# Enumeration

September-12-11 1:36 PM

# **Geometric Series Expansion** $Q = 1 + z + z^2 + z^3 + \cdots$ $zQ = z + z^2 + z^3 + z^4 + \cdots$ Q - zQ = 1 $\therefore Q = \frac{1}{1 - z} = 1 + z + z^2 + z^3 + \cdots$

# Example

Let  $a_n$  be the number of subset of  $\{1, 2, ..., n\}$  that don't contain two consecutive numbers. Determine for all  $n \ge 0$ 

| n | subsets                  | $a_n$ |
|---|--------------------------|-------|
| 0 | Ø                        | 1     |
| 1 | Ø, {1}                   | 2     |
| 2 | Ø, {1}, {2}              | 3     |
| 3 | Ø, {1}, {2}, {3}, {1, 3} | 5     |

Let  $A_n$  be the collection of all such subsets of  $\{1, 2, ..., n\}$ Let  $B_n$  be the collection of these sets  $S \in A_n$  for which  $n \in S$ Then  $A_n = A_{n-1} \cup B_n$  is a disjoint union of subsets. So  $a_n = |A_n| = |A_{n-1}| + |B_n|$ The set  $B_n$  is in bijection with  $A_{n-2}$  $\begin{cases} S \in B_n \ corresponds \ to \ S \setminus \{n\} \\ T \in A_{n-2} \ corresponds \ to \ T \cup \{n\} \in B_n \\ \text{Hence } |B_n| = |A_{n-2}| = a_{n-2} \\ \text{Hence } a_n = a_{n-1} + a_{n-2} \ for \ n \ge 2 \end{cases}$ 

Fibonacci Numbers  $f_1 = 1$   $f_2 = 1$   $f_3 = f_4$ 

 $\begin{array}{l} f_0=1, f_1=1, f_n=f_{n-1}+f_{n-2} \ for \ n\geq 2\\ \text{So for us, } a_n=f_{n+1}for \ n\geq 0 \end{array}$ 

Get a formula for  $f_n$  as a function of n.

# **Generating Function**

 $F = F(x) = \sum_{n=0}^{\infty} f_n x^n$ From the initial conditions and the recurrence we get the following:  $F = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + \cdots$   $= 1 + x + \sum_{n=2}^{\infty} (f_{n-1} + f_{n-2}) x^n$   $= 1 + x + \sum_{n=2}^{\infty} f_{n-1} x^n + \sum_{m=2}^{\infty} f_{n-2} x^n$   $= 1 + x + \sum_{i=1}^{n} f_i x^{i+1} + \sum_{j=0}^{m} f_j x^{j+2}$   $= 1 + x + x(F - 1) + x^2(F)$ Hence  $F = 1 + xF + x^2F$   $F(x) = \sum_{n=2}^{\infty} f_n x^n = \frac{1}{1 - x - x^2}$ Now get expression for individual terms  $1 - x - x^2 = (1 - \alpha x)(1 - \beta x)$   $x = \frac{1}{t} \Rightarrow t^2 - t - 1 = (t - \alpha)(t - \beta)$   $\alpha, \beta = \frac{1 \pm \sqrt{1 - 4 \times 1 \times (-1)}}{2} = \frac{(1 \pm \sqrt{5})}{2}$ By partial fractions  $\exists A, B \in \mathbb{C}$  such that  $\frac{1}{1 - x - x^2} = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}$ 

$$\sum_{\substack{n=0\\\text{So}}}^{\infty} f_n x^n = \frac{A}{1-\alpha x} + \frac{B}{1-\beta x} = A \sum_{n=0}^{\infty} \alpha^n x^n + B \sum_{n=0}^{\infty} \beta^n x^n = \sum_{n=0}^{\infty} (A\alpha^n + B\beta^n) x^n$$
$$f_n = A\alpha^n + B\beta^n \ \forall n \ge 0$$

Initial Conditions  $f_0 = 1 = A + B$ 

$$f_0 = 1 = A + B$$
  
 $f_1 = 1 = A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{(1-\sqrt{5})}{2}\right)$   
Solve for A, B

MATH 249 Page 1

$$\begin{aligned} f_1 &= 1 = \frac{A+B}{2} + \frac{(A-B)\sqrt{5}}{2} \\ 2 &= (1+\sqrt{5})A + (1-\sqrt{5})B \\ B &= 1-A \end{aligned}$$

$$\begin{aligned} 2 &= (1+\sqrt{5})A + (1-\sqrt{5})(1-A) = A + \sqrt{5}A + 1 - \sqrt{5} - A + \sqrt{5}A = 1 - \sqrt{5} + 2\sqrt{5}A = 2 \\ A &= \frac{\sqrt{5}+1}{2\sqrt{5}} \\ B &= 1-A = \frac{2\sqrt{5}-1-\sqrt{5}}{2\sqrt{5}} = \frac{\sqrt{5}-1}{2\sqrt{5}} \\ f_n &= \left(\frac{\sqrt{5}+1}{2\sqrt{5}}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{\sqrt{5}-1}{2\sqrt{5}}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n \end{aligned}$$

# **Generating Functions**

September-14-11 1:28 PM

$$H = H(x) = \sum_{n=0}^{\infty} h_n x^n = \frac{1 + x + 3x^2}{1 - 3x^2 - 2x^3}$$

Generating Function to Recurrence Relation Convention:  $h_n = 0$  if n < 0Clear denominators

$$(1 - 3x^{2} - 2x^{3}) \sum_{n=-\infty}^{\infty} h_{n}x^{n} = 1 + x + 3x^{2}$$

$$\sum_{n} h_{n}x^{n} - 3\sum_{n} h_{n}x^{n+2} - 2\sum_{n} h_{n}x^{n+3} = \sum_{n} h_{n}x^{n} - 3\sum_{n} h_{n-2}x^{n} - 2\sum_{n} h_{n-3}x^{n}$$

$$= \sum_{n} (h_{n} - 3h_{n-2} - h_{n-3})x^{n} = 1 + x + 3x^{2}$$

$$n = 0 \quad h_{0} - 3h_{-2} - 2h_{-3} = 1 \Rightarrow h_{0} = 1$$

$$n = 1 \quad h_{1} = 1$$

$$n = 2 \quad h_{2} - 3h_{0} = 3 = 3 \Rightarrow h_{2} = 6$$
For all  $n \ge 3$ ,  $h_{n} - 3h_{n-2} - 2h_{n-3} = 0$ 
Hence
$$h_{0} = 1, h_{1} = 1, h_{2} = 6$$
For  $n \ge 3$ :  $h_{n} = 3h_{n-2} + h_{n-3}$ 

**Recurrence Relation to Generating Function**  $h_0 = 1, h_1 = 1, h_2 = 6$ 

$$h_{0} = 1, h_{1} = 1, h_{2} = 6$$

$$h_{n} = 3h_{n-2} + 2h_{n-3}$$

$$h_{n} = 0 \text{ if } n < 0$$

$$H = H(x) = \sum_{n} h_{n} x^{n}$$

$$1 + x + 6x^{2} + \sum_{n=3}^{\infty} (3h_{n-2} + 2h_{n-3})x^{n} = 1 + x + 6x^{2} + \sum_{n=3}^{\infty} 3h_{n-2}x^{n} + \sum_{n=3}^{\infty} 2h_{n-2}x^{n}$$

$$= 1 + x + 6x^{2} + \sum_{i=1}^{\infty} 3h_{i}x^{i+2} + \sum_{j=0}^{\infty} 2h_{j}x^{j+3}$$

$$H = 1 + x + 6x^{2} + 3x^{2}(H - 1) + 2x^{3}H$$

$$H(x) = \frac{1 + x + 3x^{2}}{1 - 3x^{2} - 2x^{3}}$$

**Generating Function to Coefficient Formula** Works only when  $H(x) = \frac{P(x)}{Q(x)}$  with deg  $P < \deg Q$ Uses partial fraction expansion.

Factor the denominator, identifying **inverse roots.**  

$$1 - 3x^{2} - 2x^{3} = (1 - \alpha x)(1 - \beta x)(1 - \gamma x), \qquad \alpha, \beta, \gamma \in \mathbb{C}$$

$$t^{3} - 3t - 2 = (t - \alpha)(t - \beta)(t - \gamma), \qquad \text{where } t = \frac{1}{x}$$

$$= (t + 1)(t^{2} - t - 2) = (t + 1)^{2}(t - 2)$$
Since deg $(1 + x + 3x^{2}) < \deg(1 - 3x^{2} - 2x^{3}) \exists A, B, C \in \mathbb{C}$ :  

$$\frac{1 + x + 3x^{2}}{1 - 3x^{2} - 2x^{3}} = \frac{A}{1 - 2x} + \frac{B}{1 + x} + \frac{C}{(1 + x)^{2}}$$

$$1 + x + 3x^{2} = A(1 + x)^{2} + B(1 - 2x)(1 + x) + c(1 - 2x)$$

$$x = 0: 1 = A + B + C$$

$$x = -1: 3 = 0 + 0 + 3C \Rightarrow C = 1$$

$$x = \frac{1}{2}: \frac{9}{4} = \frac{9}{4}A + 0 + 0 \Rightarrow A = 1, B = -1$$

$$\frac{1 + x + 3x^{2}}{1 - 3x^{2} - 2x^{3}} = \frac{1}{1 - 2x} - \frac{1}{1 + x} + \frac{1}{(1 + x)^{2}}$$
Aside  

$$\frac{1}{(1 - z)^{2}} = \frac{1}{1 - z} \times \frac{1}{1 - z} = \left(\sum_{i=0}^{\infty} z^{i}\right) \left(\sum_{i=0}^{\infty} z^{i}\right) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} z^{i+j}\right) = \sum_{n=0}^{\infty} \left(\sum_{i+j=n}^{1} 1\right) z^{n}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} 1\right) z^{n} = \sum_{n=0}^{\infty} (n + 1) z^{n}$$

$$H = \sum_{n=0}^{\infty} 2^n x^n - \sum_{n=0}^{\infty} (-1)^n x^n + \sum_{n=0}^{\infty} (n+1)(-1)^n x^n = \sum_{n=0}^{\infty} (2^n + n(-1)^n) x^n$$
  
Thus

MATH 249 Page 3





Higher Powers  $\frac{1}{(1-z)^3} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} z^{i+j+k}$ The coefficient is the number of solutions (i, j, k) to the equation i + j + k where  $i \ge 0, j \ge 0, k \ge 0 \in \mathbb{Z}$ 

# **Partial Fractions**

September-16-11 1:31 PM

#### **Partial Fractions**

 $Q(x) = \prod_{i} (1 - \alpha_{i})^{k_{i}}$   $P(x) \text{ has degree} \leq \sum_{i} k_{i}$   $\frac{P(x)}{Q(x)} = \sum_{i} \sum_{j=1}^{k_{i}} \frac{A_{ij}}{(1 - \alpha_{i})^{j}}$ 

# **Generating Function**

$$\frac{1}{(1-x)^t} = \sum_{n=0}^{\infty} \binom{n+t-1}{t-1} x^n$$

# Multisets

Intuitively: sets with repeated elements t "types" of element each type can occur any number of times. size of multiset = total # of occurrences of elements.

For each type of element  $1 \le i \le t$  let  $m_i$  be the number of times that element of type i occurs in the multiset.

The size of the multiset is  $m_1 + m_2 + \dots + m_t$ , where m is the multiplicity for element i

So the coefficient of  $x^3$  in  $\frac{1}{(1-x)^3}$  is

$$[x^3]\frac{1}{(1-x)^3} = 10$$

We can regard a multiset of size n with elements of t types as its sequence of multiplicities.

 $(m_1, m_2, \dots, m_t) \in \mathbb{N}^t$  with  $m_1 + m_2 + \dots + m_t = n$ 

#### Fact

There are  $\binom{n}{k} = \frac{n!}{k! (n-k)!}$ k-element subsets of  $\{1, 2, ..., n\}$ 

#### Proposition

For  $n \ge 0$  and  $t \ge 1$  there are  $\binom{n+t-1}{t-1}$  multisets of size n with elements of t types.

#### **Partial Fractions Example**

 $\begin{aligned} \alpha, \beta, \gamma \in \mathbb{C} \text{ distinct non} - zero \\ Q(x) &= (1 - \alpha x)(1 - \beta x)^2(1 - \gamma x)^3 \\ P(x) \text{ has degree} &\leq 5 \\ \text{By partial fractions} \\ \exists A, B, C, D, E, F \in \mathbb{C} \text{ such that} \\ \frac{P(x)}{Q(x)} &= \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x} + \frac{C}{(1 - \beta x)^2} + \frac{D}{1 - \gamma x} + \frac{E}{(1 - \gamma x)^2} + \frac{F}{(1 - \gamma x)^3} \end{aligned}$ 

#### General Problem

 $\frac{1}{(1-x)^t}$  as a power series in x.

$$\begin{split} t &= 1: \frac{1}{1-x} = \sum_{i=0}^{\infty} x^{i} \\ t &= 2: \frac{1}{(1-x)^{2}} = \sum_{n=0}^{\infty} (n+1)x^{n} \\ \frac{1}{(1-x)^{t}} &= \left(\frac{1}{1-x}\right)^{t} = \left(\sum_{m=0}^{\infty} x^{m}\right)^{t} = \prod_{l=1}^{t} \left(\sum_{m_{l}=0}^{\infty} x^{m_{l}}\right) = \sum_{m_{1}}^{\infty} \sum_{m_{2}}^{\infty} \dots \sum_{m_{t}}^{\infty} x^{m_{1}+m_{2}+\dots+m_{t}} \\ &= \sum_{(m_{1},m_{2},\dots,m_{t})\in\mathbb{N}^{t}} x^{m_{1}+m_{2}+\dots+m_{t}} \\ \frac{1}{(1-x)^{t}} &= \sum_{n=0}^{\infty} \left(\sum_{\substack{(m_{1},m_{2},\dots,m_{t})\in\mathbb{N}^{t} \\ m_{1}+m_{2}+\dots+m_{t}=n}} 1\right) x^{n} \end{split}$$

The coefficient of  $x^n$  in  $\frac{1}{(1-x)^t}$  is the number of n-tuples  $(m_1, m_2, ..., m_t) \in \mathbb{N}^t$  such that  $\sum_{i=1}^t m_i = n$ 

#### **Example of multisets**

Multiset of size 3 with 3 types of elements: A, B, C For each type of element  $1 \le i \le t$  let  $m_i$  be the number of times that element of type I occurs in the multiset.

| · or outin | type of element 1 _ t _ |
|------------|-------------------------|
| Multiset   | $m_1, m_2, m_3$         |
| A,A,A      | 3,0,0                   |
| A,A,B      | 2,1,0                   |
| A,A,C      | 2,0,1                   |
| A,B,B      | 1,2,0                   |
| A,B,C      | 1,1,1                   |
| A,C,C      | 1,0,2                   |
| B,B,B      | 0,3,0                   |
| B,B,C      | 0,2,1                   |
| B,C,C      | 0,1,2                   |
| С,С,С      | 0,0,3                   |

#### **Proof of Proposition**

Establish a bijection between the set of t-type multisets of size n and the set of (t - 1)-element subsets of  $\{1, 2, ..., n + t - 1\}$ 

### Informally

Write a sequence of n + t - 1 spaces. Example: n = 7, t = 4

Cross out t - 1 of those spaces. Count empty spaces between/around the X's \_\_X \_ X \_ X \_ T This creates 4 groups with a total of 7 elements. (2, 1, 2, 2)

#### Formally

Let B be the set of (t - 1)-element subsets of  $\{1, 2, ..., n + t - 1\}$ Let A be the set of t-type multisets of size n.

```
f: B \to A
```

Input  $S = \{s_1 < s_2 < \dots < s_{t-1}\}$ Let  $m_1 = s_1 - 1, m_i = s_i - s_{i-1} - 1$  for  $2 \le i \le t - 1$  $m_t = n + t - 1 - s_{t-1}$ Output  $(m_1, m_2, \dots, m_t)$ 

 $\begin{array}{l} g \colon A \rightarrow B \\ \text{Input} \ (m_1, m_2, \ldots, m_t) \in A \\ \text{For } 1 \leq i \leq t-1 \ let \ s_i = m_1 + m_2 + \cdots + m_i + i \\ \text{Output} \ \{s_1, s_2, \ldots, s_{t-1}\} \end{array}$ 

Check \* for all  $\mu \in A$ :  $f(g(\mu)) = \mu$ \* for all  $S \in B$ : g(f(S)) = S

**Back to General Problem** We've seen that for all  $t \ge 1$ 

$$\frac{1}{(1-x)^t} = \sum_{n=0}^{\infty} \binom{n+t-1}{t-1} x^n$$

Coefficient is a polynomial in n of degree t - 1

Example  

$$\frac{A}{1-\alpha x} + \frac{B}{1-\beta x} + \frac{C}{(1-\beta x)^2} + \frac{D}{(1-\beta x)^3}$$

$$= A \sum_{\substack{(n=0)\\m=0}}^{\infty} \alpha^n x^n + B \sum_{n=0}^{\infty} \beta^n x^n + C \sum_{\substack{(n=0)\\m=0}}^{\infty} \binom{n+1}{1} \beta^n x^n + D \sum_{n=0}^{\infty} \binom{n+2}{2} \beta^n x^n$$

$$= \sum_{\substack{n=0\\n=0}}^{\infty} (Aa^n + (Bc_0 + Cc_1 + Dc_2)\beta^n)x^n$$

$$c_i = \binom{n+i}{i} \text{ is a polynomial of degree } \leq i$$

# Binary Strings

September-19-11 1:30 PM

### **Binary Strings**

 $\{0, 1\}^*$  is the set of all finite strings of 0s and 1s  $\sigma = b_1 b_2 \dots b_n$  with each  $b_i \in \{0, 1\}$  is a word

 $\mathcal{L} \subseteq \{0,1\}^*$  is a language

# Length

The length of a word  $\sigma \in \{0, 1\}^*$  is the number of letters in it,  $l(\sigma)$ 

# Language Generating Function

Generating Function of a language  $\mathcal{L}$  is  $L(x) = \sum_{\sigma \in \mathcal{L}} x^{l(\sigma)} = \sum_{n=0}^{\infty} \left( \sum_{\substack{\sigma \in \mathbb{L} \\ l(\sigma)=n}} 1 \right) x^n$ 

For every  $n \in \mathbb{N}$ : the coefficient of  $x^n$  in L(x) is the number of words in  $\mathcal{L}$  of length n.

