Enumeration Example
Let a,, be the number of subset of {1, 2, ..., n} that don't contain two consecutive numbers.
September-12-11 1:36 PM

Determine for alln > 0

n subsets a,
Geometric Sczeries3Expansion 0 0 .
Q=14+z+z+2>+ -
z2Q=z+z2+z3 +z* + - 1 ?,{1} 2
Q-z0=1 2 8,(1},(2) 3
“Q= 1‘1-—' =1+z+z22+2%+ - 3 0,{1},{2},{3},{1,3} 5
—Z

Let A,, be the collection of all such subsets of {1, 2, ..., n}
Let B, be the collection of these sets S € A,, for whichn € §
Then A,, = A,,_; U B,, is a disjoint union of subsets.
Soay = |Ap| = [Ap_1| + |Byl
The set B,, is in bijection with 4,,_,
S € B, corresponds to S \ {n}
{T € A,_, corresponds to T U {n} € B,
Hence |B,| = |Ap_2| = an_»
Hencea, = a,_; +a,_, forn =2

Fibonacci Numbers

fo=Lfi=Lfu=faa1+faafornz=2
Soforus,a, = fryforn=0

Get a formula for f, as a function of n.

Generating Function
[ee]

F=F() =) fux"
n=0

From the initial conditions and the recurrence we get the following:
F=fo+fix+ fox? + fax® +

=14+ Y (oo + fa)"
n52 o
=1+x+ Z fr_1x™+ Z fr_2x™
n=2 n=2

(o] [oe]
= 1+x+2fixi+1 +ijxj+2
i=1 =0

=1+4+x+x(F—1)+x%(F)
Hence
F =1+xF+x?F

- 1
FO) =) furx" = ———;
n=2

Now get expression for individual terms
1—x—x2=(1 —ax)(1 —Bx)

x=%=>t2—t—1=(t—a)(t—/3)
14T axIx (D (1%5)

ap

2
By partial fractions 34, B € C such that
1 A B

1—x—x2=1—ax+1—ﬁx

e}

A B [ee] [ee] [ee)
Z fox™ = + =A Z a™x™+B Z Brx™ = Z(Aa" + Bp™)x™
1 ax 1 ﬁx n=0 n=0 n=0

n=0
So
fo=Aa™+BB"vYn =0

Initial Conditions
fo=1=A+B

505D

Solve for A, B
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ﬁ=1=A+B+M—BN§

2
2=(1+vV5)A+(1-v5)B
B=1-4

2=(1+V5)A+(1-V5)(1-A4)=A+V54+1-V5-A+V54=1-V5+2V54 =2

A_\/§+1
T 25
25—1-+5 +5-1
B=1-A= =

2v5 T 25
~ <\/§+1>(1+\@)”+<\/§—1>(1—£)"
fn = 2V5 2 2V5 2
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i i 1+ x + 3x?
Generatmg Functions H=H() = Z hx™ =
Se 14. . 1—3x2 —2x3
ptember-14-11 1:28 PM
Generating Function to Recurrence Relation
Convention: h, = 0ifn <0
Clear denominators

(1—3x2%2-2x3) Z hpx™ =1+ x + 3x?

n=—oo

Z hyx™ — 3 Z hyx™2 — 2 Z Byt = Z hyx™ — 3 Z hyy_px™ — 2 Z hyy_5x™
n n n n n n

- Z(hn — 3Ry — hy_g)x™ = 1+ x + 322

n

n=0 hy—3h_,—2h 3=1=2hy=1
n=1 h =1

n=2 h,—3hy)=3=3=>h,=6

Foralln > 3,h, —3h,_, —2h,_3=0
Hence

ho=1h;=1,h, =6

Forn>3:h, =3h,_ + h,_3

Recurrence Relation to Generating Function
ho=1h;=1,h, =6

h, =3hy,_, + 2h,_;

h,=0ifn<0

H=H(x) = Zhnx"

1+x+6x2+2(3hn_2+2hn_3)x"=1+x+6x2+z3hn_2x"+22hn_2x"
n3 =
—1+x+6x2+z3hx”2+22hx1+3
Jj=0
H=1+x+ 6x?2 +3x2(H—1)+2x3H
HQx) = 1+ x + 3x2
S R P P

Generating Function to Coefficient Formula

Works only when H(x) = QEX; with deg P < degQ

Uses partial fraction expansion.

