  o     

      
Fo      
              

            
   

 

   

    

 

   

                                  

                  

                             
            

       
 

 
       

Solve: 
          
              
    

  
 

 
    

           
                
             
                

  
         

  
               

                

  
                              

                   
                  

  
   

           
                

  
             

           
                  

  
   

           
                

  
   

           
                

               
               

           
                         

          

           
                

Matrix Method
5 'types' of object O,A,B,C,D
and some succession rules. 

Initial population: {O}
    
      
     

      
 

 
   

    

   

 
 
 
 
 
 
 
 
  
 
 
 

  

 
 
 
 
 
     
     
     
     

   
 

 
    

 
 
 
 

       

More Tessellations
October-12-11 1:31 PM
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Matrix Method
Find a set of types          
Succession Rules
For each type i, a weighted collection of successors:
                 
An object of type i gives rise to successors in the next generation: 
  of type i

Initial Population
A column vector

    

  

  

 
  

 

  objects of type          in the initial population.

Goal
Determining the number of objects of type i in the n-th generation for all      
  and all    

Construction
For each    let   be the column vertex of length l with i-th entry equal to the # 
of type i objects in the n-th generation. 
Let  be the    matrix such that              

The j-th column of M has i-th entry equal to the number of objects of type i 
occurring as successors to an object of type j

Since              
       

Generating Function

  t           

 

   

       
 

 

   

        

 

   

              

Reasoning
           
            
      
                  

Total Population

      

 
 
 
 

 

          

Generating function

              

Note

    
 

  t  
           

  t        so     is invertible since     is a polynomial in x and 
  t          

Example
   types        
Succession Rules        ,        ,          

    
 
 
 
 

   
   
   
   

 

       

      
        
    
    

 

  t                 

           
        
       

            

 

               

 
 

          
                

        
       

            

  
 
 
 
 

 
 

          
                

 
 
  

 

Total population generating function
      

          
               

Total population   at generation n satisfies            and    

                 
         

     

    
            
               
                      

Matrix Method
October-14-11 1:29 PM
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Domino Tilings
Count all ways of covering all squares of a    rectangle with 
non-overlapping dominoes. 

How
Consider all possible ways of covering the three leftmost squares:

Label the boundary types, but also keep track of the number of dominoes used in the subscript
            

         

Instead of   we want a    matrix Q where    is the sum of   over all transitions 

from boundary j to boundary i using k dominoes.

      
     

 

Start with a 3xn domino tiling. Remove all dominoes that intersect the leftmost column 
(together with any dominoes they "force") 

Repeat this to decompose each domino tiling uniquely as a sequence of "successions" 
Two boundaries {A, B}
          
         

      
     

 

The      entry of   is the generating function from boundary J to boundary I using 
exactly n successions. 
Sum over all    since # of successions is arbitrary. 

   

 

   

        

The generating function we want is        
  

  t             
        

                      

               

Generating function for    domino tilings is 

       #         

 

 

 
    

        
            

  #               #           

  
 

 
   #                  

 
   

       
 
   
#         

 

 

      

 

   

 
    

        
           

  domino tilings of a    rectangle. 

Columns instead of Dominoes
         
         

    
  
    

Domino Tilings
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Example
Tilings of a 3xn rectangle using dominoes and 1x1 squares. 

Possible boundary shapes

      Succession from boundary J to boundary K using a dominoes and b squares

                                                

             

             

                            

                    

  

 
 
 
 
                 

         
        

               
         

 
 
 

Example
          Blocks of c's have odd length and does not contain aa or ab as a substring. 
   # of words of length n in A

  t  m         

 

   

First determine the generating function for "block patterns" of A: the set of words in {a,b,c}* not 
containing any of aa, bb, cc, or ab.

                            

 

   

Then replace each  in  with a block of a's, each b in  with a block of b's and each c in  by a block 
of c's. Keep track of the lengths of the blocks.
The lengths of the blocks are constrained:
 o aa subst       block o  a's  s just a    

block o  b's   b*b   
 

   
   

block o  c's    cc *c   
 

        

           

 

   

     
 

   
      

 

           

Matrix Method
Find         using matrix method
          words not containing aa, bb, cc, or ab.
4 types: E,A,B,C: empty string, ends in a, ends in b, ends in c; respectively.
         
     
       
       
generate all the block patterns in A
   is the sum over all transitions from K to L

   

    
    
    
    

 

                       

 
 
 
 

            

 
 
 
 

 

 

   

                     

 

   
      

 

   

      
 

   
 

 

    

Examples
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Example
Domino tiling. Start with A type boundary (straight line) and end with A type boundary. 
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Graph
A graph is a pair        where V is a finite set, and E a set 
of 2-element subsets of V.
The elements of V are vertices and the elements of E are 
edges.

Isomorphism

 is a bijection (one-to-one and onto)•

                           
         •

An isomorphism  from G to H is a function            
such that  is a bijection (one-to-one and onto) 

G and H are isomorphic, denoted by    , when there is an 
isomorphism  from G to H.