### Constructing Languages

Union  $A \cup B = \{ \sigma \in \{0, 1\}^* : \sigma \in A \text{ or } \sigma \in B \}$ 

**Concatenations**   $AB = \{\alpha\beta : \alpha \in A \text{ and } \beta \in B\}$ is the concatenation of A and B

#### **Unambiguous Concatenation**

The concatenation AB is unambiguous if each word AB is constructed exactly once in the form  $\sigma = \alpha\beta$  with  $\alpha \in A, \beta \in B$ . That is, *AB* is in bijection with  $A \times B$ 

#### Iteration

If A is a language then A\* is the iteration of A, consisting of all words  $\sigma = \alpha_1 \alpha_2 \dots \alpha_k$  for some  $k \in \mathbb{N}$ , with  $\alpha_i \in A$  for each  $1 \le i \le k$ 

Ex: {0, 1}\* is an instance of iteration

#### **Unambiguous Iteration**

 $A^*$  is unambiguous if every word  $\sigma \in A^*$  can be written as  $\sigma = \alpha_1 \alpha_2 \dots \alpha_k$  for a unique value of  $k \in \mathbb{N}$  and  $\alpha_1, \alpha_2, \dots, \alpha_k \in A$ .

# Sum Lemma

If  $A, B \subseteq \{0, 1\}^*$  and  $A \cap B = \emptyset$  then the generating function for  $A \cup B = A(x) + B(x)$ 

### **Product Lemma**

For  $A, B \subseteq \{0, 1\}^*$ , if AB is unambiguous then the the generating function for AB is A(x)B(x)

# **Iteration lemma**

If  $A \subseteq \{0,1\}^*$  and  $A^*$  is unambiguous, then the generating function for  $A^*$  is  $\frac{1}{1-A(x)}$ .

#### A game

- Player wagers n dollars
- Player flips a fair coin n times
- If Player hits a run of 3 (or more) heads, he wins \$10
- Otherwise he loses the wager (\$n)

1st question: What is the smallest value of n for which this is profitable for Player? 2nd question: Suppose House pays the player w(n) dollars when Player hits HHH. What function w(n) makes the game completely fair?

# Example, n=3

Expected profit of Player is  $\frac{7 \times (-3) + 1 \times (10)}{8} = -\frac{11}{8}$ n=4 2<sup>4</sup> outcomes 3 outcomes have  $\ge 3$  heads Expected profit  $\frac{13 \times (-4) + 3 \times (10)}{16} = -\frac{22}{16} = -\frac{11}{8}$ 

Let  $g_n$  be the number of binary strings of length n which do not contain 000 as a substring.  $G \subseteq \{0, 1\}^*$  is the set of all binary strings that don't contain 000 as a substring.

#### **Proof of Sum Lemma**

$$\sum_{\sigma \in A \cup B} x^{l(\sigma)} = \sum_{\sigma \in A} x^{l(\sigma)} + \sum_{\sigma \in B} x^{l(\sigma)} = A(x) + B(x)$$

### **Proof of Product Lemma**

$$\sum_{\sigma \in AB} x^{l(\sigma)} = \sum_{\alpha \in A} \sum_{\beta \in B} x^{l(\alpha) + l(\beta)} = \left(\sum_{\alpha \in A} x^{l(\alpha)}\right) \left(\sum_{\beta \in B} x^{l(\beta)}\right) = A(x)B(x)$$

#### **Proof of Iteration Lemma** Generating function for *A*<sup>\*</sup> is

$$\sum_{\alpha \in A^*} x^{l(\alpha)} = \sum_{k=0}^{\infty} \sum_{\alpha_1, \alpha_2, \dots, \alpha_k \in A^k} x^{l(\alpha_1 \alpha_2 \dots \alpha_k)} = \sum_{(k=0)}^{\infty} \sum_{\alpha_1 \in A} \sum_{\alpha_2 \in A} \dots \sum_{\alpha_k \in A} x^{l(\alpha_1) + l(\alpha_2) + \dots + l(\alpha_k)}$$
$$= \sum_{k=0}^{\infty} \left( \sum_{\alpha \in A} x^{l(\alpha)} \right)^k = \sum_{k=0}^{\infty} A(x)^k = \frac{1}{1 - A(k)}$$

# Language Expressions

September-21-11 1:32 PM

# **Rational Languages**

• Ø, {0}, {1} are rational languages.

• If A, B are rational then so are  $A \cup B$ , AB,  $A^*$ 

### **Regular Expression**

Any expression involving  $\{0\}, \{1\}, \emptyset, \cup, \cdot, \cdot^*$  that is well-formed. Every regular expression determines a rational language.

### Unambiguous

Every string can be constructed in exactly one way

### Theorem

Every rational language has an unambiguous regular expression.

Proof: Take a graduate CS course

#### Notation

 $(0 \cup 1)^*$  instead of  $(\{0\} \cup \{1\})^*$  $\epsilon = () - \text{string of length } 0$  $\emptyset = \{\}$  - null set

#### **Block**

A block in a binary string  $\sigma = b_1 b_2 \dots b_n$  is a substring of consecutive equal letters that is maximal w.r.t length.

#### Note:

Maximal, not maximum Blocks are always non-empty

#### **Block Decompositions**

0\*(1\*10\*0)\*1\* and 1\*(0\*01\*1)\*0\* are block decompositions for the set of all binary strings. Block decompositions always unambiguous.

#### **Examples of regular expressions**

 $\{0, 1\}^* = (\{0\} \cup \{1\})^*$  is an unambiguous regular expression. The generating function of  $\{0\} \cup \{1\}$  is  $2x^1$ By iteration:

$$\{0,1\}^*$$
 has generating function  $\frac{1}{1-2x} = \sum_{n=0}^{\infty} 2^n x^n$ 

 $0^*0$  is  $\{0\}^*\{0\} = \{0, 00, 000, 0000, ...\}$ has generating function  $=\frac{x}{1-x}=\frac{1}{1-x}\times x$ 

### **Blocks**

Want to split a binary string into blocks. Can have a block of 1s followed by a block of 0s, all repeated.

Regular expression: block of 0s: 0\*0 block of 1s: 1\*1 Block of 1s followed by block of 0s: (1\*1)(0\*0)

Therefore, the regular expression (1\*10\*0)\* allows constructing of any string that does not start with 0 or end with 1

Claim: 0\*(1\*10\*0)\*1\* produces all strings unambiguously Generating function:

$$0^*, 1^* \to \frac{1}{1-x}$$
$$0^*01^*1 \to \left(\frac{x}{1-x}\right)^2$$

$$0^{*}(1^{*}10^{*}0)1^{*} = \frac{1}{1-x} \cdot \frac{1}{1-\left(\frac{x}{1-x}\right)^{2}} \cdot \frac{1}{1-x} = \frac{1}{(1-x)^{2}-x^{2}} = \frac{1}{1-2x}$$

#### **Coin Flipping Game**

Let  $G \subseteq \{0,1\}^*$  be the set of binary strings that don't contain 000 as a substring.  $(\epsilon \cup 0 \cup 00)(1^*1(0 \cup 00))^*1^*$ A block decomposition for G Generating function:

$$1 + x + x^{2}) \cdot \frac{1}{1 - \left(\frac{1}{1 - x} \cdot (x + x^{2})\right)} \cdot \frac{1}{1 - x} = \frac{1 + x + x^{2}}{1 - x - x^{2} - x^{3}} = \sum_{n=0}^{\infty} g_{n} x^{n}$$

Now use partial fractions to get a formula for  $g_n$ 

$$g_0 = 1$$
  

$$g_1 - g_0 = 1 \Rightarrow g_1 = 2$$
  

$$g_2 - g_1 - g_0 = 1 \Rightarrow g_2 = 4$$
  

$$g_n = g_{n-1} + g_{n-2} + g_{n-3}$$

#### **Fair Game**

(

- Player wages \$n to flip n coins
- If no HHH, then player loses \$n
- If there is some HHH player wins  $R_n$  dollars

Chose  $R_n$  so that the game is fair - expected value is 0

 $G \subseteq \{H, T\}^*$ , strings that do not contain HHH  $g_n$ : number of strings of length n in G Block decomposition:  $T^*((H \cup HH)T^*T)^*(\varepsilon \cup H \cup HH)$ 

$$G(x) = \sum_{n=0}^{\infty} g_n x^n = \frac{1 + x + x^2}{1 - x - x^2 - x^3}$$

Expected value of coin-flipping game, wagering \$n

$$0 = \frac{1}{2^n} ((2^n - g_n)R_n + g_n(-n))$$
  

$$ng_n = (2^n - g_n)R_n$$
  

$$R_n = \frac{ng_n}{2^n - g_n}$$
  

$$1 - r - r^2 - r^3 = (1 - g_n)(1 - g_n)$$

 $= (1 - \alpha x)(1 - \beta x)(1 - \gamma x)$  $1 - x - x^2 - x^3 = (1 - \alpha x)$  $\alpha, \beta \approx -0.4196 \pm 0.6063i$  $\gamma \approx 1.839$ By partial fractions  $g_n = A\alpha^n + B\beta^n + C\gamma^n$ , for constants A, B, C Since  $|\alpha|$ ,  $|\beta| < |\gamma| < 2$  $\frac{g_n}{2^n} \to 0 \text{ as } n \to \infty$ 

$$R_n = n \frac{g_n}{2_n} \left( \frac{1}{1 - \frac{g_n}{2_n}} \right) \to 0 \text{ as } n \to \infty$$
  
Since  $\frac{ng_n}{2^n} \to 0 \text{ as } n \to \infty$  l'Hopital's Rule

Fair reward for n coin flips is  $R_n = \frac{ng_n}{2^n - g_n} \to 0$ 

# 2-Variable Generating Function

September-23-11 1:35 PM

# Example

What is the expected number of blocks among all binary strings of length n?

For each string, two pieces of information: the length  $l(\sigma)$  and the # of blocks  $b(\sigma)$ 

Use Two-Variable generating function

 $B(x, y) = \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)} y^{b(\sigma)}$ Block decomposition of  $\{0,1\}^*$ :  $0^*(1^*10^*0)1^*$  $0^*0$  and  $1^*1$  produce blocks of 0s or 1s respectively  $0^* = \varepsilon \cup 0^*0$  $1^* = \varepsilon \cup 1^*1$ 

Blocks of 0s 0\*0 = {0, 00, 000, ...}  $\rightarrow (x + x^2 + x^3 + \dots)y = \frac{xy}{1-x}$ Blocks of 1s 1\*1 = {1, 11, 111, ...}

$$\rightarrow \frac{xy}{1-x} \text{ similarly}$$

$$0^* \to x^0 y^0 + \frac{xy}{1-x} = 1 + \frac{xy}{1-x} = \frac{1+x(y-1)}{1-x}$$
  
1\*  $\to same$ 

From the block decomposition,

$$B(x,y) = \left(1 + \frac{xy}{1-x}\right)^2 \left(\frac{1}{1-\left(\frac{xy}{1-x}\right)^2}\right) = \frac{(1-x+xy)^2}{(1-x)^2 - (xy)^2} = \frac{1-x+xy}{1-x-xy}$$

$$B(x,1) = \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)} \, 1^{b(\sigma)} = \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)} = \frac{1}{1 - 2x}$$

$$\frac{\delta}{\delta y}B(x,y)\Big|_{y=1} = \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)}b(\sigma)y^{b(\sigma)-1}\Big|_{y=1} = \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)}b(\sigma) = \sum_{n=0}^{\infty} \left(\sum_{\substack{\sigma \in \{0,1\}^*\\ l(\sigma)=n}} b(\sigma)\right)x^n$$

For every  $n \in \mathbb{N}$ , the total number of blocks among all binary string of length n is  $\begin{bmatrix} x^n \end{bmatrix} \frac{\delta}{\delta y} B(x, y) \Big|_{y=1}$   $\delta (1 - x + xy) = \begin{pmatrix} x & (1 - x + xy)(-1)(-x) \\ x & (1 - 2x) + x & 2x - 2x^2 \end{bmatrix}$ 

$$\frac{\delta}{\delta y} \left( \frac{1-x+xy}{1-x-xy} \right) \Big|_{y=1} = \left( \frac{x}{1-x-xy} + \frac{(1-x+xy)(-1)(-x)}{(1-x-xy)^2} \right) \Big|_{y=1} = \frac{x(1-2x)+x}{(1-2x)^2} = \frac{2x-2x}{(1-2x)^2}$$
$$= \frac{2x}{(1-2x)^2} - \frac{2x^2}{(1-2x)^2}$$
$$= 2\sum_{n=0}^{\infty} \binom{n+1}{1} 2^n x^{n+1} - 2\sum_{n=0}^{\infty} \binom{n+1}{1} 2^n x^{n+2} = 0x^0 + 2x^1 = \sum_{k=2}^{\infty} (k2^k - (k-1)2^{k-1})$$

So for n  $\geq 2$  the total # of blocks among all binary strings of length n is  $n2^n-(n-1)2^{n-1}=(n+1)2^{n-1}$ 

So the average # of blocks per binary string of length n is

$$\frac{(n+1)2^{n-1}}{2^n} = \frac{n+1}{2}$$

# Alternate Method

Number of blocks, for string of length n $b_1b_2b_3\ldots b_n$ 

First bit gives 2 possible blocks, every successive bit either is the same block or ads another block.

$$\sum_{\sigma \in \{0,1\}^n} x^{b(\sigma)} = 2x(1+x)(1+x) \dots (1+x) = 2x(1+x)^{n-1}$$

 $\frac{d}{dx}2x(1+x)^{n-1}\Big|_{x=1} = 2(1+x)^{n-1}\Big|_{x=1} + 2x(n-1)(x+1)^{n-2}\Big|_{x=1} = 2^n + 2^{n-1} = (n+1)2^{n-1}$ So average  $b(\sigma)$  among all  $2^n \sigma \in \{0, 1\}^n$  is  $\frac{n+1}{2}$ 

Similarly, for strings  $\sigma \in \{1, 2, ..., k\}^n$ 

$$\sum_{\substack{\sigma \in \{1,2,\dots,k\} \\ \text{Average # of blocks among all } \sigma = \{1,2,\dots,k\}^n \text{ is}} x^{b(\sigma)} = kx(1 + (k-1)x)^{n-1}$$

# **Context-Free Grammars**

September-26-11 1:32 PM

# Proposition

If  $\mathcal{L} \subseteq \{0,1\}^*$  is a rational language, then  $L(x) = \sum_{\sigma \in \mathcal{L}} x^{l(\sigma)}$ is a rational function (quotient of two polynomials).