Factor the denominator, identifying inverse roots.

1-3x2-2x3=1—ax)(1—Bx)A —yx), a,B,y €C
1

3-3t-2=>0(t—-a)t—-B)(t—7y), where t = —

=(t+D2-t-2)=(t+ D23t -2)

Since deg(1 + x + 3x?) < deg(1 — 3x? — 2x%) 34,B,C € C:
1+ x + 3x?2 _ A N B N c

1-3x2-2x3 1-2x 1+x (1+x)?

1+x+3x2=4(1+x)?+B(1-2x)(1+x) +c(1 —2x)
x=0:1=A+B+C
x=-1:3=0404+3C>C=1

19 9A+0+0 A=1B 1
= —i— —_ = = = —
2°4 4
1+ x+3x2 1 1 1

T 3x2—2x% 1-2x 1+x (+2)72

Aside

(1+x)2 Z(n+ 1) (="

H = i 2y — i(—l)"x" + i (n+ D)™ = i Q" +n(—1)")x"
n=0 n=0 n=0 n=0

Thus
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hy = 2" + n(—1)" ¥ > 0

Higher Powers

© o0 0o

(Ttlﬁ - ZZ Z Jititk

i=0 j=0 k=0
The coefficient is the number of solutions (i, j, k) to the equation i + j + k wherei > 0,j > 0,k >
0€eZ
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Partial Fractions

September-16-11 1:31PM

Partial Fractions

00 = Jaa-a®

P(x) has degree < Z k;
7

Generating Function
1 N -1 n
f1—x)?'z( t—1 )x
n=0

Multisets

Intuitively: sets with repeated elements

t "types"” of element

each type can occur any number of times.

size of multiset = total # of occurrences of elements.

For each type of element 1 < i < t let m; be the number
of times that element of type i occurs in the multiset.

The size of the multiset is m; + m; + +-- + m;, where m is
the multiplicity for element i

So the coefficient of x3 in —— is
(1-x)
1

[X3] (1——.7(? =10

We can regard a multiset of size n with elements of t
types as its sequence of multiplicities.

(my,my, ...,my) € NEwithm; + my + - +my =n

Fact
There are

(%)= _n

k) ™kl (n = k)

k-element subsets of {1, 2, ..., n}
Proposition

Forn > 0andt > 1 there are (n +_tI 1) multisets of

size n with elements of t types.
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Partial Fractions Example

a, 3,y € Cdistinct non — zero

Q) = (1 —ax)(1 - Bx)*(1 —yx)?

P(x) has degree < 5

By partial fractions

3A,B,C,D,E,F € Csuch that

P(x) A B c D E F

0@ 1-ax 1-p U=po 1o A-po2 T G707

General Problem

1 . s
W as a power series 1n X.

t=1: 1 _ii

T 1—x 4 X

=0

o

=2 =) o+

= (1—X)2_ n X
n=0

1 1 t (m t t ee) © 00 [°9

—_— =) = ml = mp | = my+my+e+me
S == I DO B N (DI B %) 3 3

(1-x) 1—x e LI\ &, Lila L

= Z xMatmate+me

(mq,my,...,m)ENt
)

N B

n=0\ (mymsy,..,my)ENt
my+my+-+m=n
.- . 1.
The coefficient of x™ in ot is the number of n-tuples (m4, my, ..., m;) € Nt such that Zle m;=n

Example of multisets
Multiset of size 3 with 3 types of elements: A, B, C

For each type of element 1 < i < t let m; be the number of times that element of type I occurs in the multiset.

Multiset  mq, m;, m3

AAA 3,00
AAB 2,1,0
AAC 2,0,1
ABB 1,2,0
AB,C 1,11
ACC 1,0,2
B,B,B 0,3,0
B,B,C 02,1
B,C,C 01,2
CCC 0,0,3

Proof of Proposition

Establish a bijection between the set of t-type multisets of size n and the set of (¢t — 1)-element subsets of
{1,2,...,n+t—1}

Informally

Write a sequence of n + t — 1 spaces.