Terminology
In a graph        
    is incident with    if    
     are adjacent if        
     are adjacent if        for some    
The degree of v is the number of edges incident with v.
Denoted        
The degree sequence is the multiset              

Fact
If            is an isomorphism then            

            

Corollary
If    then the degree sequences of G and H are the same. 

Subgraph
       is a graph
       is a subgraph of G if        and J is a graph.

K-Regular
A graph G is k-regular if every vertex has degree k.

Cycle
A cycle in G is a connected 2-regular subgraph. 

Hamilton Cycle
A Hamilton cycle is a cycle through all the vertices. 

Bipartite
A graph G is bipartite if one can write      with     
 such that for every edge         and      

Equivalently, you can colour the graph with 2 colours such 
that every edge has one vertex of one colour and the other 
vertex having the other colour.

If G is bipartite then every subgraph of G is bipartite.a)
Odd cycles are not bipartiteb)

Proposition

Corollary
If G contains an odd cycle, then G is not bipartite. 

Notation

 vertices

 
 
 
 edges; Every pair of vertices has an edges

               

Complete graph:   

   vertices

Complete bipartite graph:     

Graph Example
                                       

Picture of G:

Other graphs:

These are the same graph: same vertices same edges. So the graphs are equal.

   but they have the "same shape". i.e. they are isomorphic.

In this case G(left) contains an odd cycle while H(right) does not.
So    

Proof of Proposition
(a) Let (A,B) be a bipartition for G and let        be a subgraph of G. Then 
         is a bipartition for H.

(b) Let   be an odd cycle with vertices           (n odd) and edges 
                                   

Suppose that (A,B) is a bipartition of   . Wlog we can assume     (exchange A 
and B if necessary) 
            

     if i is odd
    if i is even

By induction from      

Since  is odd,     . But then          contradicting that (A,B) is a 
bipartition of G.
 

Graph Theory
October-21-11 1:30 PM
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   vertices
                       
  edges 

                       

Girth of G
if  has no cycles then            
If   has cycles then          m                           
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Walk
A walk in a graph is a sequence:                    

Each     , each     and             
Note that vertices and edges can be repeated. 

Trail
A trail is a walk with no repeated edges

Path
A path is a walk with no repeated vertices. 

Path   T a l  but T a l ⇏ Path

Closed & Cycle
A walk is closed if      .
A cycle is (sometimes, incorrectly,) said to be  a closed walk in which 
     is the only repeated vertex. 

Reach
Define a relation R on the set V of vertices.    means there is a walk in 
G from v to w:                . 
Say "v reaches w"

Fact
R is an equivalence relation.

Proof
Reflexive, Symmetric, Transitive

Connected Components 
The equivalence classes of R on V induce subgraphs of G called the 
connected components of G

Induced Subgraph
For    , the subgraph of G induced by S has the vertex-set S and the 
edge set            

Connected
The graph G is connected if it has exactly one connected component. 

For graphs with at least one vertex, this is equivalent to:
      there is a path from v to w (   ) 

Length of a Walk
The length of a walk is the number of edges in the walk.

Lemma
If there is a walk from v to w then there is a path from v to w.

Deleting an Edge
Deleting an edge from        gives the graph             

Minimally Connected Graph
A graph is minimally connected if it is connected but     is not 
connected     .

Let     be the number of connected components of G.    is a cut-
edge if            

G is minimally connected if       and every edge is a cut-edge. 

Lemma
Let        be a graph. Let          . Then  is a cut-edge of G iff 
e is not contained in a cycle of G. 

Corollary
G is a minimally connected graph iff G is connected and contains no 
cycles. 

Reach example

The green vertex can reach only the red vertices. 

Proof of Lemma 1
Let W:                  be a walk from v to w which has a s few edges as 
possible. 

If W has a repeated vertex      with        

Then W':                         is a walk from v to w with strictly fewer edges 

than W. This contradictions the choice of W, so W has no repeated vertices.  

Proof of Lemma 2
Restricting attention to the connected component of G that contains e, we can 
assume that G is connected. 
First assume that e is in a cycle C in G. Then    has two vertices    of degree 1 and 
the rest have degree 2.
                 
To show that not a cut-edge, we show that    is connect. Let      . Since G is 
connected there is a walk In G from v to w. By lemma there is a path Q from v to w in 
G. 
If Q does not use the edge e, then Q is a path in    from v to w.
If Q uses e, then replace the edge e with the path P to get a walk from v to w in    . 
So there is also a path from v to w in    . So    is connected, so e is not a cut-edge. 

Conversely, assume that e is not a cut-edge. 
Then c          so    in G iff    in    
Let          Clearly    in G. Hence    in    as well. 
                   
Now                                is a cycle containing edge e.  

Examples of Minimally Connected Graphs

p=1

p=2

p=3

p=4

p=5

Connectedness
October-24-11 1:32 PM
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Tree
A graph is a tree if it is connected and contains no 
cycles. 