#### **Context Free Grammars**

Initial symbol I Production rules

# **Binomial Series Expansion**

For an  $\alpha \in \mathbb{C}$  $(1+z)^{\alpha} = \sum_{n=1}^{\infty} {\alpha \choose n} z^{n}$ 

Where 
$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!}$$

#### Proof

Taylor series expansion of  $(1 + x)^{\alpha}$ . Coefficient of  $x^n$  is  $\frac{1}{n!} \frac{d^n}{dx^n} (1 + x)^{\alpha} \Big|_{x=0} = \frac{1}{n!} \alpha(\alpha - 1) \dots (\alpha - n + 1) = {\alpha \choose n}$ 

#### Proofoid of Proposition

 $\mathcal{L} = A \cup B \text{ or } \mathcal{L} = AB \text{ or } \mathcal{L} = A^*$ By induction, A(x), B(x) are rational functions. Each operation takes rational functions to rational functions, so  $\mathcal{L}(x)$  is rational too.

# Converse is false

 $M = \{\varepsilon, 01, 0011, 000111, ...\} = \{0^k 1^k : k \in \mathbb{N}\}$ M is a set of binary strings with generating function  $M(x) = \frac{1}{1-x^2}$  a rational function. But M is not a rational language.

#### **Context Free Grammar Example**

Initial symbol I Production rule  $I \rightarrow \epsilon \cup 0/1$ Terminal symbols 0,1 Replace I by either  $\epsilon$  or OI1

 $\begin{array}{ll} \mbox{Keep doing that until only terminal symbols remain} \\ \mbox{I} \rightarrow 011 \rightarrow 00111 \rightarrow 0001111 \rightarrow \\ \mbox{$\epsilon$} & 01 & 0011 & 000111 \end{array}$ 

Let  $\mathcal{D} \in \{0,1\}^*$  be generated by the CFG:  $I \to \epsilon \cup 0/1I$   $\epsilon, 01, 0011, 0101, 010011, 000111, 001101, ...$ Equivalently replace 0 by ( and 1 by )  $I \to \epsilon \cup (I)I$ This generates all well-formed parenthesizations.

Let 
$$D(x) = \sum_{\sigma \in D} x^{1(\sigma)}$$
  
The CFG I  $\rightarrow \epsilon \cup 0111$  implies that  $0 \rightarrow x, I \rightarrow D(x) 1 \rightarrow x, I \rightarrow D(x)$ 

 $D(x) = 1 + x^{2} (D(x))^{2}$   $D = 1 + x^{2} D^{2}$   $D = 1 + x^{2} D^{2}$   $D = x^{2} D^{2} - D + 1$   $D = \frac{1 \pm \sqrt{1 - 4x^{2}}}{2x^{2}}$ How to expand  $\sqrt{1 - 4x^{2}}$  as a power series in x?

How to expand  $\sqrt{1 - 4x^2}$  as a power series in x  $\sqrt{1 - 4x^2} = (1 - 4x^2)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right) (-4)^n x^{2n}$ 

$$\begin{split} n &= 0: \binom{1}{2} (-4)^0 = 1 \\ n &\ge 1: \\ \binom{1}{2} (-4)^n &= \frac{\binom{1}{2} \binom{1}{2} - 1 \binom{1}{2} - 2}{n!} \dots \binom{1}{2} - n + 1}{(-1)^n 2^n 2^n} \\ &= \frac{(1)(-1)(-3)(-5) \dots (-2n+3)}{n!} (-1)^n 2^n = -\frac{1 \times 3 \times 5 \times \dots \times (2n-3)}{n!} 2^n \times \frac{n!}{n!} \\ &= -\frac{(1 \times 3 \times 5 \times \dots \times (2n-3)) \times (2 \times 4 \times 6 \times \dots \times (2n))}{n! n!} = \frac{(-2n)(2n-2)!}{n! n!} = -\frac{2}{n} \binom{2n-2}{n-1} \end{split}$$

In summary

$$\sqrt{1-4x^2} = 1 - 2\sum_{n=1}^{\infty} \frac{1}{n} {\binom{2n-2}{n-1}} x^{2n}$$

Take -ve sign in D(x) to get nonnegative results  $D(x) = \frac{1}{2x^2} \left( 1 - \left( 1 - 2\sum_{n=1}^{\infty} \frac{1}{n} \binom{2n-2}{n-1} x^{2n} \right) \right) = \sum_{n=1}^{\infty} \frac{1}{n} \binom{2n-2}{n-1} x^{2n-2} = \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^{2n}$ Thus for all  $n \in \mathbb{N}$  the number of well-formed parenthesizations with n '(' and n')' is  $\frac{1}{n+1} \binom{2n}{n}$ 

# Paths

September-28-11 1:30 PM

# **Binomial Series**

 $(1+x)^{\alpha} = \sum_{n=1}^{\infty} {\alpha \choose n} x^n$ for any  $\alpha \in \mathbb{C}$ 

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!}$$

# **Special Cases**

1.  $\alpha = d$  a positive integer  $\binom{d}{n} = 0$  if n > dSo  $(1+x)^d = \sum_{n=0}^d {\binom{d}{n}} x^n$ 2. 2.  $\alpha = -t \text{ a negative integer}$   $\frac{1}{(1-x)^{t}} = \sum_{m=0}^{\infty} {m+t-1 \choose t-1} x^{m}$ Check that (exercise)  $(-1)^{m} {-t \choose m} = {m+t-1 \choose t-1}$ 

# **Catalan Numbers** $\frac{1}{n+1}\binom{2n}{n}$

# Lattice Path

A path on the grid which can only move N or E.

There are  $\binom{a+b}{b} = \binom{a+b}{a}$  lattice paths from (0, 0) to (a,b)

# **Dyck Path**

A lattice path which always stays above the x = y line. There are  $\frac{1}{n+1} {\binom{2n}{n}}$  Dyck paths from (0, 0) to (n, n)

# **Catalan Numbers**

 $\frac{1}{n+1}\binom{2n}{n}$ 1 is the formula for the Catalan numbers. e.g. the number of well-formed parenthesizations. (0(0)0)0Interpret as a lattice path  $(\rightarrow N:(x,y)\rightarrow (x,y+1)$  $) \rightarrow E: (x, y) \rightarrow (x + 1, y)$ Start at (0, 0) and end at (n, n)

So the set of all well-formed parenthesizations is equivalent to the number of lattice paths from (0, 0) to (n, n) that stays above the x = y line. This is a Dyck Path.



# Second Proof of # of Dvck Paths

Consider  $\mathcal{L}(n, n)$  the set of all lattice paths from (0, 0) to (n, n) Let  $\mathcal{D}_n$  be the Dyck paths from (0, 0) to (n, n) let  $G_n$  be the others.

So  $\mathcal{L}(n,n) = \mathcal{D}_n \cup \mathcal{G}_n$  is a disjoint union  $|\mathcal{L}(n,n)| = \binom{2n}{n}$ We need only count  $|G_n|$  and subtract. Consider any lattice path  $P: s_1 s_2 \dots s_{2n}$  in  $\mathcal{G}_n$ 

Since  $P \notin D_n$  there is a first E step at which P goes below the diagonal x = y. Call it  $s_b$  for some  $1 \le y$ .  $b \leq 2n$ 

Construct the path  $P^*:t_1t_2\dots t_{2n}$ 

 $t_i = \begin{cases} s_i \ if \ 1 \leq i \leq b \\ N \ if \ s_i = E \ and \ b+1 \leq 1 \leq 2n \\ E \ if \ s_i = N \ and \ b+1 \leq 1 \leq 2n \end{cases}$ 

Claim:  $P^*$  is a lattice path from (0, 0) to (n+1, n-1)

Conversely, every lattice path  $Q: p_1 p_2 \dots p_{2n}$  from (0, 0) to (n+1, n-1) has a first E step  $p_i$  that goes below the diagonal x=y. Reverse the procedure  $Q \rightarrow Q^*$  Result  $Q^*$  is in  $\mathcal{G}_n$  (exercise)

We have a bijection  $\mathcal{G}_n \leftrightarrows \mathcal{L}(n+1,n-1)$  hence  $|\mathcal{G}_n| = |\mathcal{L}(n+1,n-1)| = \binom{2n}{n-1}$ Hence finally

$$|\mathcal{D}_n| = \binom{2n}{n} - \binom{2n}{n-1} = \frac{(2n)!}{n!n!} - \frac{(2n)!}{(n+1)!(n-1)!} = \binom{2n}{n} - \frac{n}{n+1}\binom{2n}{n} = \frac{1}{n+1}\binom{2n}{n}$$

Analogously, lattice paths from (0, 0) to (a, b) where  $0 \le a \le b$  that stay on or above the line x=y How many such paths are there?

There are  $\binom{a+b}{b}$  lattice paths from (0, 0) to (a, b) Consider such a lattice path P that does go below the line  $x = y. P: s_1s_2, ..., s_{a+b}$ Let  $s_i$  be the first step at which P goes below the diagonal

Let  $\overline{N} = E$  and  $\overline{E} = N$  and  $p^*: s_1 \dots s_i \overline{s_{i+1}}, \overline{s_{i+2}} \dots \overline{s_{a+b}}$   $p^*$  ends at (b+1, a-1), strictly below x = y since  $a \le b$ 

This is a bijection between bad lattice paths to (a, b) and all lattice paths to (b+1, a-1)

Hence the number of good lattice paths to (a, b) is  $\binom{a+b}{b} - \binom{a+b}{b+1}$ Where a = b equal formula for dyck path

# **Ternary Strings**

September-30-11 1:47 PM

# Example

Enumerate strings in {a, b, c}\* that don't contain aa as a substring

Look at block decomposition for binary string  $0^{*}(1^{*}10^{*}0)^{*}1^{*}$ Interpret 0 as a, 1 as  $b \cup c$ 

# $a^* \big( (b \cup c)^* (b \cup c) a^* a \big)^* (b \cup c)^*$

Is a regular expression for  $\{a, b, c\}^*$  that produces as block by block. Just need to modify this to avoid substring aa  $(\epsilon \cup a)((b \cup c)^*(b \cup c)a)^*(b \cup c)$ 

$$\sum_{\sigma \in S} x^{l(\sigma)} = (1+x) \left( \frac{1}{1-\left(\frac{1}{1-2x}\right)(2x)(x)} \right) \left( \frac{1}{1-2x} \right) = \frac{1+x}{1-2x-2x^2} \rightarrow partial \ fractions$$
or
$$c_n - 2c_{n-1} - 2c_{n-2} = \begin{cases} 1, & n = 0\\ 1, & n = 1\\ 0, & n \ge 2 \end{cases}$$

$$c_0 = 1$$

$$c_1 - 2c_0 = 1 \Rightarrow c_1 = 3$$

$$c_n = 2c_{n-1} + 2c_{n-2}$$

$$\boxed{\begin{array}{c}n & 0 & 1 & 2 & 3 & 4 & 5\\ c_n & 1 & 3 & 8 & 22 & 60 & 164 \end{cases}}$$

# Example

Enumerate strings in {a, b, c}\* with no two consecutive equal letters,  ${\cal D}$  Low tech solution

$$c_{0} = 1$$
  

$$c_{1} = 3$$
  

$$c_{n} = 2c_{n-1} = 3 \times 2^{n-1} \text{ for } n \ge 1$$
  

$$\sum_{n=0}^{\infty} c_{n}x^{n} = 1 + 3\sum_{n=1}^{\infty} 2^{n-1}x^{n} = 1 + \frac{3x}{1-2x} = \frac{1+x}{1-2x}$$

**More information** 

Keep track of #a, #b, #c in string  $m_a(\sigma) = \#$  of a's in string  $\sigma$ Similarly for  $m_b, m_c$ 

$$D(x,y,z) = \sum_{\sigma \in \mathcal{D}} x^{m_a(\sigma)} y^{m_b(\sigma)} z^{m_c(\sigma)} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{i,j,k} x^i y^j z^k$$

Consider any string  $\sigma \in \{a, b, c\}$ . "Squish" each block into a single letter. E.g.  $\sigma = bbcccaccbbbaaa \ squish(\sigma) = BCACBA \in D$ 

The set of words  $\sigma \in \{a, b, c\}^*$  that get squished onto  $\alpha \in \mathcal{D}$  is obtained by regarding A as a block of a's A=a\*a, B=b\*b, C=c\*c

 $(a \cup b \cup c)^*$  is a regular expression for  $\{a, b, c\}^*$ 

$$\frac{1}{1-(x+y+z)} = \sum_{\sigma \in \{a,b,c\}^*} x^{m_a(\sigma)} y^{m_b(\sigma)} z^{m_c(\sigma)} = \sum_{\alpha \in \mathcal{D}} \left( \sum_{\sigma \in squish^{-1}(\alpha)} x^{m_a(\sigma)} y^{m_b(\sigma)} z^{m_c(\sigma)} \right)$$
$$= \sum_{\alpha \in \mathcal{D}} \left( \frac{x}{1-x} \right)^{m_A(\alpha)} \left( \frac{y}{1-y} \right)^{m_B(\alpha)} \left( \frac{z}{1-z} \right)^{m_c(\alpha)} = D\left( \frac{x}{1-x}, \frac{y}{1-y}, \frac{z}{1-z} \right)$$

1

`

Change variables  $x = \frac{x}{y} \quad y = \frac{y}{z}$ 

$$X = \frac{1}{1-x}, Y = \frac{1}{1-y}, Z = \frac{1}{1-z}$$

$$X - xX = x \Rightarrow X = x + xX = x(1+X) \Rightarrow x = \frac{X}{1+X}$$

$$D(X, Y, Z) = \frac{1}{1 - \left(\frac{X}{1+X} + \frac{Y}{1+Y} + \frac{Z}{1+Z}\right)}$$
A quotient of polynomials in X,Y,Z

More generally for strings  $\mathcal{D} \subseteq \{1, 2, ..., b\}^*$  with no two consecutive equal letters  $\frac{1}{(x_1, \dots, b)} = D\left(\frac{x_1}{x_2}, \dots, \frac{x_b}{x_b}\right)$ 

$$\frac{1}{1 - (x_1 + x_2 + \dots + x_b)} = D\left(\frac{x_1}{1 - x_1}, \frac{x_2}{1 - x_2}, \dots, \frac{x_b}{1 - x_b}\right)$$
$$D(x_1, x_2, \dots, x_b) = \left[1 - \sum_{i=1}^b \frac{x_i}{1 + x_i}\right]^{-1}$$

# n-ary Strings

October-03-11 1:33 PM

# Example

S

Among all 2<sup>*n*</sup> binary strings of length n, what is the average number of times that 011 occurs as a substring.

Block decomposition:

1\*(0\*01\*1)0\* is almost ideal, 1\*(0\*01u0\*(011)1\*)\*0\*

$$\begin{split} l(\sigma) \text{ length of sigma, } r(\sigma) \text{ number of 011 in } \sigma \\ G(x, y) &= \sum_{\sigma \in \{0,1\}^*} x^{l(\sigma)} y^{r(\sigma)} = \left(\frac{1}{1-x}\right) \left(\frac{1}{1-\left(\frac{x^2}{1-x} + \frac{x^3}{(1-x)^2}y\right)}\right) \left(\frac{1}{1-x}\right) \\ &= \left((1-x)^2 - x^2(1-x) - x^3y\right)^{-1} = (1-2x+x^2-x^2+x^3-x^3y)^{-1} = \frac{1}{1-2x+x^3(1-y)} \\ \text{Sum of } r(\sigma) \text{ over all } \sigma \in \{0,1\}^* \text{ in} \\ &[x^n] \frac{\delta}{\delta y} G(x, y) \Big|_{y=1} = \frac{(-1)(-x^3)}{(1-2x)^3} = \frac{x^3}{(1-2x)^2} = x^3 \sum_{n=0}^{\infty} \binom{n+1}{1} 2^n x^n = \sum_{n=0}^{\infty} (n+1)2^n x^{n+3} \\ &= \sum_{n=3}^{\infty} (n-2)2^{n-3}x^n \end{split}$$

Average # of occurrences of 011 among all  $\sigma \in \{0, 1\}^n$  is

$$\begin{cases} \frac{(n-2)2^{n-3}}{2^n} = \frac{n-2}{8}, & n \ge 3\\ 0, & 0 \le n \le 2 \end{cases}$$

# **Block Patterns for b-ary strings**

 $\mathcal{D} \subseteq \{1, 2, ..., b\}^*$  strings with no two consecutive equal letters.  $x_1, x_2, \dots, x_b$  variables  $m_i(\sigma)$  is the # of times letter i occurs in  $\sigma$ Notation:  $x^{\sigma} = x_1^{m_1(\sigma)} x_2^{m_2(\sigma)} \dots x_b^{m_b(\sigma)}$ -1

$$D(x_1, \dots, x_b) = \sum_{\sigma \in \mathcal{D}} x^{\sigma} = \left(1 - \sum_{i=1}^{b} \frac{x_i}{1 + x_i}\right)$$

Proof:

squish:  $\{1, ..., b\}^* \to \mathcal{D}$  by replacing each block of i's by a single i For  $\alpha \in \mathcal{D}$ , the  $\sigma \in \{1, 2, ..., b\}^*$  that gets squished to  $\alpha$  are obtained from  $\alpha$  by replacing *i* by  $i^*i$  for all  $1 \le i \le b$  generating function for  $i^*i$  is  $\frac{x_i}{1-x_i}$ 

So

$$\frac{1}{1 - (x_1 + x_2 + \dots + x_b)} = D\left(\frac{x_1}{1 - x_1}, \frac{x_2}{1 - x_2}, \dots, \frac{x_b}{1 - x_b}\right)$$
  
Invert the variables  $y_i = \frac{x_i}{1 - x_i}$  iff  $x_i = \frac{y_i}{1 + y_i}$   
So  $D(y_1, y_2, \dots, y_b) = \left(1 - \sum_{i=1}^{b} \frac{y_i}{1 + y_i}\right)^{-1}$ 

Strings in  $\mathcal{D}$  are block patterns.  $x_i$  in  $\mathcal{D}$  marks either

- A single *i* in  $\alpha \in \mathcal{D}$ 

- A block of i's in  $\sigma \in \{1, 2, \dots, b\}^*$ 

# Example

What is the generating function for S, strings  $\sigma \in \{1, 2, 3\}^*$  such that

- Blocks of 1s have odd length
- Blocks of 2s have length  $\leq 2$
- Blocks of 3s have length  $\geq 2$

 $D(y_1, y_2, y_3)$  where  $y_1$  marks a block of is

$$(11)^{*1} \Rightarrow y_1 = \frac{x_1}{1 - x_1^2}$$
$$(2u22) \Rightarrow y_2 = x_2 + x_2^2$$
$$3^{*33} \Rightarrow y_3 = \frac{x_3^2}{1 - x_1^2}$$

$$S(x_1, x_2, x_3) = D(y_1, y_2, y_3) = \left(1 - \frac{x_1}{1 - x_1^2} - (x_2 + x_2^2) - \frac{x_3^2}{1 - x_3}\right)^{-1} = \sum_{\sigma \in S} x^{\sigma}$$

If we only want the length of each  $\sigma \in S$  e.g.  $x_1 = x_2 = x_3 = t$ 

$$S(t,t,t) = \sum_{\sigma \in S} t^{l(\sigma)} = \left(1 - \frac{t}{(1-t)^2} - t(1+t) - \frac{t^2}{1-t}\right) = \frac{1-t^2}{1-2t-3t^2+t^4}$$
$$s_n - 2s_{n-1} - 3s_{n-2} + s_{n-4} = \begin{cases} 1, & n = 0\\ 0, & n = 1\\ -1, & n = 2\\ 0, & n \ge 3 \end{cases}$$

Keep going and get a recurrence relation.

# Example

 $a_n$  crossings n steps from home on a rectangular grid (n is minimum distance)  $a_0 = 1$ 

$$a_{1} = 4$$

$$a_{2} = 8$$

$$a_{n} = \begin{cases} 1, & n = 0 \\ 4n, & n \ge 1 \end{cases}$$

$$\sum_{n=0}^{\infty} a_{n} x^{n} = 1 + 4 \frac{x}{(1-x)^{2}}$$

 $a_n$  crossings n steps from home on a triangular grid (n is minimum distance)  $a_0 = 1$ 

$$a_{1} = 6$$

$$a_{2} = 12$$

$$a_{n} = \begin{cases} 1, & n = 0\\ 6n, & n \ge 1 \end{cases}$$

$$\sum_{n=0}^{\infty} a_{n}x^{n} = 1 + 6\frac{x}{(1-x)^{2}}$$

Tile the plan with squares, 5 at a point.

# Tessellations

October-05-11 2:03 PM

#### **Regular Tessellations of the Plane**

Let  $k \ge 3$  and  $d \ge 3$ . Divide the plane into non-overlapping k-gons such that they meet along edges. At each corner d edges meet.

#### Question

Fix a "home vertex"  $v_0$  in the k = 4, d = 5 regular tessellation of the (hyperbolic) plane. many vertices are at distance exactly n from  $v_0$ ? Call it  $a_n$ 

| n     | 0 | 1 | 2  | 3 | 4 |
|-------|---|---|----|---|---|
| $a_n$ | 1 | 5 | 15 |   |   |

At distance 2 there are 2 kinds of vertices.

• Some have 1 neighbour at distance 1

• Some have 2 neighbours at distance 1

Showed geometrically can't have  $\geq$  3 neighbours closer to base

Let  $b_n$  be the number of vertices at distance n from the base, with 1 earlier neighbour Let  $c_n$  be the number of vertices at distance n from the base, with 2 earlier neighbours For  $n \ge 1$ ,  $a_n = b_n + c_n$ 

$$\begin{aligned} &\text{In } n \ge 1: \left\{ b_{n+1} = 2b_n + c_n \\ c_{n+1} = a_n = b_n + c_n \\ a_0 = 1 \\ b_1 = 5, c_1 = 0 \\ &\text{Let } A(x) = \sum_{n=0}^{\infty} a_n x^n, B(x) = \sum_{n=1}^{\infty} b_n x^n, C(x) = \sum_{n=1}^{\infty} c_n x^n \\ &A(x) = 1 + \sum_{n=1}^{\infty} (b_n + c_n) x^n = 1 + B(x) + C(x) \\ &B(x) = \sum_{n=1}^{\infty} b_n x^n = 5x + \sum_{n=2}^{\infty} (2b_{n-1} + c_{n-1}) x^n = 5x + x \sum_{j=1}^{\infty} (2b_j + c_j) x^j \\ &= 5x + x(2B(x) + C(x)) \\ &C(x) = \sum_{n=1}^{\infty} c_n x^n = x(B(x) + C(x)) \\ &A = 1 + B + C \\ &B = 5x + 2xB + xC \\ &C = xB + xC \\ &\text{Solve...} \\ &C = \frac{5x^2}{1 - 3x + x^2} \\ &A = \frac{1 + 2x + x^2}{1 - 3x + x^2} = 1 + \frac{5x}{1 - 3x + x^2} \\ &A = \frac{1 + 2x + x^2}{1 - 3x + x^2} = 1 + \frac{5x}{1 - 3x + x^2} \\ &A = \frac{1 + 2x + x^2}{1 - 3x + x^2} = 1 + \frac{5x}{1 - 3x + x^2} \\ &A = \frac{3 \pm \sqrt{5}}{2} \\ &5x = A(1 - \beta x) + B(1 - \alpha x) = (A + B) - (A\beta + B\alpha)x \\ &A + B = 0 \\ &A\beta + B\alpha = -5 \\ &A(\beta - \alpha) = -5 \Rightarrow A = \frac{5}{\alpha - \beta}, B = -\frac{5}{\alpha - \beta} \\ &a - \beta = \frac{3 + \sqrt{5}}{2} - \frac{3 - \sqrt{5}}{2} = \sqrt{5} \\ &A = \sqrt{5}, B = -\sqrt{5} \\ &A(x) = 1 + \frac{\sqrt{5}}{1 - \alpha x} - \frac{\sqrt{5}}{1 - \beta x} \\ &A(x) = 1 + \sqrt{5} \sum_{n=0}^{\infty} \left( \frac{(3 + \sqrt{5})}{2} \right)^n x^n - \sqrt{5} \sum_{n=0}^{\infty} \left( \frac{(3 - \sqrt{5})}{2} \right)^n x^n \\ &= 1 + \sum_{n=0}^{\infty} \left[ \sqrt{5} \left( \frac{(3 + \sqrt{5})}{2} \right)^n = \sqrt{5} \left( \frac{(3 - \sqrt{5})}{2} \right)^n \right] x^n \end{aligned}$$

So for  $n \ge 1$  the number of vertices in the k = 4, d = 5 hyperbolic tessellation at distance n from the base is  $(2 + \sqrt{n})^n = (2 - \sqrt{n})^n$ 

$$a_n = \sqrt{5} \left(\frac{3+\sqrt{5}}{2}\right)^n = \sqrt{5} \left(\frac{3-\sqrt{5}}{2}\right)^n \Rightarrow \text{Integer closest to } \sqrt{5} \left(\frac{3+\sqrt{5}}{2}\right)$$

# Example

k=5, d=4

Four kinds of vertices in the k=5 d=4 case

• Base vertex

- One nbr closer to base, not on an equality (connects to same #) edge : p
- Two nbrs closer to base : q
- One nbr closer to base, is on an equality edge. : r

$$p(x) = \sum_{n=1}^{\infty} p_n x^n \ etc.$$

# More Tessellations

October-12-11 1:31 PM

# **Matrix Method**

5 'types' of object O,A,B,C,D and some succession rules.

Initial population: {0}  $0 \to 4A$   $A \to A, 2B$   $B \to B, C$   $C \to A, B, \frac{1}{2}D$   $D \to 2B$   $P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$   $M = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$   $M = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$   $M = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$  $P_n = M^n P_0$  k=5, d=4

# Vertex Types

0: Origin

- A: 1 neighbour closer to origin,
- 2 pentagons have apexes (unique vertex closest to origin) at this neighbour B: 1 neighbour closer to origin, 1 neighbour at same distance
- C: 1 neighbour closer to origin, that neighbour is of type B
- D: 2 neighbours closer to origin

Descendants:  
0 ~ (4A)  
A ~ (A, 2B)  
B ~ (B, C)  
C ~ {A, B, 
$$\frac{1}{2}D$$
}  
D ~ (2B)  
 $K(x) = \sum_{n=0}^{\infty} k_n x^n$  where there are  $k_n$  vertices of type k at distance n from the origin  
 $0(x) = 1$   
For n  $\ge 0$   
 $a_{n+1} = 4o_n + a_n + c_n$   
 $A(x) = \sum_{n=0}^{\infty} a_{n+1}x^{n+1} = \sum_{n=0}^{\infty} (4o_n + a_n + c_n) x^{n+1} = x[4 O(x) + A(x) + C(x)]$   
 $b_{n+1} = 2a_n + b_n + c_n + 2d_n$   
 $B(x) = x[2A(x) + B(x) + C(x) + 2D(x)]$   
 $C(x) = x[B(x)]$   
 $D(x) = x[\frac{1}{2}C(x)]$   
Solve:  
 $A = x(4 + A + C)$   
 $B = x(2A + B + C + 2D)$   
 $C = xB$   
 $D = \frac{1}{2}xC$   
 $A = 4x + xA + x^2B$   
 $B = 2xA + xB + x^2B + x^3B$   
 $(1 - x)A = 4x + x^2B$   
 $2xA = (1 - x - x^2 - x^3)B$   
 $A = \frac{1 - x - x^2 - x^3}{2x}B$   
 $(1 - 2x - 2x^3 + x^4)B = 8x^2$   
 $B = \frac{8x^2}{1 - 2x - 2x^3 + x^4}$   
 $B = \frac{8x^2}{1 - 2x - 2x^3 + x^4}$   
 $B = \frac{4x^4}{1 - 2x - 2x^3 + x^4}$   
 $G(x) = 1 + A + B + C + D = \frac{1 + 2x + 4x^2 + 2x^3 + x^4}{1 - 2x - 2x^3 + x^4} = 1 + \frac{4(x + x^2 + x^3)}{1 - 2x - 2x^3 + x^4}$ 

# Matrix Method

October-14-11 1:29 PM

# **Matrix Method**

Find a set of types  $\{1, 2, ..., t\}$  **Succession Rules** For each type i, a weighted collection of successors:  $i \rightarrow \{c_1 1, c_2 2, ..., c_t t\}$ An object of type i gives rise to successors in the next generation:  $c_i$  of type i

# **Initial Population**

A column vector  $r^{a_{13}}$ 

$$p_0 = \begin{bmatrix} a_2 \\ \vdots \\ a_t \end{bmatrix}$$

 $a_i$  objects of type *i*,  $(1 \le i \le t)$  in the initial population.

#### Goal

Determining the number of objects of type i in the n-th generation for all  $(1 \le i \le t)$  and all  $n \ge 0$ 

### Construction

For each  $n \in \mathbb{N}$  let  $p_n$  be the column vertex of length l with i-th entry equal to the # of type i objects in the n-th generation. Let M be the  $t \times t$  matrix such that  $p_{n+1} = Mp_n \forall n \in \mathbb{N}$ 

The j-th column of M has i-th entry equal to the number of objects of type i occurring as successors to an object of type j

Since  $p_{n+1} = Mp_n \ \forall n \in \mathbb{N}$  $P_n = M^n p_0$ 

#### **Generating Function**

Let 
$$p(x) = \sum_{n=0}^{\infty} p_n x^n = \sum_{n=0}^{\infty} M^n p_0 x^n = \left(\sum_{n=0}^{\infty} (xM)^n\right) p_0 = (I - xM)^{-1} p_0$$

Reasoning  $S = 1 + A^2 + A^3 + \cdots$   $AS = A + A^2 + A^3 + \cdots$  S - AS = 1 $(1 - A)S = 1 \Rightarrow S = (1 - A)^{-1}$ 

**Total Population** 

$$\vec{1}_t = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$$

$$Pop = \vec{1}_t p_n$$
Generating functions

Generating function  $\vec{1}_t (T - xM)^{-1} p_0$ 

# Note

 $A^{-1} = \frac{1}{\det A} a dj(A)$ det(*I* - *xM*) \neq 0 so *I* - *xM* is invertible since *I* - *xM* is a polynomial in x and det(*I* - (1)*M*) = 1

# **Example** t = 3 types $\{a, b, c\}$ Succession Rules $a \rightarrow \{a, b\}, b \rightarrow \{a, c\}, c \rightarrow \{a, a, a\}$ $p_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$p_{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$p_{n} = M^{n}p_{0}$$

$$I - xM = \begin{bmatrix} 1 - x & -x & -3x \\ -x & 0 & 1 \\ 0 & -x & 1 \end{bmatrix}$$

$$\det(I - xM) = 1 - x - x^{2} - 3x^{3}$$

$$adj(I - xM) = \begin{bmatrix} 1 & x + 3x^{2} & 3x \\ x^{2} & x - x^{2} & 1 - x - x^{2} \end{bmatrix}$$

$$P(x) = (I - xM)^{-1}p_{0}$$

$$= \frac{1}{1 - x - x^{2} - 3x^{3}} \begin{bmatrix} 1 & x + 3x^{2} & 3x \\ x^{2} & x - x^{2} & 1 - x - x^{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \frac{1}{1 - x - x^{2} - 3x^{3}} \begin{bmatrix} 1 & x + 3x^{2} & 3x \\ x^{2} & x - x^{2} & 1 - x - x^{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \frac{1}{1 - x - x^{2} - 3x^{3}} \begin{bmatrix} 1 \\ x \\ x^{2} \end{bmatrix}$$
Total population generating function  $1 + x + x^{2}$ 

 $\frac{1+x+x}{1-x-x^2-3x^3}$ 

Total population  $w_n$  at generation n satisfies  $w_n = 0$  if n < 0 and  $w_n - (1, n = 0, 1, 2)$ 

$$w_{n-1} - w_{n-2} - 3w_{n-3} = \begin{cases} 1, & n = 0, 1, \\ 0, & n \ge 3 \end{cases}$$
  

$$w_0 = 1$$
  

$$w_1 - w_0 = 1 \Rightarrow w_1 = 2$$
  

$$w_2 - w_1 - w_0 = 1 \Rightarrow w_2 = 4$$
  

$$w_n = w_{n-1} + w_{n-2} + 3w_{n-3}, n \ge 3$$

# **Domino Tilings**

October-14-11 2:09 PM

#### **Domino Tilings**

.