Lemma
Let T be a tree with    vertices. Then T has at 
least two vertices of degree 1.

Lemma

G is connected iff   v is connecteda)
G contains a cycle iff   v contains a cycles. b)

Let G be a graph and let    be a vertex of degree 
1. Let   v be the subgraph of G spanned by      

Proof by observation

Proposition
Let T be a tree with p vertices and q edges. Then   
   

Handshake Lemma
Let        be a graph. Then

      

 

   

   

Proof of Lemma
T is a connected graph with    vertices so T has    edge. 
Let P be a path in T that is as long as possible. Then P has length  1, so the ends x, y of P are 
distinct:    

Claim
         
Then          by symmetry

Suppose          . Let                  
Since   is incident with x, there is another edge          incident with X.
Since P is as long as possible                 is not a path. It is a walk and has no repeated 
edges the only way it can fail to be a path is if             . This implies that T contains a cycle, a 
contradiction  

Proof of Proposition
Induction on p.
Basis    . T has 1 vertex and no edges.       

Induction: Assume holds for a tree with    vertices
   . T has a vertex v of degree 1 by Lemma 1. By Lemma 2   v is connected and contains no 
cycles    v is a tree with    vertices. By induction hypothesis T with v deleted has    edges. 
T with v deleted has 1 fewer vertiex, and 1 fewer edge so T has            edges. 

Proof of Handshake Lemma
Let X be the set of paris                  

                

 

   

         

 

   

                

 

   

   

 

   

   

 

Trees
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Proposition 
Let        , and        a cut-edge of  .
Then    has exactly 2 components X,Y with          
    

Let     be the number of connected components of G

Corollary 1
                  

Corollary 2
If G has p vertices and q edges then          

Corollary 3
If G is connected with p vertices and q edges then      

The 2/3 Theorem (Trees)

G is connected1)
G has no cycles2)
     3)

Consider the following 3 conditions:

Then any two of these implies the remaining one. 

Spanning Subgraph
Let       be a graph. A subgraph       of G is spanning 
if    . That is, H uses all the vertices of  G.

Spanning Tree
A spanning tree is a spanning subgraph of G that is a tree. 

Proposition 
G has a spanning tree iff G is connected. 

Proof of Proposition
Let X be the component of    containing x, an let Y be the component of    containing y.
We need to show that    and every    is either in X or in Y.
First, suppose that X = Y. Then    in    
Then there is a path P in    from x to y
Now (V(P),         ) is a cycle in G  containing e. Hence e is not a cut-edge of G; contradiction.

Secondly, let       . Since G is connected, there is a path Q in G from  to  . If Q does not use 
the edge e then    in    so       in this case.
If Q does use the edge e, then e is the first edge of Q (starting at x) since Q has no repeated 
vertices. 
         
The segment of Q from y to z is a path in    from y to z, so    in    , so       
 

Proof of Corollary 2
Induction on q.
Basis:    , G has p vertices, 0 edges, p components. 
        in this case. 

Induction step,    . Let    
Then              
and               by induction so         

Proof of Corollary 3
     by the previous corollary  

Proof of 2/3 Theorem
1&2  3 
Proved last lecture
1&3    2
Assume that G is connected and       Suppose that G has a cycle C. Let  be an edge in C. 
Then e is not a cut-edge of G. So    is connected with p vertices and              
edges. 
This contradicts corollary 3

     
G has no cycles and            
Let           be the connected components of G and let   have   vertices and   edges. Each 
  is a connected graph with no cycles. Since      we have that              
Now                                

                                                           
Since         G is connected  

Proof of Proposition
If G has a spanning tree T then G is connected, since T is connected and spanning. Conversely, 
assume that G is connected. Proceed by induction on     

Basis:      . This this case 2/3 theorem implies that G is a tree. So it is a spanning tree of 
itself. 

Induction Step:      . Then G has a cycle (otherwise it is a tree, and      ). Let e be an 
edge in a cycle of G. Then    is still connected and has    edges. By induction    has a 
spanning tree, which is also a spanning tree of G. 

Spanning Trees
October-28-11 1:30 PM
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Search Tree Algorithm
Let        be a graph, and     be a "base" 
vertex. 
Initially, let       and let    
*
Let  be the set of edges with one end in W and one end 
not in W. 

If    then output      and stop. 
If    then let          with    and    
Update:                 and goto *

Proposition
Let        be a graph,   a vertex of G, and let   
     be output by an application of the search tree 
algorithm to G and   . Then T is a spanning tree for the 
connected component of G containing   

Note
Note that the search tree algorithm gives a path from 
any vertex to the base vertex. 

Specialize search tree algorithm so that for each    
the path from  to   in T is a shortest path from  to 
  in G

Length of a path
# of edges of the path

Distance between vertices
The distance from vertex x to vertex y is the minimum 
length of any path from x to y. Denoted           

Breadth-First Search
Vertices in W are recorded in a queue. 
Calculate  as before. If    let          with 
   and    and x as early in the queue as 
possible.  joins the end of the  queue.

                       

Depth-First Search
Record the vertices in W in a stack. 
Calculate  as before. Chose          with x as 
close to top of the stack as possible. Add y to the top of 
the stack.

Proof of Proposition
     is a tree. 
Induction on the number of iterations of the loop:

Basis of induction:           .
        is connected and has no cycles - it is a tree.

Induction step: Assume that      is a tree. 
   and        and                  

Since      is a tree,    in        for all    
Also    since     so          

So        is connected.
Let      and      so that      as      is a tree
Now         and         so             

From these and the 2/3 algorithm we get that        is a tree. 
End of induction, so      is a tree.

To see that      spans the component H of G containing   :
Since              is a subgraph of H. Let  be any vector in H. 
Suppose that    . Since     in G there is a path P in G from v to z. Since     and   
 there is an edge  of P with one end in W and one end not in W. 
But then    so    so the algorithm has not terminated yet. Contradiction  

Search Trees
October-31-11 1:32 PM
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Notation
       and    let     be the set of edges of G incident with v.
              

Symmetric Difference
For sets A,B, the symmetric difference of A and B is        B        
           the set of elements in A or B but not both. 

Breadth First Search
Input:
Graph        , vertex     
Initialize:
                  
Put   on front of queue Q.

While    
Let   be the earliest vertex on Q such that          
Let                        

Update:
               
Put  on the end of Q
Level:             
Parent:         

        

Output             

Eventual Claim
The path in        from v to   is a path in G from  to   that is a short as 
possible.
That is,                 

When v joins the queue, earliest vertex on Q with          is      1.
Call   , the earliest vertex on the queue, the active vertex.

Observation

A vertex can become active, then stop being active, but then it never 
becomes active again.

2.

If x occurs before y in Q (and neither one is   ) then      occurs before 
     in Q or            .

3.

If x occurs before y on Q then          4.

Proof of Observations
3rd Part
Suppose x occurs before y in Q but      occurs before      
Since      is active when x joins the queue             

By y joins Q after x so when x joins Q the edge            is in          

   . Contradiction  

3 => 2
The active vertex moves from left to right along Q.

4th
By induction on the positions of y in the queue since x occurs before y,     . 
If     then                  
So assume that     

Now by 3      occurs before      on Q. By induction                  

So                                

 

Breadth-First Search
November-02-11 1:38 PM
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     is active when x joins the queue•
If x occurs before y on the queue then      occurs before      
in Q

•

The active vertex moves left to right in Q•
The level of vertices increases from left to right on Q. •

Construct a Breadth First Search Tree

Fundamental Property of BFS
Let        be a connected graph. Let T be a breadth first search 
tree for G. Let      be the level of    in T. 

Let          be any edge of G. Then                

Note:
Not true for search trees in general. 

Theorem
Let        be a connected graph,       and let  be a BFST for G 
with base vertex   them for every    
                 

Facility Location Problem
Measure of v

                

 

   

Find a vertex that minimizes     
Algorithm

Compute a BFST T for G based at v•

           

 

   

•

For each     

Computed Girth
For each    grow a BFST T of G based at  
For each edge        in G but not in T let                   
  t      m  

     
    

      m  
   

    

Claim
 is the girth of G

Correctness of this algorithms depends on if C is a cycle in G that is as 
short as possible and  is a vertex in C then     is the length of C. 

Test of Bipartness
Input a connected graph        . Grow a BFST based at any     . 
G is bipartite iff for every                         
By partition: (even level, odd level)

Diameter of a Graph
        max

     
          

Proof of Fundamental Property of BFS
If        is in T then either        or        so
             or              

Suppose that                

Assume that              
So                occur in that order on Q (since      is weakly increasing from left 
to right.)
     is active when y joins the queue, so           when y joins the queue. But 
              when y joins the queue. 

Proof of Theorem
The unique path in T from v to   has      edges. 
Thus                  
Conversely, let  be any path in G from v to   

                                            

                                    

 

   

   

 

   

  

So every path from v to   has at least      edges. 
So               

Distance in Graphs
November-04-11 1:33 PM
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Graphs which can be drawn without crossing edges. 

Planar Embedding
Let        be a graph. 

  are pairwise distinct points in   (if               ) 
and 

•

  are simple curves in   (image of      under some 
continuous function           that is injective) i.e.   does 
not intersect itself and

•

if          then   has end points   and   and•

If        then both e and f are incident with a common 

vertex w and           
•

A plane embedding of G is a pair {        and         whose 

  are images of functions (the set of points corresponding to the 
curve in   

Planar Graph
A planar graph is a graph that has some plane embedding. 

Faces
Let         and         be a plane embedding of a graph   
     .
The faces of the embedding are the connected components of 

       

 

   

Degree of a Face
The degree of a face is the number of edges on its boundary counted 
with multiplicities. 

E.g.
The embeddings drawn for 'two plane embeddings' have 4 faces each.