Count all ways of covering all squares of a  $3 \times n$  rectangle with non-overlapping dominoes.

|           |   | - | <br>- | - |   |   | -         |   |
|-----------|---|---|-------|---|---|---|-----------|---|
| Π         | + |   |       | J |   | - |           |   |
|           | _ |   |       | _ | - |   | $\square$ | - |
| $\square$ |   |   | <br>  |   |   |   |           |   |

**Columns instead of Dominoes** 

| A | $\rightarrow$ | $\{A_{2},$ | $B_1$ |
|---|---------------|------------|-------|
| В | $\rightarrow$ | $\{A_1,$   | $B_2$ |
| 0 | =             | $x^2$      | x     |
| τ |               | L x        | $x^2$ |

How Consider all possible ways of covering the three leftmost squares:



Label the boundary types, but also keep track of the number of dominoes used in the subscript  $A \rightarrow \{A_3, B_2, B_2\}$ 



# $B \rightarrow \{B_3, A_1\}$

Instead of xM we want a 2 × 2 matrix Q where  $Q_{ij}$  is the sum of  $x^k$  over all transitions from boundary j to boundary i using k dominoes.

$$M = \begin{bmatrix} x^3 & x \\ 2x^2 & x^3 \end{bmatrix}$$

Start with a 3xn domino tiling. Remove all dominoes that intersect the leftmost column (together with any dominoes they "force")

Repeat this to decompose each domino tiling uniquely as a sequence of "successions" Two boundaries {A, B}

$$A \rightarrow \{A_3, 2B_2\}$$

 $B \to \{A_1, B_3\}$  $M = \begin{bmatrix} x^3 & x \\ 2x^2 & x^3 \end{bmatrix}$ 

The (I,J) entry of  $M^n$  is the generating function from boundary J to boundary I using exactly n successions.

Sum over all  $n \in \mathbb{N}$  since # of successions is arbitrary.

$$\sum_{n=0}^{\infty} M^n = (I-M)^{-1}$$

The generating function we want is  $(I - M)_{AA}^{-1}$ det $(I - M) = \begin{vmatrix} 1 - x^3 & -x \\ -2x^2 & 1 - x^3 \end{vmatrix} = (1 - x^3)^2 - 2x^3 = 1 - 4x^3 + x^6$   $adj(I - M)_{AA} = 1 - x^3$ Generating function for  $3 \times n$  domino tilings is  $G(x) = \sum_{T} x^{\# dominoes} = \frac{1 - x^3}{1 - 4x^3 + x^6}$ 

2 \* #dominoes = total # squares = 3n  $n = \frac{2}{2}$ (# dominoes), let  $x = t^{\frac{2}{3}}$ 

$$n = \frac{2}{3}$$
 (# dominoes), let  $x = t$ 

$$G(x) = \sum_{T} t_{3}^{2\# \, dominoes} = \sum_{n=0}^{\infty} c_n t^n = \frac{1 - t^2}{1 - 4t^2 + t^4}$$

 $c_n$  domino tilings of a 3 × n rectangle.

# Examples

October-17-11 1:55 PM

Example

Tilings of a 3xn rectangle using dominoes and 1x1 squares.



Possible boundary shapes



 $J \rightarrow K_{a,b}$  Succession from boundary J to boundary K using a dominoes and b squares

}

$$\begin{split} A &\to \left\{ A_{0,3}, A_{3,0}, 2D_{1,2}, E_{1,2}, 2B_{2,1}, C_{2,1}, 2A_{1,1}, 2D_{2,0} \right. \\ B &\to \left\{ A_{0,1}, D_{1,0} \right\} \\ C &\to \left\{ A_{0,1}, E_{1,0} \right\} \\ D &\to \left\{ A_{0,2}, A_{1,0}, B_{2,0}, D_{1,1}, E_{1,1} \right\} \\ E &\to \left\{ A_{0,2}, C_{2,0}, 2D_{1,1} \right\} \\ M &= \begin{bmatrix} 2tu + t^3 + u^3 & u & u & t + u^2 & u^2 \\ 2t^2u & 0 & 0 & t^2 & 0 \\ t^2u & 0 & 0 & 0 & t^2 \\ 2t^2 + 2tu^2 & t & 0 & tu & 2tu \\ tu^2 & 0 & t & tu & 0 \end{bmatrix} \end{split}$$

# Example

 $A \subseteq \{a, b, c\}^*$  Blocks of c's have odd length and does not contain as or ab as a substring.  $a_n = #$  of words of length n in A

Determine 
$$\sum_{n=0}^{\infty} a_n x^n$$

First determine the generating function for "block patterns" of A: the set of words in  $\{a,b,c\}^*$  not containing any of aa, bb, cc, or ab.

$$P(x, y, z) = \sum_{\alpha \in P} x^{m_a(\alpha)} y^{m_b(\alpha)} z^{m_c(\alpha)}$$

Then replace each a in  $\alpha$  with a block of a's, each b in  $\alpha$  with a block of b's and each c in  $\alpha$  by a block of c's. Keep track of the lengths of the blocks.

The lengths of the blocks are constrained:

no aa substring  $\rightarrow$  block of a's is just a  $\rightarrow t$ 

block of b's  $\rightarrow$  b\*b  $\rightarrow \frac{t}{1-t}$ 

block of c's  $\rightarrow$  (cc)\*c  $\rightarrow \frac{\iota}{1-t^2}$ 

$$A(t) = \sum_{\sigma \in A} t^{l(\sigma)} = P\left(t, \frac{t}{1-t}, \frac{t}{1-t^2}\right)$$

# **Matrix Method**

Find P(x, y, z) using matrix method  $P \subseteq \{a, b, c\}$  \* words not containing aa, bb, cc, or ab. 4 types: E,A,B,C: empty string, ends in a, ends in b, ends in c; respectively.  $E \rightarrow \{A, B, C\}$   $A \rightarrow \{C\}$   $B \rightarrow \{A, C\}$   $C \rightarrow \{A, B\}$ generate all the block patterns in A  $M_{KL}$  is the sum over all transitions from K to L  $M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ x & 0 & x & x \\ y & 0 & 0 & y \\ z & z & z & 0 \end{bmatrix}$  $P(x, y, z) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} (I - M)^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \sum_{k=0}^{\infty} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} M^k \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \sum_{k=0}^{\infty} \sum_{\substack{\sigma \in P \\ l(\sigma) = k}} x^{m_a(\sigma)} y^{m_b(\sigma)} z^{m_c(\sigma)}$ 

$$A(t) = P\left(t, \frac{t}{1-t}, \frac{t}{1-t^2}\right)$$

$$Q = I - M = \begin{bmatrix} -t & 1 & -t & -t \\ -\frac{t}{1-t} & 0 & 1 & -\frac{t}{1-t} \\ -\frac{t}{1-t^2} & -\frac{t}{1-t^2} & -\frac{t}{1-t^2} & 1 \end{bmatrix}$$

# Example

Domino tiling. Start with A type boundary (straight line) and end with A type boundary.

# Graph Theory

October-21-11 1:30 PM

# Graph

A **graph** is a pair G = (V, E) where V is a finite set, and E a set of 2-element subsets of V. The elements of V are **vertices** and the elements of E are

edges.

# Isomorphism

An isomorphism  $\varphi$  from G to H is a function  $\varphi: V(G) \to V(H)$  such that  $\varphi$  is a bijection (one-to-one and onto)

•  $\varphi$  is a bijection (one-to-one and onto)

•  $\forall v, w \in V(G)$ 

 $\{v, w\} \in E(G) \Leftrightarrow \{\varphi(v), \varphi(w)\} \in E(H)$ G and H are isomorphic, denoted by  $G \cong H$ , when there is an isomorphism  $\varphi$  from G to H.

# Terminology

In a graph G = (V, E)  $v \in V$  is **incident** with  $e \in E$  if  $v \in e$   $v, w \in V$  are **adjacent** if  $\{v, w\} \in E$   $e, f \in E$  are **adjacent** if  $e \cap f = \{v\}$  for some  $v \in V$ The **degree** of v is the number of edges incident with v. Denoted deg<sub>G</sub>(v) The **degree sequence** is the multiset  $\{deg_G(v) : v \in V\}$ 

# Fact

If  $\varphi: V(G) \to V(H)$  is an isomorphism then  $\deg_H(\varphi(v)) = \deg_G(v) \ \forall v \in G$ 

# Corollary

If  $G \cong H$  then the degree sequences of G and H are the same.

# Subgraph

G = (V, E) is a graph J = (W, F) is a subgraph of G if  $W \subseteq V, F \subseteq E$  and J is a graph.

# **K-Regular**

A graph G is k-regular if every vertex has degree k.

# Cycle

A cycle in G is a connected 2-regular subgraph.

# Hamilton Cycle

A Hamilton cycle is a cycle through all the vertices.

# **Bipartite**

A graph G is bipartite if one can write  $V = A \cup B$  with  $A \cap B = \emptyset$  such that we very edge  $x \in e \cap A \neq \emptyset$  and  $e \cap B \neq \emptyset$ 



Equivalently, you can colour the graph with 2 colours such that every edge has one vertex of one colour and the other vertex having the other colour.

# Proposition

- a) If G is bipartite then every subgraph of G is bipartite.
- b) Odd cycles are not bipartite

# Corollary

If G contains an odd cycle, then G is not bipartite.

# Notation

Complete graph:  $K_p$  p vertices  $\binom{p}{2}$  edges; Every pair of vertices has an edges  $E = \{\{v_i, v_j\}: i \neq j\}$ Complete bipartite graph:  $K_{a,b}$ 

# Graph Example

 $G = (\{1,2,3,4\}, \{\{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}\})$ Picture of G:



Other graphs:







 $G \neq H$  but they have the "same shape". i.e. they are isomorphic.





In this case G(left) contains an odd cycle while H(right) does not. So  $G \not\simeq H$ 

### **Proof of Proposition**

(a) Let (A,B) be a bipartition for G and let H = (W, F) be a subgraph of G. Then  $(W \cap A, W \cap B)$  is a bipartition for H.

(b) Let  $C_n$  be an odd cycle with vertices  $v_1, v_2, ..., v_n$  (n odd) and edges  $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}$ 

Suppose that (A,B) is a bipartition of  $C_n$ . Wlog we can assume  $v_1 \in A$  (exchange A and B if necessary)  $\Rightarrow v_2 \in B \Rightarrow v_3 \in A \Rightarrow \cdots$ By induction from  $1 \le i \le n$   $v_i \in A$  if i is odd  $v_i \in B$  if i is even Since n is odd,  $v_n \in A$ . But then  $\{v_n, v_1\} \subseteq A$  contradicting that (A,B) is a bipartition of G.

$$\begin{aligned} a + b \text{ vertices} \\ A &= \{v_1, \dots, v_a\}, B = \{w_1, \dots, w_b\} \\ ab \text{ edges} \\ E &= \left\{\{v_i, w_j\}: 1 \le j \le b, 1 \le i \le a\right\} \end{aligned}$$

# Girth of G

if G has no cycles then  $girth(G) = +\infty$ If G has cycles then  $girth(G) = min\{|E(C)|: C \text{ is a cyle in } G\}$ 

# Connectedness

October-24-11 1:32 PM

# Walk

A walk in a graph is a sequence:  $v_0e_1v_1e_2v_2 \dots v_{k-1}e_kv_k$ Each  $v_i \in V$ , each  $e_i \in E$  and  $e_i = \{v_{i-1}, v_i\}$ Note that vertices and edges can be repeated.

Trail

A trail is a walk with no repeated edges

# Path

A path is a walk with no repeated vertices.

 $Path \Rightarrow Trail, but Trail \Rightarrow Path$ 

# **Closed & Cycle**

A walk is closed if  $v_0 = v_k$ . A cycle is (sometimes, incorrectly,) said to be a closed walk in which  $v_0 = v_k$  is the only repeated vertex.

### Reach

Define a relation R on the set V of vertices. vRw means there is a walk in G from v to w:  $v = v_0e_1v_1\dots e_kv_k = w$ . Say "v reaches w"

# Fact

R is an equivalence relation.

**Proof** Reflexive, Symmetric, Transitive

# **Connected Components**

The equivalence classes of R on V induce subgraphs of G called the connected components of G

# **Induced Subgraph**

For  $S \subseteq V$ , the subgraph of G induced by S has the vertex-set S and the edge set  $F = \{e \in E : e \subseteq S\}$ 

### Connected

The graph G is connected if it has exactly one connected component.

For graphs with at least one vertex, this is equivalent to:  $\forall v, w \in V$  there is a path from v to w (*vRw*)

### Length of a Walk

The length of a walk is the number of edges in the walk.

### Lemma

If there is a walk from v to w then there is a path from v to w.

### **Deleting an Edge**

Deleting an edge from G = (V, E) gives the graph  $G \setminus e = (V, E\{e\})$ 

# Minimally Connected Graph

A graph is minimally connected if it is connected but  $G \setminus e$  is not connected  $\forall e \in E$ .

Let c(G) be the number of connected components of G.  $e \in E$  is a **cutedge** if  $c(G \setminus e) > c(G)$ 

G is minimally connected if c(G) = 1 and every edge is a cut-edge.

#### Lemma

Let G = (V, E) be a graph. Let  $e = \{x, y\} \in E$ . Then e is a cut-edge of G iff e is not contained in a cycle of G.

### Corollary

G is a minimally connected graph iff G is connected and contains no cycles.

### Reach example



The green vertex can reach only the red vertices.

#### **Proof of Lemma 1**

Let W:  $v = v_0 e_1 v_2 e_2 \dots e_k v_k = w$  be a walk from v to w which has a s few edges as possible.

If W has a repeated vertex  $v_i = v_j$  with  $0 \le i < j \le k$ 

Then W':  $v_0e_1v_1 \dots e_iv_ie_{j+1}v_{j+1} \dots e_kv_k$  is a walk from v to w with strictly fewer edges than W. This contradictions the choice of W, so W has no repeated vertices.

#### Proof of Lemma 2

Restricting attention to the connected component of G that contains e, we can assume that G is connected. First assume that e is in a cycle C in G. Then  $C \$  has two vertices x, y of degree 1 and

the rest have degree 2.

 $P: x = v_0 e_1 v_1 \dots e_k v_k = y$ To show that not a cut-edge, we show that  $G \setminus e$  is connect. Let  $v, w \in V$ . Since G is connected there is a walk In G from v to w. By lemma there is a path Q from v to w in G.

If Q does not use the edge e, then Q is a path in  $G \setminus e$  from v to w. If Q uses e, then replace the edge e with the path P to get a walk from v to w in  $G \setminus e$ . So there is also a path from v to w in  $G \setminus e$ . So  $G \setminus e$  is connected, so e is not a cut-edge.

Conversely, assume that e is not a cut-edge. Then  $c(G \setminus e) = c(G)$  so vRw in G iff vRw in  $G \setminus e$ Let  $e = \{x, y\}$ . Clearly xRy in G. Hence xRy in  $G \setminus e$  as well.  $x = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k = y$ Now  $C = (\{v_0, v_1, \dots, v_k\}, \{e_1, e_2, \dots, e_k, e\})$  is a cycle containing edge e.

#### **Examples of Minimally Connected Graphs**



# Trees

October-26-11 1:44 PM

# Tree

A graph is a tree if it is connected and contains no cycles.

# Lemma

Let T be a tree with  $p \ge 2$  vertices. Then T has at least two vertices of degree 1.

## Lemma

Let G be a graph and let  $v \in V$  be a vertex of degree 1. Let  $G \setminus v$  be the subgraph of G spanned by  $V \setminus \{v\}$ 

- a) G is connected iff *G*\v is connected
- b) G contains a cycle iff *G*\v contains a cycles.

Proof by observation

# Proposition

Let T be a tree with p vertices and q edges. Then q=p-1

# Handshake Lemma

Let 
$$G = (V, E)$$
 be a graph. Then  

$$\sum_{v \in V} \deg_G v = 2q$$

# **Proof of Lemma**

T is a connected graph with  $p \ge 2$  vertices so T has  $q \ge 1$  edge. Let P be a path in T that is as long as possible. Then P has length  $\ge 1$ , so the ends x, y of P are distinct:  $x \ne y$ 

# Claim

 $\deg_T(x) = 1$ Then  $\deg_T(y) = 1$  by symmetry

Suppose  $\deg_T(x) \ge 1$ . Let  $P: v_0e_1v_1e_2 \dots e_kv_k = y$ Since  $e_1$  is incident with x, there is another edge  $f = \{x, z\} \in E$  incident with X. Since P is as long as possible  $zfxe_1v_1e_2 \dots w_kv_k = y$  is not a path. It is a walk and has no repeated edges the only way it can fail to be a path is if  $z \in \{v_2, \dots, v_k\}$ . This implies that T contains a cycle, a contradiction  $\blacksquare$ 

# **Proof of Proposition**

Induction on p.