Handshake Lemma for Faces
Let G be a graph property embedded in the plane, with q edges

       

 

        

   

Proposition
Let        be a plane embedding. Let    and let the faces with 
 on their boundaries be   and   . Then      iff  is a cut-edge. 

Euler's Formula
Let G be a plane graph with p vertices, q edges, r faces, and c 
connected components. 
Then          

Not Planar

Planar

Two plane embeddings  of the same graph

First embedding is the same as:

Degree of Faces Example

Proof of Proposition
If e is not a cut-edge then e is contained in a cycle C. 

Th      

 

      

 s  a at s            so      

Conversely, if      then walk around   starting and ending at the edge e - you get a 
closed walk containing e. Deleting subwalks between repeated vertices produces a cycle 
containing e. So e is not a cut-edge. 

Platonic Solids

p 4 8 6 20 12

q 6 12 12 30 30

r 4 6 8 12 20

Proof of Euler's Formula
Induction on q:
Basis:    Then    and so 
             . Good

Induction step:
Let    and consider       with            vertices, edges, 
faces, and components. 

If e is a cut-edge then 
                      
                                  

Planar Graphs
November-07-11 1:30 PM
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If e is not a cut-edge then 
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Euler's Formula
Let G be embedded in   with p vertices, q edges, r faces, and c 
components. 
Then          

Corollary
Let G be a graph with p vertices and    edges. If G is planar 
then 
      

Note of Exception
If                 
If                

Corollary
Let G be a bipartite graph with p vertices and    edges. If G is 
planar then 
      

Subdivision
Subdivision of an edge        in a graph        
This is the graph    with vertex-set         where    
and edge set                           

Claim
G is planar iff    is planar. 
Exercise

Two graphs related by a finite sequence of subdivisions or reverse 
subdivisions are either both planar or both not planar

Lemma
If H is a subgraph of G and G is planar then H is planar. 

Corollary
Any graph that contains a (repeated) subdivision of   or     is 

not planar. 

Kuratowski's Theorem
A graph is planar iff it does not contain a subdivision of   or     

as a subgraph. 

Proof
CO 342

Proof of Corollary
Consider any plane embedding of G, with r faces. Since    every face of the 
embedding has degree   .
By the Handshake Lemma for faces:

          

 

      

   

Since        so    by Euler's Formula
           
          
                   
      so         

Proof of Corollary
Consider any plane embedding of G with r faces
Since    and G is bipartite, every face has degree   
By Handshake lemma for faces,           
Since               
       
          
         
      

Condition for Embedding
November-09-11 1:32 PM
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Vertex Degrees in a Planar Graph
Planar graph, p vertices, q edges (   ) ,   vertices of degree k (   )

Then       
                 

       

 

 

              

 

 

     

 

 

   

           

   

   

                                       
                                      

I  a  la a    a h o  m   mum           
                 
I  a s m l   la a    a h th    must b  a v  t x o            

The Four-Colour Theorem
Conjecture made in 1851 by Guthrie 

For any plane graph, the faces can be coloured with a most four colours so that 
neighbouring faces get different colours. 
Proved in 1974 by Appel and Haken.

Planar Duality
G is a plane graph
G* is its dual graph. 
Draw one vertex of G* on each face of G. Draw one edge of G* across each edge of 
G

With this can end up with duplicate edges, or edges back to the same vertex.

Multigraph
       
V: set of vertices
E: multiset of 2 element multisubsets of V
e.g.                                                  

Proposition
G* can be drawn on G without any edges of G* crossing.

Proposition
       

Four Colour Theorem
Let G be a planar multigraph without loops. Then     can be coloured with   
colours so that adjacent vertices get different colours. 

      

Proper k-Colouring
Leg        be a multigraph proper k-colouring. 
             such that if        then          .

Chromatic Number
The chromatic number of G is 
  G  m       has a   o    k colou     

Spherical Projections
A graph can be drawn on a plane iff it can be drawn on a sphere.
You just need to avoid the north pole. 

Exercise
    vertices, q edges, c components

       a)
Phrase this in terms of   b)

No faces of degree 3

Proof of Proposition
By induction on         
Basis
   is trivial

Induction
If every edge of G is a cut-edge then G has no cycles, so it has only one face. G* 
has one vertex, and one loop for each edge of G. Loops can be drawn without 
overlap.

If e is not a cut-edge of G then consider G\e and (G\e)* By induction can draw 
(G\e)* without crossing edges. Can add in e without crossing.

Alternately
Put a vertex in each face. Can draw a half-edge to each edge of that face in G. 
Connect those half-edges at the edges of the faces and have no crossings.

G and G* are both embedded in the plane. Edge e of G meets edge f* of G* if and 
only if e=f in which case     is a single point. 

Numerology for Planar Graphs
November-11-11 1:32 PM
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Note
       iff  is bipartite. 
      iff G has no edges
      iff G has no vertices

Six Colour Theorem
If G is a planar graph then       

Five Colour Theorem
If G is a planar graph then       

Proof of The Six Colour Theorem
Induction on p, the number of vertices.

Base: 
If    then give every vertex a different colour. 

Induction:
Let G be planar with p vertices. G has a vertex of degree 5 or less, let v be such a vertex. 

By induction,   v has a proper six-colouring                 
Let the neighbours of v b        where    .                has at most 5 colours. 
          such that                  and set       

Proof of the Five Colour Theorem
Induction on         

Base
     give every vertex a different colour.

Induction Step:
Let G be planar with p vertices. Let    have degree   .
Let                      be a proper 5 colouring of   v.
Let the neighbours of v be        and let                  
If              then                   and we can set       to get a proper 5-colouring of G. 

Remaining case:              
So  has 5 neighbours               . We can assume that G is embedded in the plane. WLOG        

occur in that order clockwise around  . Can also assume that        

For                  let    be the subgraph of    induced by the set of vertices coloured either  or 

 by f. If K is a connected component of    then one can define a new 5-colouring of   v as follows: 

Fo   v  y               

           

         a         

         a         

Check: g is a proper 5-colouring of   v

If   and   are in different components of    then let  be the component of    containing   . 
Switch colours  and  on  to get  . Then              
So we can set       to get a proper 5-colouring of G.

If   and   are in the same connected component of    then there is a path in   v from   to   in 
which every vertex is coloured 1 or 3 by f.

Since G is planar the path P with edges              forms a cycle that separates   from   . Thus   

and   are in different connected components of    . Recolour the component of    that contains   

and then give  colour 4.  

Surfaces
Torus = rectangle with opposite sides identified

Graphs on Surfaces

K5

Colour Theorems
November-14-11 1:33 PM
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K7 on the torusEvery graph can be embedded on some surface. 
You can add loops for every vertex.

For any surface, there are finitely many 
obstructions to embedding a graph on that 
surface. It is hard to determine the surface with 
the fewest number of holes which allows a 
given graph to be embedded. 

Surface Representations
Every surface can be represented (possibly 
non-uniquely) by a polygon with pairs of sides 
identified with each other.

Klein Bottle

This is a non-orientable surface. There is no distinction between clockwise and counter clockwise. 

Non-orientable surfaces cannot be embedded in 3 dimensions, require at least 4.

Graphs on Surfaces
November-16-11 1:32 PM
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Toy Application

Processors Jobs

     is an edge when processors in p can perform job j
Assign jobs to processors to maximize the number of busy processors.
  one job per processor
  one processor per job

3-Regular with no Perfect Matching

Matching
Let        be a graph. A matching, M, is a set of edges 
so that      has maximum degree   .
Every vertex is in at most one edge of M.

Problem
Given G, find a matching on G of maximum size. 

Perfect
A matching is perfect if every vertex has degree 1 in      

Non-Perfect Matching
A 2 regular graph consisting of an odd cycle has no perfect 
matching.

"Let's consider the next value of 2, which is 3."

M-Saturated
   is M-saturated if  is on an edge of M
   is M-unsaturated if v is not on any edge of M.

M-Alternating, M-Augmenting
Let        be a graph.
M a matching of G
P a path in G,                  is M-alternating if 
either
      is odd  or
       is even

      is even, and
P has an odd number of edges, and
  and   are M-unsaturated

P is M-augmenting iff 

Proposition
If M is a matching in G and P is an M-augmenting path then 
         is a matching in G with one more edge 
than M.
               

Theorem
Let        be a graph.    a matching. Then M is a 
maximum matching iff G does not have an M-augmenting 
path. 

Vertex Cover
A vertex cover is a set    such that every edge    has 
at least one end in  .

Matching Vertex Cover

Set of edges M Set of vertices S

Every    is on  
     

Every    is on      
 

Find a maximum 
matching

Find a minimum vertex 
cover

Proposition
Let G be a graph, M a matching, and S a vertex cover in G.
Then        

Example: Odd Cycle

max     
 

 
   

m       
 

 
   

Corollary
Let G be a graph, M a matching, S a vertex cover. 
If        then  is a maximum matching and  is a 
minimum vertex-cover. 

For a non-bipartite graph, there may be a gap, as in odd 
cycles (but not necessarily).

Example

Red are vertices in M, terminate on M-saturated vertices.
Blue is an M-augmenting path

Proof of Theorem
If P is an M-augmenting path in G, then          is a matching on G with           so 
M is not a maximum matching.

Conversely, assume that M is not a maximum matching. Let   be a maximum matching in G, so 
        
Consider the spanning subgraph (uses all the vertices) H of G with edges     .
In H, every vertex has degree 0, 1, or 2. Every connected component is either a path or a cycle. The 
cycles all have even length. Since         , there is a component K of H that has  more edges in 
  than in M. Since connected components alternate 1 edge in M with 1 edge in M* this cannot be a 
cycle. This connected component must be a path with both end edges in M* but not in M.
The end vertices of K are not saturated by M. Thus K is an M-augmenting path. 
 