Basis p = 1. T has 1 vertex and no edges.  $\Rightarrow q = p - 1$ 

Induction: Assume holds for a tree with p - 1 vertices

 $p \ge 2$ . T has a vertex v of degree 1 by Lemma 1. By Lemma 2  $T \setminus v$  is connected and contains no cycles  $\Rightarrow T \setminus v$  is a tree with p - 1 vertices. By induction hypothesis T with v deleted has p - 2 edges. T with v deleted has 1 fewer vertiex, and 1 fewer edge so T has (p - 2) + 1 = p - 1 edges.

# **Proof of Handshake Lemma**

Let X be the set of paris  $X = \{(v, e) \in V \times E : v \in e\}$ 

$$|X| = \sum_{w \in V} |\{e \in E : w \in e\}| = \sum_{w \in V} \deg_G(w)$$
$$|X| = \sum_{f \in E} |\{v \in V : v \in f\}| = \sum_{f \in E} 2 = 2q$$

# **Spanning Trees**

October-28-11 1:30 PM

# Proposition

Let G = (V, E), and  $e = \{x, y\}$  a cut-edge of G. Then  $G \setminus e$  has exactly 2 components X,Y with  $x \in V(X), y \in V(Y)$ 

Let c(G) be the number of connected components of G

**Corollary 1**  $c(G) \le c(G \setminus e) \le c(G) + 1$ 

**Corollary 2** If G has p vertices and q edges then  $c(G) \ge p - q$ .

**Corollary 3** If G is connected with p vertices and q edges then  $q \ge p - 1$ 

# The 2/3 Theorem (Trees)

Consider the following 3 conditions:

1) G is connected

2) G has no cycles

3) q = p - 1

Then any two of these implies the remaining one.

# Spanning Subgraph

Let G(V, E) be a graph. A subgraph H(W, F) of G is spanning if W = V. That is, H uses all the vertices of G.

**Spanning Tree** A spanning tree is a spanning subgraph of G that is a tree.

# Proposition

G has a spanning tree iff G is connected.

#### **Proof of Proposition**

Let X be the component of  $G \setminus e$  containing x, an let Y be the component of  $G \setminus e$  containing y. We need to show that  $X \neq Y$  and every  $z \in V$  is either in X or in Y. First, suppose that X = Y. Then xRy in  $G \setminus e$ Then there is a path P in  $G \setminus e$  from x to y Now  $(V(P), E(P) \cup \{e\})$  is a cycle in G containing e. Hence e is not a cut-edge of G; contradiction.

Secondly, let  $z \in V(G)$ . Since G is connected, there is a path Q in G from x to z. If Q does not use the edge e then xRz in  $G \setminus e$  so  $z \in V(X)$  in this case. If Q does use the edge e, then e is the first edge of Q (starting at x) since Q has no repeated vertices.  $Q: xey \dots e_k z$ The segment of Q from y to z is a path in  $G \setminus e$  from y to z, so yRz in  $G \setminus e$ , so  $z \in V(Y)$ 

# **Proof of Corollary 2**

Induction on q. Basis: q = 0, G has p vertices, 0 edges, p components. c(G) = p - 0 in this case.

Induction step,  $q \ge 1$ . Let  $e \in E$ Then  $c(G \setminus e) \le c(G) + 1$ and  $c(G \setminus e) \ge p - (q - 1)$  by induction so  $c(G) \ge p - q$ 

### Proof of Corollary 3

 $1 \ge p - q$  by the previous corollary  $\blacksquare$ 

# Proof of 2/3 Theorem

**1&2**  $\Rightarrow$  **3** Proved last lecture **1&3**  $\Rightarrow$  **2** Assume that G is connected and q = p - 1. Suppose that G has a cycle C. Let *e* be an edge in C. Then *e* is not a cut-edge of G. So *G*\*e* is connected with *p* vertices and q = (p - 1) - 1 = p - 2edges.

This contradicts corollary 3

### $2\&3 \Rightarrow 1$

G has no cycles and q(G) = p(G) - 1Let  $G_1, G_2, ..., G_c$  be the connected components of G and let  $G_i$  have  $p_i$  vertices and  $q_i$  edges. Each

Let  $q_1, g_2, \dots, g_c$  be the connected components of G and let  $g_i$  have  $p_i$  vertices and  $q_i$  edges. Each  $G_i$  is a connected graph with no cycles. Since  $1\&2 \Rightarrow 3$  we have that  $q_i = p_i - 1 \forall 1 \le i \le c$ Now  $p(G) = p_1 + p_2 + \dots + p_c$ ,  $q(G) = q_1 + q_2 + \dots + q_c$   $1 = p(G) - q(G) = (p_1 + \dots + p_c) - (q_1 + \dots + q_c) = (p_1 - q_1) + (p_2 - q_2) + \dots + (p_c - q_c) = c$ Since c(G) = 1, G is connected  $\blacksquare$ 

### **Proof of Proposition**

If G has a spanning tree T then G is connected, since T is connected and spanning. Conversely, assume that G is connected. Proceed by induction on q(G)

Basis: q = p - 1. This this case 2/3 theorem implies that G is a tree. So it is a spanning tree of itself.

Induction Step: q > p - 1. Then G has a cycle (otherwise it is a tree, and q = p - 1). Let e be an edge in a cycle of G. Then G \e is still connected and has q - 1 edges. By induction G \e has a spanning tree, which is also a spanning tree of G.

# Search Trees

October-31-11 1:32 PM

#### Search Tree Algorithm

Let G = (V, E) be a graph, and  $v_0 \in V$  be a "base" vertex. Initially, let  $W = \{v_0\}$  and let  $F = \emptyset$ 

Let  $\Delta$  be the set of edges with one end in W and one end not in W.

If  $\Delta = \emptyset$  then output (W, F) and stop. If  $\Delta \neq \emptyset$  then let  $e = \{x, y\} \in \Delta$  with  $x \in W$  and  $y \notin W$ Update:  $W \leftarrow W \cup \{y\}, F \leftarrow F \cup \{e\}$  and goto \*

## Proposition

Let G = (V, E) be a graph,  $v_0$  a vertex of G, and let T = (W, F) be output by an application of the search tree algorithm to G and  $v_0$ . Then T is a spanning tree for the connected component of G containing  $v_0$ 

#### Note

Note that the search tree algorithm gives a path from any vertex to the base vertex.

Specialize search tree algorithm so that for each  $w \in W$ the path from w to  $v_0$  in T is a shortest path from w to  $v_0$  in G

### Length of a path

# of edges of the path

# **Distance between vertices**

The distance from vertex x to vertex y is the minimum length of any path from x to y. Denoted  $dist_G(x, y)$ 

#### **Breadth-First Search**

Vertices in W are recorded in a queue. Calculate  $\Delta$  as before. If  $\Delta \neq \emptyset$  let  $e = \{x, y\} \in \Delta$  with  $x \in W$  and  $y \neq W$  and x as early in the queue as possible. *y* joins the end of the  $\Delta$  queue.

 $dist_T(a_0, z) = dist_G(a_0, z)$ 

### **Depth-First Search**

Record the vertices in W in a stack. Calculate  $\Delta$  as before. Chose  $e = \{x, y\} \in \Delta$  with x as close to top of the stack as possible. Add y to the top of the stack.

# **Proof of Proposition**

(W, F) is a tree. Induction on the number of iterations of the loop:

Basis of induction:  $W = \{v_0\}, F = \emptyset$ . ( $\{v_0\}, \emptyset$ ) is connected and has no cycles - it is a tree.

Induction step: Assume that (W, F) is a tree.  $\Delta \neq \emptyset$  and  $e = \{x, y\}$  and  $W' = W \cup \{y\}, F' = F \cup \{e\}$ Since (W, F) is a tree, xRw in (W', F') for all  $w \in W$ Also xRy since  $e \in F'$  so  $xRz \forall z \in W'$ So (W', F') is connected. Let |W| = p and |F| = q so that q = p - 1 as (W, F) is a tree Now |W'| = p + 1 and |F'| = q + 1 so |F'| = |W'| - 1

From these and the 2/3 algorithm we get that (W', F') is a tree. End of induction, so (W, F) is a tree.

To see that (W, F) spans the component H of G containing  $v_0$ : Since  $v_0 Rw \forall w \in W$  (W, F) is a subgraph of H. Let z be any vector in H. Suppose that  $z \neq W$ . Since  $v_0 Rz$  in G there is a path P in G from v to z. Since  $v_0 \in W$  and  $z \notin W$  there is an edge f of P with one end in W and one end not in W. But then  $f \in \Delta$  so  $\Delta \neq \phi$  so the algorithm has not terminated yet. Contradiction

# **Breadth-First Search**

November-02-11 1:38 PM

# Notation

G = (V, E) and  $v \in V$  let E(v) be the set of edges of G incident with v.  $E(v) = \{e \in E : v \in e\}$ 

# Symmetric Difference

For sets A,B, the symmetric difference of A and B is  $A \oplus B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$  the set of elements in A or B but not both.

# **Breadth First Search**

#### Input:

Graph G = (V, E), vertex  $v_0 \in V$ Initialize:  $W = \{v_0\}, \quad F = \emptyset, \quad \Delta = E(v_0)$ Put  $v_0$  on front of queue Q.

# While $\Delta \neq \emptyset$

Let  $v_i$  be the earliest vertex on Q such that  $\Delta \cap E(v_i) \neq \emptyset$ Let  $e = \{v_i, y\} \in \Delta \cap E(v_i)$  so  $y \notin W$ 

### Update:

$$\begin{split} \overrightarrow{W} \leftarrow W \cup \{y\}, & F \leftarrow F \cup \{e\} \\ \text{Put } y \text{ on the end of } Q \\ \text{Level: } l(y) = l(v_i) + 1 \\ \text{Parent: } pr(y) = v_i \\ \Delta \leftarrow \Delta \bigoplus E(y) \end{split}$$

Output((W,F),l,pr)

### **Eventual Claim**

The path in T = (W, F) from v to  $v_0$  is a path in G from v to  $v_0$  that is a short as possible. That is,  $dist_G(v, v_0) = l(v)$ 

# Observation

- 1. When v joins the queue, earliest vertex on Q with  $E(v_i) \cap \Delta \neq \emptyset$  is pr(v)Call  $v_i$ , the earliest vertex on the queue, the active vertex.
- 2. A vertex can become active, then stop being active, but then it never becomes active again.
- 3. If x occurs before y in Q (and neither one is  $v_0$ ) then pr(x) occurs before pr(y) in Q or pr(x) = pr(y).
- 4. If x occurs before y on Q then  $l(x) \le l(y)$

#### Proof of Observations 3rd Part

rt se v occurs before v in 0 bu

Suppose x occurs before y in Q but pr(y) occurs before pr(x)Since pr(x) is active when x joins the queue  $E(pr(y)) \cap \Delta = \emptyset$ By y joins Q after x so when x joins Q the edge  $e = \{pr(y), y\}$  is in  $E(pr(y)) \cap \Delta \neq \emptyset$ . Contradiction

# 3 => 2

The active vertex moves from left to right along Q.

#### 4th

By induction on the positions of y in the queue since x occurs before y,  $y \neq v_0$ . If  $x = v_0$  then  $0 = l(v_0) = l(x) \le l(y)$ So assume that  $x \neq v_0$ Now by 3 pr(x) occurs before pr(y) on Q. By induction  $l(pr(x)) \le l(pr(y))$ So  $l(x) = l(pr(x)) + 1 \le l(pr(y)) + 1 = l(y)$ 

# **Distance in Graphs**

November-04-11 1:33 PM

Construct a Breadth First Search Tree

- pr(x) is active when x joins the queue
- If x occurs before y on the queue then pr(x) occurs before pr(y)in Q
- The active vertex moves left to right in Q
- The level of vertices increases from left to right on Q.

#### **Fundamental Property of BFS**

Let G = (V, E) be a connected graph. Let T be a breadth first search tree for G. Let  $l_T(v)$  be the level of  $v \in V$  in T.

Let  $e = \{x, y\} \in E$  be any edge of G. Then  $|l_T(x) - l_T(y)| \le 1$ 

#### Note:

Not true for search trees in general.

#### Theorem

Let G = (V, E) be a connected graph,  $v_0 \in V$ , and let T be a BFST for G with base vertex  $v_0$  them for every  $v \in V$  $dist_G(v, v_0) = l_T(v)$ 

### **Facility Location Problem**

Measure of v  $f(v) = \sum_{w \in v} dist_G(v, w)$ Find a vertex that minimizes f(v)

Algorithm For each  $v \in V$ :

• Compute a BFST T for G based at v

• 
$$f(v) = \sum_{w \in V} l_T(w)$$

# **Computed Girth**

For each  $v \in V$  grow a BFST T of G based at vFor each edge  $e = \{x, y\}$  in G but not in T let  $m(e) = l_T(x) + l_T(y) + 1$ Let  $g(v) = \min_{e \in G \setminus T} m(e)$ Let  $\gamma = \min_{v \in V} g(v)$ 

Claim  $\gamma$  is the girth of G

Correctness of this algorithms depends on if C is a cycle in G that is as short as possible and v is a vertex in C then g(v) is the length of C.

### **Test of Bipartness**

Input a connected graph G = (V, E). Grow a BFST based at any  $v_0 \in V$ . G is bipartite iff for every  $e = \{x, y\} \in E |l_T(x) - l_T(y)| = 1$ By partition: (even level, odd level)

# **Diameter of a Graph**

 $diam(G) = \max_{v,w \in V} dist_G(v,w)$ 

### **Proof of Fundamental Property of BFS**

If  $e = \{x, y\}$  is in T then either x = pr(y) or y = pr(x) so  $l_T(x) = l_T(y) - 1$  or  $l_T(x) = l_T(y) + 1$ 

Suppose that  $|l_T(x) - l_{t(y)}| \ge 2$ Assume that  $l_t(x) \le l_T(y) - 2$ So pr(x), x, pr(y), y occur in that order on Q (since  $l_T(x)$  is weakly increasing from left to right.) pr(y) is active when y joins the queue, so  $E(x) \cap \Delta = \emptyset$  when y joins the queue. But  $e = \{x, y\} \in E(x) \cap \Delta$  when y joins the queue.

# **Proof of Theorem**

The unique path in T from v to  $v_0$  has  $l_T(v)$  edges. Thus  $dist_G(v, v_0) \leq l_T(v)$ Conversely, let *P* be any path in G from v to  $v_0$ 

Conversely, let *P* be any pair in Groin v to  $v_0$   $P: v = z_0 e_1 z_1 e_2 z_2 \dots z_{k-1} e_k z_k = v_0$ , say *P* has *k* edges  $l_T(v) = l_T(v) - l_T(v) = \sum_{k=1}^{k} |l_T(z_{i-1}) - l_T(z_i)| \le \sum_{l=1}^{k} 1 = k$ So every path from v to  $v_0$  has at least  $l_T(v)$  edges.

So  $dist_G(v, v_0) = l_T$ 

# Planar Graphs

November-07-11 1:30 PM

Graphs which can be drawn without crossing edges.

### **Planar Embedding**

Let G = (V, E) be a graph.

- A **plane embedding** of *G* is a pair  $\{p_v : v \in V\}$  and  $\{\gamma_e : e \in E\}$  whose •  $p_v$  are pairwise distinct points in  $\mathbb{R}^2$  (if  $v \neq w$  then  $p_v \neq p_w$ ) and
  - $\gamma_e$  are simple curves in  $\mathbb{R}^2$  (image of [0,1] under some continuous function  $f: [0,1] \to \mathbb{R}^2$  that is injective) i.e.  $\gamma_e$  does not intersect itself and
  - if  $e = \{x, y\} \in E$  then  $\gamma_e$  has end points  $p_x$  and  $p_y$  and
  - If γ<sub>e</sub> ∩ γ<sub>f</sub> ≠ Ø then both e and f are incident with a common vertex w and γ<sub>e</sub> ∩ γ<sub>f</sub> = {p<sub>w</sub>}

 $\gamma_e$  are images of functions (the set of points corresponding to the curve in  $\mathbb{R}^2$ 

### **Planar Graph**

A planar graph is a graph that has some plane embedding.

# Faces

Let  $\{p_v : v \in V\}$  and  $\{\gamma_e : e \in E\}$  be a plane embedding of a graph G = (V, E).

The **faces** of the embedding are the connected components of  $\mathbb{P}^{2} \setminus [ ]_{\mathcal{X}}$ 



# Degree of a Face

The **degree** of a face is the number of edges on its boundary counted with multiplicities.

# E.g.

The embeddings drawn for 'two plane embeddings' have 4 faces each.

# Handshake Lemma for Faces

Let G be a graph property embedded in the plane, with q edges

$$\sum_{F:a\,face} \deg(F) = 2q$$

# Proposition

Let G = (V, E) be a plane embedding. Let  $e \in E$  and let the faces with e on their boundaries be  $F_1$  and  $F_2$ . Then  $F_1 = F_2$  iff e is a cut-edge.

### **Euler's Formula**

Let G be a plane graph with p vertices, q edges, r faces, and c connected components. Then p - q + r = c + 1

Not Planar





Two plane embeddings of the same graph



First embedding is the same as:



**Degree of Faces Example** 



### **Proof of Proposition**

If e is not a cut-edge then e is contained in a cycle C.

Then  $\bigcup_{f \in E(C)} \gamma_f$  separates  $F_1$  from  $F_2$  so  $F_1 \neq F_2$ 

Conversely, if  $F_1 \neq F_2$  then walk around  $F_1$  starting and ending at the edge e - you get a closed walk containing e. Deleting subwalks between repeated vertices produces a cycle containing e. So e is not a cut-edge.

### Platonic Solids



 q
 6
 12
 12
 30
 30

 r
 4
 6
 8
 12
 20

# **Proof of Euler's Formula**

Induction on q: Basis: q = 0 Then r = 1 and so p - 1 + r = p + 1 = c + 1. Good

Induction step: Let  $e \in E$  and consider  $G' = G \setminus e$  with p', q', r', c' vertices, edges, faces, and components.

If e is a cut-edge then p = p, q = q' + 1, r = r', c = c' - 1

 $\begin{array}{l} p-q+r=p'-(q'+1)+r'=(p'-q'+r')-1=c'+1-1\\ =c'=c+1 \end{array}$ 

If e is not a cut-edge then  $p = p', \quad q = q' + 1, \quad r = r' + 1, \quad c = c'$ p - q + r = c + 1

# Condition for Embedding

November-09-11 1:32 PM

# **Euler's Formula**

Let G be embedded in  $\mathbb{R}^2$  with p vertices, q edges, r faces, and c components. Then p - q + r = c + 1

# Corollary

Let G be a graph with p vertices and  $q\geq 2$  edges. If G is planar then  $q\leq 3p-6$ 

# Note of Exception

If q = 1, p = 2:  $1 \le 3 \times 2 - 6$ If q = 0, p = 1:  $0 \le 3 \times 1 - 6$ 

# Corollary

Let G be a bipartite graph with p vertices and  $q\geq 2$  edges. If G is planar then  $q\leq 2p-4$ 

### **Subdivision**

Subdivision of an edge  $e = \{x, y\}$  in a graph G = (V, E)This is the graph  $G \cdot e$  with vertex-set  $V' = V \cup \{z\}$  where  $z \notin V$ and edge set  $E' = (E \setminus \{e\}) \cup \{\{x, z\}, \{y, z\}\}$ 

### Claim

G is planar iff  $G \cdot e$  is planar. Exercise

Two graphs related by a finite sequence of subdivisions or reverse subdivisions are either both planar or both not planar

### Lemma

If H is a subgraph of G and G is planar then H is planar.

### Corollary

Any graph that contains a (repeated) subdivision of  $K_5$  or  $K_{3,3}$  is not planar.

# Kuratowski's Theorem

A graph is planar iff it does not contain a subdivision of  $K_5$  or  $K_{3,3}$  as a subgraph.

Proof CO 342

# Proof of Corollary

Consider any plane embedding of G, with r faces. Since  $q \ge 2$  every face of the embedding has degree  $\ge 3$ . By the Handebale Lemma for faces:

By the Handshake Lemma for faces:

 $2q = \sum_{face F} \deg(F) \ge 3r$ Since  $q \ge 2, p \ge 1$  so  $c \ge 1$  by Euler's Formula  $p - q + r = c + 1 \ge 2$  $3p - 3q + 3r \ge 6$  $3p - 3q + 2q \ge 3p - 3q + 3r \ge 6$  $3p - q \ge 6$  so  $q \le 3p - 6$ 

# **Proof of Corollary**

Consider any plane embedding of G with r faces Since  $q \ge 2$  and G is bipartite, every face has degree  $\ge 4$ By Handshake lemma for faces,  $2q \ge 4r \Rightarrow q \ge 2r$ Since  $q \ge 2, p \ge 1, so c \ge 1$  $p - q + r \ge 2$  $2p - 2q + 2r \ge 4$  $2p - 2q + q \ge 4$  $q \le 2p - 4$ 

# Numerology for Planar Graphs

November-11-11 1:32 PM

# Vertex Degrees in a Planar Graph

Planar graph, p vertices, q edges ( $q \ge 2$ ),  $n_k$  vertices of degree k ( $k \ge 0$ )

Then 
$$q \leq 3p - 6$$
  
 $p = n_0 + n_1 + n_2 + \dots + n_{p-1}$   
 $2q = \sum_k kn_k$   
 $2q \leq 6p - 12 \Rightarrow \sum_k kn_k \leq \sum_k 6n_k - 12$   
 $12 \leq \sum_{k=0}^{p-1} (6 - k)n_k$   
 $\Rightarrow 12 \leq 6n_0 + 5n_1 + 4n_0 + 3n_2 + 2n_4 + n_5$ 

 $\Rightarrow 12 \leq 6n_0 + 5n_1 + 4n_2 + 3n_3 + 2n_4 + n_5 - n_7 - 2n_8 - 3n_9 - \cdots \\ n_5 + 2n_4 + 3n_3 + 4n_2 + 5n_1 + 6n_0 \geq 12 + n_7 + 2n_8 + 3n_9 + \cdots$ 

In a planar graph of minimum degree  $\geq 2$  $n_5 + 2n_4 + 3n_3 + 4n_2 \geq 12$ In a simple planar graph there must be a vertex of degree  $\leq 5$ 

# **The Four-Colour Theorem**

Conjecture made in 1851 by Guthrie

For any plane graph, the faces can be coloured with a most four colours so that neighbouring faces get different colours. Proved in 1974 by Appel and Haken.

#### **Planar Duality**

G is a plane graph  $G^{\ast}$  is its dual graph. Draw one vertex of  $G^{\ast}$  on each face of G. Draw one edge of  $G^{\ast}$  across each edge of G

With this can end up with duplicate edges, or edges back to the same vertex.

#### Multigraph

G = (V, E)V: set of vertices E: multiset of 2 element multisubsets of V e.g.  $G = (\{1,2,3\}, \{\{1,1\}, \{2,3\}, \{2,3\}, \{1,2\}, \{2,2\}, \{2,2\}\})$ 

#### Proposition

G\* can be drawn on G without any edges of G\* crossing.

**Proposition**  $(G^*)^* = G$ 

# Four Colour Theorem

Let G be a planar multigraph without loops. Then V(G) can be coloured with  $\leq 4$  colours so that adjacent vertices get different colours.

 $\chi(G) \leq 4$ 

**Proper k-Colouring** Leg G = (V, E) be a multigraph proper k-colouring.  $f: V \to \{1, 2, ..., k\}$  such that if  $\{v, w\} \in E$  then  $f(v) \neq f(w)$ .

**Chromatic Number** The chromatic number of G is  $\chi(G) = \min\{k : G \text{ has a proper k-colouring}\}$ 

**Spherical Projections** A graph can be drawn on a plane iff it can be drawn on a sphere. You just need to avoid the north pole.

### Exercise

 $p \ge 3$  vertices, q edges, c components No faces of degree 3 a)  $q \le 2p - 4c$ b) Phrase this in terms of  $n_k$ 

.

# **Proof of Proposition**

By induction on q = |E(G)|Basis q = 0 is trivial

#### Induction

If every edge of G is a cut-edge then G has no cycles, so it has only one face.  $G^*$  has one vertex, and one loop for each edge of G. Loops can be drawn without overlap.

If e is not a cut-edge of G then consider  $G \in and (G e)^*$  By induction can draw  $(G e)^*$  without crossing edges. Can add in e without crossing.

#### Alternately

Put a vertex in each face. Can draw a half-edge to each edge of that face in G. Connect those half-edges at the edges of the faces and have no crossings.

G and G<sup>\*</sup> are both embedded in the plane. Edge e of G meets edge f<sup>\*</sup> of G<sup>\*</sup> if and only if e=f in which case  $e \cap e^*$  is a single point.

# **Colour Theorems**

November-14-11 1:33 PM

## Note

 $\chi(G) \le 2$  iff *G* is bipartite.  $\chi(G) \le 1$  iff *G* has no edges  $\chi(G) = 0$  iff *G* has no vertices **Six Colour Theorem** If *G* is a planar graph then  $\chi(G) \le 6$ 

# **Five Colour Theorem**

If G is a planar graph then  $\chi(G) \leq 5$ 



#### **Graphs on Surfaces**



### **Proof of The Six Colour Theorem**

Induction on p, the number of vertices.

# Base:

If  $p \leq 6$  then give every vertex a different colour.

#### Induction:

Let G be planar with p vertices. G has a vertex of degree 5 or less, let v be such a vertex.

By induction,  $G \setminus v$  has a proper six-colouring  $f: V \setminus e \to \{1, 2, ..., 6\}$ Let the neighbours of v b  $z_1, ..., z_k$  where  $k \le 5$ .  $\{f(z_1), ..., f(z_k)\}$  has at most 5 colours.  $\exists c \in \{1, ..., 6\}$  such that  $c \notin \{f(z_1), ..., f(z_k)\}$  and set f(v) = c

#### **Proof of the Five Colour Theorem**

Induction on p = |V(G)|

#### Base

 $p \leq 5$ : give every vertex a different colour.

#### Induction Step:

Let G be planar with p vertices. Let  $v \in V$  have degree  $\leq 5$ . Let  $f: V \setminus \{v\} \rightarrow \{1, 2, 3, 4, 5\}$  be a proper 5 colouring of  $G \setminus v$ . Let the neighbours of v be  $z_1, ..., z_k$  and let  $S = \{f(z_1), ..., f(z_k)\}$ If  $S \neq \{1, 2, 3, 4, 5\}$  then  $\exists c \in \{1, 2, 3, 4, 5\} \setminus S$  and we can set f(v) = c to get a proper 5-colouring of G.

Remaining case:  $S = \{1, 2, 3, 4, 5\}$ 

So v has 5 neighbours  $z_1, z_2, z_3, z_4, z_5$ . We can assume that G is embedded in the plane. WLOG  $z_1, ..., z_5$  occur in that order clockwise around v. Can also assume that  $f(z_i) = i$ 

For  $\{i, j\} \subseteq \{1, 2, 3, 4, 5\}$  let  $H_{ij}$  be the subgraph of  $G \setminus v$  induced by the set of vertices coloured either *i* or *j* by *f*. If *K* is a connected component of  $H_{ij}$  then one can define a new 5-colouring of  $G \setminus v$  as follows:

|                                       | (            | f(w),       | $w \notin V(K)$    |
|---------------------------------------|--------------|-------------|--------------------|
| For every $w \in V \setminus \{v\}$ , | $g(w) = \{i$ | , $w \in V$ | (K) and $f(w) = j$ |
|                                       | (j           | $, w \in V$ | (K) and $f(w) = i$ |

Check: g is a proper 5-colouring of  $G \setminus v$ 

If  $z_1$  and  $z_3$  are in different components of  $H_{13}$  then let K be the component of  $H_{13}$  containing  $z_3$ . Switch colours 3 and 1 on K to get g. Then  $g(z_3) = g(z_1) = 1$ So we can set g(v) = 3 to get a proper 5-colouring of G.

If  $z_1$  and  $z_3$  are in the same connected component of  $H_{13}$  then there is a path in  $G \setminus v$  from  $z_1$  to  $z_3$  in which every vertex is coloured 1 or 3 by f.

Since G is planar the path P with edges  $\{v, z_1\}, \{v, z_3\}$  forms a cycle that separates  $z_2$  from  $z_4$ . Thus  $z_2$  and  $z_4$  are in different connected components of  $H_{24}$ . Recolour the component of  $H_{24}$  that contains  $z_4$  and then give v colour 4.

#### Surfaces

Torus = rectangle with opposite sides identified





# Graphs on Surfaces

November-16-11 1:32 PM

Every graph can be embedded on some surface. You can add loops for every vertex.

For any surface, there are finitely many obstructions to embedding a graph on that surface. It is hard to determine the surface with the fewest number of holes which allows a given graph to be embedded.

# **Surface Representations**

Every surface can be represented (possibly non-uniquely) by a polygon with pairs of sides identified with each other.



K7 on the torus

**Klein Bottle** 



This is a non-orientable surface. There is no distinction between clockwise and counter clockwise. Non-orientable surfaces cannot be embedded in 3 dimensions, require at least 4.

# **Matching Theory**

November-16-11 2:00 PM

# **Toy Application**

Processors

### Matching

Let G = (V, E) be a graph. A matching, M, is a set of edges so that (V, M) has maximum degree  $\leq 1$ . Every vertex is in at most one edge of M.

#### Problem

Given G, find a matching on G of maximum size.

#### Perfect

A matching is perfect if every vertex has degree 1 in (V, M)

#### **Non-Perfect Matching**

A 2 regular graph consisting of an odd cycle has no perfect matching.

"Let's consider the next value of 2, which is 3."

#### **M-Saturated**

 $v \in V$  is M-saturated if v is on an edge of M  $v \in V$  is M-unsaturated if v is not on any edge of M.

# M-Alternating, M-Augmenting

Let G = (V, E) be a graph. M a matching of G P a path in G,  $p: v_0e_1v_0 \dots v_{k-1}e_kv_k$  is **M-alternating** if either  $e_i \in M \iff i$  is odd or  $e_i \in M \iff i$  is even

#### P is M-augmenting iff

 $e_i \in M \iff i$  is even, and P has an odd number of edges, and  $v_0$  and  $v_k$  are M-unsaturated

#### Proposition

If M is a matching in G and P is an M-augmenting path then  $M' = M \bigoplus E(P)$  is a matching in G with one more edge than M.  $S \bigoplus T = (S \cup T) \setminus (S \cap T)$ 

#### Theorem

Let G = (V, E) be a graph.  $M \subseteq E$  a matching. Then M is a maximum matching iff G does not have an M-augmenting path.

#### **Vertex Cover**

A vertex cover is a set  $S \subseteq V$  such that every edge  $e \in E$  has at least one end in *S*.

| Matching                               | Vertex Cover                          |
|----------------------------------------|---------------------------------------|
| Set of edges M                         | Set of vertices S                     |
| Every $v \in V$ is on $\leq 1 e \in M$ | Every $v \in V$ is on $\ge 1 e \in M$ |
| Find a maximum matching                | Find a minimum vertex cover           |

#### Proposition

Let G be a graph, M a matching, and S a vertex cover in G. Then  $|M| \le |S|$ 

# Example: Odd Cycle

$$\max |M| = \left\lfloor \frac{n}{2} \right\rfloor$$
$$\min |S| = \left\lfloor \frac{n}{2} \right\rfloor$$

#### Corollary

Let G be a graph, M a matching, S a vertex cover. If |M| = |S| then M is a maximum matching and S is a minimum vertex-cover.

For a non-bipartite graph, there may be a gap, as in odd cycles (but not necessarily).



 $\{p, j\}$  is an edge when processors in p can perform job j Assign jobs to processors to maximize the number of busy processors.  $\leq$  one job per processor  $\leq$  one processor per job

#### **3-Regular with no Perfect Matching**



Example



Red are vertices in M, terminate on M-saturated vertices. Blue is an M-augmenting path

#### **Proof of Theorem**

If P is an M-augmenting path in G, then  $M' = M \oplus E(P)$  is a matching on G with |M'| = 1 + |M| so M is not a maximum matching.