Proof of Proposition
Let                          
Since  is a matching, every    is in at most one    so

       
     
     

 

   

 

   

   

 

   

    

Since S is a vertex cover, every    is incident with at least one    

       
     
     

 

   

 

   

   

 

   

    

So            

Matching Theory
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König's Theorem
Let  be a bipartite graph.
Then max    m     
(Maximum over matchings M of G, minimum over vertex-
covers S of G)

Algorithmification of König's Theorem
How to compute a maximum matching in a bipartite graph. 

Input: a graph G with bipartition (A, B).
Initialize:    

Compute the set        as in Claims 1,2,3.•
If    is M-unsaturated, find an M-alternating path P 
from some     to  .

•

Update         , •
Repeat until there are no more M-unsaturated    .•

Computation:

Output:            

Computing the sets X, Y systematically.

Graph G with bipartition (A, B)•
Matching M in G•

Input: 

  to the M-unsaturated vertices in A.•
Put all vertices in   on the front of queue Q.•
        •

Initialize: 

Computation:

Let q be the first vertex in Q•
If    and M-saturated then let        ,•
put x at the end of Q if x is not already in A. Delete q 
from the front of Q.
       
If    and M-unsaturated then use q to find any M-
augmenting path.

•

If    then choose any non-matching edge        
with b not already on the Q. Adjoin b to the  end of the 
Q. If there is no such b, delete q from the front of Q.

•

       

While    do the following:

Output:      

Anatomy of a Matching in a Bipartite Graph
Let G have bipartition (A, B)
Let M be a matching in G
Let     be the set of  M-unsaturated vertices in A.
Let    be the set of vertices reachable from some      by an M-alternating path.
Let    be the set of vertices in B reachable from some      by an M-alternating path. 

Claim 1
If there is an M-unsaturated vertex    then G has an M-augmenting path from some      to  .

Proof
Let      and let P be an M-alternating path from   to  in G. Since neither   nor  is saturated 
by M          ) P is an M-augmenting path.

Claim 2
there are no edges of G between the sets X and    

Proof
Suppose that        with    and    .
If    then consider an M-alternating path P from some      to    . Then    is an M-
alternating path from   to b, so    (since the last edge in P is in M) 

If    then consider an M-alternating path P from some      to    . 
                   . P has an even number of edges,     so     ,   is the unique 
matching edge on  . So     and         .

Claim 3
There are no edges of M between the sets Y and    .

Proof
Suppose that        with    and      . 
Let P be an M-alternating path from   to  . Then    is an M-alternating path from   to  . So 
   , a contradiction.

König's Theorem
Let G be a bipartite graph. Let M be a maximum matching. Let S be a minimum vertex-cover. 
Then        

Proof
Let M be a maximum matching in G and constructs sets X, Y as in claim 1,2,3. 
Since M is a maximum matching, there are no augmenting paths.
By Claim 1, every vertex in Y is saturated by M.
By Claims 2, 3 every edge of M with one end in Y has its other end in X, and every edge of M with 
one end in    as other end in    .
Every vertex in        is M-saturated. Now        with          . (Since each edge has 
one adjacent vertex in S)
By Claim 2, S is a vertex cover of G (since G has no edges between X and    , which are the only 
sets of M-unsaturated vertices.)

Hence  is a minimum size vertex-cover and         

Example Computation of X, Y

König's Theorem
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A-Saturating
Let        be a graph with bipartition (A, B). A 
matching M is A-saturating when every    is saturated 
by M.

Hall Condition
If G has an A-saturating matching M this defines an 
injective function      by saying that       iff 
       . 
If this exists then for all    ,  restricts to an injective 
function from  to     .

Thus, if G has an A-saturating matching then     
           

Hall's Matching Theorem
Let        be a graph with bipartition      . Then G 
has an A-saturating matching iff               .

Corollary
Let G be a k-regular graph with bipartition (A, B). If    
then then G has a perfect matching. 

Corollary
A k-regular bipartite graph can be partitioned into k 
edge-disjoint perfect matching. 

Tutte Condition
Let        be a graph. 
For    let   S be the subgraph of G induced by 
vertices in   S. 
Let odd   S be the number of connected components of 
  S with an odd number of vertices.

If G has a perfect matching then for every 
              S . 

Tutte's Matching Theorem
A graph has a perfect matching iff
               S 

Which bipartite graphs have A-saturating matchings?

Does not have an A-saturating matching.

For each      let                    o            
This example has a set    with      and         
If G has an A-saturating matching M this defines an injective function      by saying that 
      iff        .

Proof
We've seen that if G has an A-saturating matching then                
Conversely, assume that there is no A-saturating matching. Let   be a maximum matching in 
G. So         .
By König's Theorem, there is a vertex-cover  in G with         . 
Since Q is a vertex cover, there are no edges from      to    
In other words,         
                        
               
                                              

Proof of Corollary
Since    we have              so        
So every A-saturating matching is also a B-saturating matching.