Conversely, assume that M is not a maximum matching. Let  $M^*$  be a maximum matching in G, so  $|M^*| > |M|$ 

Consider the spanning subgraph (uses all the vertices) H of G with edges  $M \cup M^*$ .

In H, every vertex has degree 0, 1, or 2. Every connected component is either a path or a cycle. The cycles all have even length. Since  $|M^*| > |M|$ , there is a component K of H that has more edges in  $M^*$  than in M. Since connected components alternate 1 edge in M with 1 edge in M\* this cannot be a cycle. This connected component must be a path with both end edges in M\* but not in M. The end vertices of K are not saturated by M. Thus K is an M-augmenting path.

#### **Proof of Proposition**

Let  $X = \{(v, e) : v \in S, e \in M \text{ and } v \in e\}$ Since M is a matching, every  $v \in S$  is in at most one  $e \in M$  so

$$|X| = \sum_{v \in S} \sum_{e \in M} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases} \le \sum_{v \in S} 1 = |S|$$
  
Since S is a vertex cover, every  $e \in M$  is incident with at least one  $v \in S$ 
$$|X| = \sum_{e \in M} \sum_{v \in S} \begin{cases} 1, & v \in e \\ 0, & v \notin e \end{cases} \ge \sum_{e \in M} 1 = |M|$$
  
So  $|M| \le |X| \le |S|$ 

Jobs

# König's Theorem

November-21-11 1:55 PM

### König's Theorem

Let G be a bipartite graph.

Then  $\max|\dot{M}| = \min|S|$ (Maximum over matchings M of G, minimum over vertexcovers S of G)

# Algorithmification of König's Theorem

How to compute a maximum matching in a bipartite graph.

**Input:** a graph G with bipartition (A, B). **Initialize:**  $M = \emptyset$ 

- Computation:
  - Compute the set  $X \subseteq A, Y \subseteq B$  as in Claims 1,2,3.
  - If  $y \in Y$  is M-unsaturated, find an M-alternating path P
  - from some  $x_0 \in X$  to y.
  - Update  $M \leftarrow M \oplus E(P)$
  - Repeat until there are no more M-unsaturated  $y \in Y$ .

### **Output:** $(M, Y \cup (A \setminus X))$

# Computing the sets X, Y systematically. Input:

- Graph G with bipartition (A, B)
- Matching M in G

Initialize:

- X<sub>0</sub> to the M-unsaturated vertices in A.
- Put all vertices in X<sub>0</sub> on the front of queue Q.

•  $X = X_0, Y = \emptyset$ 

#### **Computation:**

While  $Q \neq \emptyset$  do the following:

- Let q be the first vertex in Q
- If q ∈ B and M-saturated then let {q, x} ∈ M, put x at the end of Q if x is not already in A. Delete q from the front of Q.
   X ← X ∪ {x}
- If *q* ∈ *B* and M-unsaturated then use q to find any M-augmenting path.
- If *q* ∈ *A* then choose any non-matching edge *e* = {*q*, *b*} with b not already on the Q. Adjoin b to the end of the Q. If there is no such b, delete q from the front of Q. Y ← Y ∪ {*b*}

**Output:** (X, Y)

# Anatomy of a Matching in a Bipartite Graph

Let G have bipartition (A, B) Let M be a matching in G

- Let  $X_0 \subseteq A$  be the set of M-unsaturated vertices in A.
- Let  $X \subseteq A$  be the set of vertices reachable from some  $x_0 \in X_0$  by an M-alternating path.

Let  $Y \subseteq B$  be the set of vertices in B reachable from some  $x_0 \in X_0$  by an M-alternating path.



#### Claim 1 If there

If there is an M-unsaturated vertex  $y \in Y$  then G has an M-augmenting path from some  $x_0 \in X_0$  to y.

#### Proof

Let  $x_0 \in X_0$  and let P be an M-alternating path from  $x_0$  to y in G. Since neither  $x_0$  nor y is saturated by M (and  $x_0 \neq y$ ) P is an M-augmenting path.

#### Claim 2

there are no edges of G between the sets X and  $B \setminus Y$ 

#### Proof

Suppose that  $e = \{x, b\}$  with  $x \in X$  and  $b \in B$ . If  $e \notin M$  then consider an M-alternating path P from some  $x_0 \in X_0$  to  $x \in X$ . Then *Peb* is an M-alternating path from  $x_0$  to b, so  $b \in Y$  (since the last edge in P is in M)

If  $e \in M$  then consider an M-alternating path P from some  $x_0 \in X_0$  to  $x \in X$ .  $P: x_0e_1x_1 \dots x_{k-1}e_kx_k = x$ . P has an even number of edges,  $e_1 \notin M$  so  $e_k \in M$ ,  $e_k$  is the unique matching edge on x. So  $e_k = e$  and  $y = x_{k-1} \in Y$ .

#### Claim 3

There are no edges of M between the sets Y and  $A \setminus X$ .

#### Proof

Suppose that  $e = \{a, y\}$  with  $y \in Y$  and  $a \in A \setminus X$ . Let P be an M-alternating path from  $x_0$  to y. Then *Pea* is an M-alternating path from  $x_0$  to a. So  $a \in X$ , a contradiction.

#### König's Theorem

Let G be a bipartite graph. Let M be a maximum matching. Let S be a minimum vertex-cover. Then |M| = |S|

#### Proof

Let M be a maximum matching in G and constructs sets X, Y as in claim 1,2,3. Since M is a maximum matching, there are no augmenting paths. By Claim 1, every vertex in Y is saturated by M.

By Claims 2, 3 every edge of M with one end in Y has its other end in X, and every edge of M with one end in  $A \setminus X$  as other end in  $B \setminus Y$ .

Every vertex in  $(A \setminus X) \cup Y$  is M-saturated. Now |M| = |S| with  $S = (A \setminus X) \cup Y$ . (Since each edge has one adjacent vertex in S)

By Claim 2, S is a vertex cover of G (since G has no edges between X and  $B \setminus Y$ , which are the only sets of M-unsaturated vertices.)

Hence *S* is a minimum size vertex-cover and |S| = |M|

#### **Example Computation of X, Y**



# Hall/Tutte Conditions

November-23-11 1:31 PN

### **A-Saturating**

Let G = (V, E) be a graph with bipartition (A, B). A matching M is A-saturating when every  $a \in A$  is saturated by M.

#### Hall Condition

If G has an A-saturating matching M this defines an injective function  $f: A \rightarrow B$  by saying that f(a) = b iff  $\{a, b\} \in M$ . If this exists then for all  $S \subseteq A$ , f restricts to an injective function from S to N(S).

Thus, if *G* has an A-saturating matching then  $|S| \le |N(S)| \forall S \subseteq A$ 

### Hall's Matching Theorem

Let G = (V, E) be a graph with bipartition (A, B). Then G has an A-saturating matching iff  $|S| \le |N(S)| \forall S \subseteq A$ .

#### Corollary

Let G be a k-regular graph with bipartition (A, B). If  $k \ge 1$  then then G has a perfect matching.

# Corollary

A k-regular bipartite graph can be partitioned into k edge-disjoint perfect matching.

#### **Tutte Condition**

Let G = (V, E) be a graph. For  $S \subseteq V$  let  $G \setminus S$  be the subgraph of G induced by vertices in  $V \setminus S$ . Let odd( $G \setminus S$ ) be the number of connected components of  $G \setminus S$  with an odd number of vertices.

If G has a perfect matching then for every  $S \subseteq V, |S| \ge odd(G \setminus S)$ .

# **Tutte's Matching Theorem**

A graph has a perfect matching iff  $\forall S \subseteq V$ ,  $|S| \ge odd(G \setminus S)$ 

Which bipartite graphs have A-saturating matchings?



Does not have an A-saturating matching.

For each  $S \subseteq A$ , let  $N(S) = \{b \in B : \{a, b\} \in E \text{ for some } a \in S\}$ This example has a set  $S \subseteq A$  with |S| = 3 and |N(S)| = 2If *G* has an A-saturating matching M this defines an injective function  $f: A \to B$  by saying that f(a) = b iff  $\{a, b\} \in M$ .

#### Proof

We've seen that if *G* has an A-saturating matching then  $\forall S \subseteq A: |S| \leq |N(S)|$ Conversely, assume that there is no A-saturating matching. Let  $M^*$  be a maximum matching in G. So  $|M^*| < |A|$ . By König's Theorem, there is a vertex-cover *Q* in G with  $|Q| = |M^*|$ . Since Q is a vertex cover, there are no edges from  $S = A \setminus Q$  to  $B \setminus Q$ In other words,  $N(S) \subseteq Q \cap B$  $|Q \cap A| + |Q \cap B| = |Q| = |M^*| < |A|$  $|A| - |Q \cap A| > |Q \cap B|$ 

 $|A| = |Q \cap A| \ge |Q \cap B|$  $|S| = |A \setminus Q| = |A| - |Q \cap A| \ge |Q \cap B| \ge |N(S)| \Rightarrow |S| \ge |N(S)| \blacksquare$ 

#### **Proof of Corollary**

Since  $k \ge 1$  we have  $|A| \times k = q = |B| \times k$  so |A| = |B|So every A-saturating matching is also a B-saturating matching.

#### **Check Hall's Conditions**

Let  $S \subseteq A$  and consider N(S). Counting edges of G with one end in S we get  $k|S| \le k|N(S)|$ . By Hall's Theorem there is an A-saturating matching.

### **Proof of Tutte's Condition**

On homework

### Problem

Consider a bipartite graph that is biregular. There are integers  $a \ge 0, b \ge 0$  such that every vertex in A has degree a and every vertex in B has degree b. Assume that gcd(a, b) = d and write a = da' and b = db'.

Does G have a spanning subgraph that is (a', b') biregular? Yes, true for all a and b.

Example: a = 4, b = 2Note that when a = b, d = a = b, a' = b' = 1 and (a', b') biregular subgraph is a perfect matching.

# **Counting Spanning Trees**

November-25-11 1.31 PM

# Notation

 $\kappa(G)$  is the number of spanning trees of G  $G \setminus e \ G$  delete eG/e G contract e "Shrink" the edge until the ends of it merge intro a single vertex. Produces a multigraph.

#### **Deletion-Contraction Recurrence**

For any graph G and  $e \in Ep$  $\kappa(g) = \kappa(G \setminus e) + \kappa(G/e)$ 

### **Cut-Vertex**

A cut vertex is a vertex which, when deleted, increases the number of connected components in the graph.

If G has a cut-vertex v Then let  $G_1, \dots G_c$  be the components of  $G \setminus v$  each with *v* joined back in. Then

$$\kappa(G) = \prod_{i=1}^{c} \kappa(G_i)$$

# Cycle

The number of spanning trees for an *n*-cycle is *n*. This is true even for cycles of length 1 or 2.

### **Adjacency Matrix**

The adjacency matrix G = (V, E) A, indexed by  $V \times V$  $A_{v,w} = \begin{cases} 1 \ if \ \{v,w\} \in E \\ 0 \ if \ \{v,w\} \notin E \end{cases}$ more generally for multigraphs:  $A_{v,w} = \begin{cases} \# \text{edges joining v and w if } v \neq w \\ 2 \times \# \text{ loops at v } if w = v \end{cases}$ 

 $\Delta$  square diagonal matrix indexed by  $V \times V$  $0 if v \neq w$  $\Delta_{v,w} = \left\{ \deg_{\mathbf{G}}(v) \ if \ v = w \right\}$ 

### **Laplacian Matrix** $L = \Delta - A$

### **Matrix-Tree Theorem**

Let  $v \in V$  be any vertex and let L(v|v) be obtained by deleting row v and column v of L.

 $\kappa(G) = \det L(v|v)$ 

# **Signed Incidence Matrix**

Let G = (V, E) be a connected multigraph Draw an arrow on each edge  $\{v, w\}$  in an arbitrary direction, either  $v \rightarrow v$  $w \text{ or } w \to v$ 

D is indexed by  $V \times E$ 

(+1 if e points into v but not out) $D_{v,e}$ -1 if *e* points out of *v* but not in = 0 otherwise

# Fact

For any orientation of G  $DD^T = \Delta - A$ 

Ø G/e G/6

**Example of Deletion-Contraction Recurrence** 









# **Example of Signed Incidence Matrix**





Contracting, Deleting

G

# Matrix Tree Theorem

November-28-11 1:33 PM

G = (V, E) a connected multigraph  $A \text{ adjacency matrix indexed by } V \times V$   $A_{v,w} = \begin{cases} \# \text{ edges with ends } \{v,w\}, & v \neq w \\ 2 \times \# \text{ loops at } v, & v = w \end{cases}$ Degree matrix diagonal  $V \times V$  $\Delta_{v,v} = \deg_G(v)$ 

**Laplacian matrix:**  $L(G) = \Delta - A$ 

D is a  $V \times E$  signed incidence matrix for G with respect to an arbitrary orientation of G +1 if e points into v but not out  $D_{v,e} = \begin{cases} +1 \text{ if } e \text{ points into } v \text{ but not out} \\ -1 \text{ if } e \text{ points out of } v \text{ but not in} \end{cases}$ 

 $L(G) = \Delta - A = DD^{T}$  if G has no loops

#### **Matrix-Tree Theorem**

For any vertex  $w \in V$ ,  $\kappa(G) = \det L(w|w)$ 

### **The Binet-Cauchy Identity**

Let M be an  $r \times m$  matrix and P be an  $m \times r$  matrix. Then

 $det(MP) = \sum_{S} det(M(|S]) \cdot det(P[S]))$ with summation over all r-element subsets  $S \subseteq \{1, 2, ..., m\}$ 

For a matrix Q and sets *I*, *J* of row and column indices,

Q[1|J] is the submatrix of Q indexed by rows  $i \in I$  and columns  $j \in J$ . Q(I|J) is the submatrix of Q indexed by rows  $i \notin I$  and columns  $j \notin J$ M(|S) means delete no rows, keep only columns in S

#### Proposition

Let G = (V, E) be a connected multigraph. Let  $R \subseteq V$  and  $S \subseteq E$  be such that |R| + |S| = |V| and  $R \neq \emptyset$ Consider D(R|S).

Then  $det D(R[S]=\pm 1 \text{ if } f(V,S)$  is a forest has a unique vertex in R and det D(R[S]=0 if not.

#### Example Laplacian Matrix



|     | г 2 | $^{-1}$ | $^{-1}$ | ן 0 |
|-----|-----|---------|---------|-----|
| T _ | -1  | 2       | 0       | -1  |
| 1 – | -1  | 0       | 3       | -2  |
|     | LO  | $^{-1}$ | -2      | 3 ] |

# Setup of Matrix-Tree Theorem Proof

Since  $L = \Delta - A = DD^T$  use Binet-Cauchy

 $\det L(w|w) = \det DD^{T}(w|w) = \det D(w|\Box)D^{T}(\Box|w) = \sum_{S} \det D(w|S] \cdot \det D^{T}[S|w)$ 

Summation over all sets  $S \subseteq E$  with |S| = p - 1det  $L(w|w) = \sum_{\substack{S \subseteq E \\ |S| = p - 1}} |\det(D(w|S))|^2$ 

To prove the Matrix-Tree Theorem it suffices to show the proposition on the left (proof of that later).

#### Proof of Matrix-Tree Theorem

 $det(w|S] = \pm 1$  iff (V, S) is a spanning tree of G (by the Proposition) Otherwise, det D(w|S] = 0. Hence

$$\det L(w|w) = \sum_{S} \det D(w|S] \times \det D^{T}[S|w) = \sum_{S} |\det D(w|S)|^{2} = \kappa(G)$$

#### **Proof of Proposition**

Have  $D_{(V \times E)}$ . Every column has exactly one +1 and one -1 and the rest 0. Delete |R| rows and keep |S| columns. So there are |V| - |R| = |S| rows and the submatrix D(R|S) is square.

Consider the graph (V, S). Suppose it contains a cycle C. Consider the columns of D corresponding to edges in the set C. This set of columns is linearly dependent.





Sum the columns in C with  $\pm 1$  signs according to whether e agrees in direction with the orientation around C.

# Missing Lectures, Extra Content

December-05-11 1:35 PM

Section 1 of "Combinatorics of Electrical Networks" Not on exam

# **Theorem (Euler)**

A graph G has a trail T passing through every edge exactly once iff G has at most 2 vertices of odd degree. (An Euler tour)

# **Plane Graph Numerology**

Give examples of connected plane graphs with the following properties:

- 3-regular
- Every face has degree 4 or 7

Use handshake for faces and Euler's formula