Check Hall's Conditions
Let    and consider     . Counting edges of G with one end in S we get              
By Hall's Theorem there is an A-saturating matching.

Proof of Tutte's Condition
On homework

Problem
Consider a bipartite graph that is biregular. There are integers        such that every 
vertex in A has degree a and every vertex in B has degree b. 
Assume that  c        and write      and      .

Does G have a spanning subgraph that is        biregular?  
Yes, true for all a and b.

Example:    ,    
Note that when    ,      ,        and        biregular subgraph is a perfect 
matching. 

Hall/Tutte Conditions
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Notation
    is the number of spanning trees of G
    G delete e
   G contract e
"Shrink" the edge until the ends of it merge intro a single vertex. 
Produces a multigraph.

Deletion-Contraction Recurrence
For any graph G and     
                  

Cut-Vertex
A cut vertex is a vertex which, when deleted, increases the number of 
connected components in the graph. 

If G has a cut-vertex v Then let       be the components of   v each 
with v joined back in. Then 

           

 

   

Cycle
The number of spanning trees for an n-cycle is n.
This is true even for cycles of length 1 or 2. 

Adjacency Matrix
The adjacency matrix        A, indexed by    

      
            

            

more generally for multigraphs:

      
#    s jo      v a           

  # loo s at v       

 square diagonal matrix indexed by    

      
        

              

Laplacian Matrix
     

Matrix-Tree Theorem
Let    be any vertex and let       be obtained by deleting row v and 
column v of L. 

       t       

Signed Incidence Matrix
Let        be a connected multigraph
Draw an arrow on each edge      in an arbitrary direction, either   
 or    

D is indexed by    

      
         o  ts   to   but  ot out
         o  ts out o    but  ot   

  oth    s 

Fact
For any orientation of G
       

Contracting, Deleting

Example of Deletion-Contraction Recurrence

Example of Laplacian Matrix

  

 
 
 
 

       
        
        
       

         
 
 
 
 

  t         

     
      
      
     

    
    

     
    

   
     
    
    

 

                               

Example of Signed Incidence Matrix

  

 
 
 
 

        
        
        
        

           
 
 
 

     

 
 
 
 

       
        
        
       

         
 
 
 
 

         

Counting Spanning Trees
November-25-11 1:31 PM

   MATH 249 Page 39    



       a connected multigraph
 adjacency matrix indexed by    

      
#     s   th    s          

  # loo s at      

Degree matrix diagonal    
            

Laplacian matrix:         

D is a    signed incidence matrix for G with respect to an 
arbitrary orientation of G

      
         o  ts   to   but  ot out
         o  ts out o    but  ot   

  oth    s 

            if G has no loops

Matrix-Tree Theorem
For any vertex    ,        t       

The Binet-Cauchy Identity
Let M be an    matrix and P be an    matrix. Then

  t        t          t       

 

 

with summation over all r-element subsets            

For a matrix Q and sets     of row and column indices,
      is the submatrix of Q indexed by rows    and columns    .
      is the submatrix of Q indexed by rows    and columns    
     means delete no rows, keep only columns in  

Proposition 
Let        be a connected multigraph. Let    and    be 
such that            and    
Consider       . 
Then          =±1 i     ,S) is a forest has a unique vertex in R 

           S =0 if not. 

Example Laplacian Matrix

   

      
      
      
      

 

Setup of Matrix-Tree Theorem Proof
Since          use Binet-Cauchy

  t          t            t                  t          t        

 

 

Summation over all sets    with        

  t            t          
 

   
       

To prove the Matrix-Tree Theorem it suffices to show the proposition on the left (proof of 
that later).

Proof of Matrix-Tree Theorem
  t        iff      is a spanning tree of G (by the Proposition)
Otherwise,   t         . Hence

  t           t          t        

 

 

     t         
 

 

     

Proof of Proposition
Have       . Every column has exactly one +1 and one -1 and the rest 0.

Delete    rows and keep    columns. So there are            rows and the 
submatrix       is square.

Consider the graph      . Suppose it contains a cycle C. Consider the columns of D 
corresponding to edges in the set C. This set of columns is linearly dependent.

  

 
 
 
 

       
       
       
       
        

 
 
 
 

        

 
 
 
 

 
 
 
 

   
 
 
 

 

 
 
 
 

 
 
 

  
  

 
 
 

 

 
 
 
 

 
  
 
 
  

 
 
 

 

 
 
 
 

 
 

  
 
  

 
 
 

  

Sum the columns in C with   signs according to whether e agrees in direction with the 
orientation around C.

Matrix Tree Theorem
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Section 1 of "Combinatorics of Electrical Networks"
Not on exam

Theorem (Euler)
A graph G has a trail T passing through every edge exactly once iff G has 
at most 2 vertices of odd degree.
(An Euler tour)

Plane Graph Numerology

3-regular •
Every face has degree 4 or 7•

Give examples of connected plane graphs with the following properties:

Use handshake for faces and Euler's formula

Missing Lectures, Extra Content
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