Example:n =7,t =4

Cross out t — 1 of those spaces. Count empty spaces between/around the X's
__X_X__X
This creates 4 groups with a total of 7 elements.
(2,1,2,2)

Formally
Let B be the set of (t — 1)-element subsets of {1, 2, ...,n +t — 1}
Let A be the set of t-type multisets of size n.

f:B-A

Input S = {s; < s <+ <S¢}
Letmy=s;—1m=s;—5-1—1for2<i<t-1
mi=n+t—1-—s1

Output (my, my, ..., m;)

g:A->B

Input (my, my, ...,m;) € A
Forl<i<t—1lletsi=my+my+--+m+i
Output {s4, Sy, ..., St—1}

Check

«forall u € A:f(g(y)) =u
*forall S € B:g(f(S)) =S
| |

Back to General Problem
We've seen that forall t > 1
(o]

1 —
a2,

Coefficient is a polynomial in n of degree t — 1



Example
A B Cc D

1—ax+1—,8x+(1—ﬁx)2+(1—ﬁx)3

— n,n n,n n+1\ onon Z n+ 2\ on.n
—AZax+BZﬁx+CZ(1)Bx+D (Z)ﬁx
n=0 (n=0) n=0

(n=0)

8

= ) (Aa™+ (Bcg + Ccy + Dcy)f™)x™
=0

3

n+i

; ) is a polynomial of degree < i

Ci =
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Binary Strings

September-19-11 1:30 PM

Binary Strings
{0, 1}* is the set of all finite strings of Os and 1s
0 = byb; ... b, with each b; € {0, 1} is a word

L < {0,1}" is alanguage

Length
The length of a word o € {0, 1}" is the number
of letters in it, (o)

Language Generating Function
Generating Function of a language £ is
[oe]

L(x) = le(”) = Z Z 1\x™
o€EL o€EL
l(o)=n

For every n € N: the coefficient of x™ in L(x) is
the number of words in £ of length n.

n=0

Constructing Languages
Union
AUB={c€{0,1}:0 € Aor o € B}

Concatenations
AB ={ap:a € Aand B € B}
is the concatenation of A and B

Unambiguous Concatenation

The concatenation AB is unambiguous if each
word AB is constructed exactly once in the form
o=affwitha € A, €B.

That is, AB is in bijection with A X B

Iteration

If Ais alanguage then A* is the iteration of A,
consisting of all words ¢ = a; ; ... ) for some
k € N,witha; € Aforeachl1 <i<k

Ex: {0, 1}" is an instance of iteration

Unambiguous Iteration

A* is unambiguous if every word ¢ € A* can be
written as 0 = a1 a; ... g for a unique value of
k € Nand a4, a3, ..., @i € A.

Sum Lemma
IfA,B € {0,1} and A N B = @ then the
generating function for AU B = A(x) + B(x)

Product Lemma
For 4, B € {0, 1}*, if AB is unambiguous then the
the generating function for AB is A(x)B(x)

Iteration lemma
If A € {0,1}" and A* is unambiguous, then the

. . woo 1
generating function for A" is TS,
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A game
¢ Player wagers n dollars
¢ Player flips a fair coin n times
o If Player hits a run of 3 (or more) heads, he wins $10
¢ Otherwise he loses the wager ($n)

1st question: What is the smallest value of n for which this is profitable for Player?
2nd question: Suppose House pays the player w(n) dollars when Player hits HHH. What function
w(n) makes the game completely fair?

Example, n=3

Expected profit of Player is

7><(—3)+1><(10)_ 11
8 T8

n=4
2% outcomes
3 outcomes have > 3 heads

Expected profit
13x(=4)+3x(10) 22 11
16 T 16 8

Let g, be the number of binary strings of length n which do not contain 000 as a substring.
G < {0, 1}" is the set of all binary strings that don't contain 000 as a substring.

Proof of Sum Lemma

Z %@ = Z %@ 4 Z %@ = A(x) + B(x)

O0EAUB OEA OEB

Proof of Product Lemma

Z L@ — Z Z L@+IB) (Z xl(a)) (Z xl(6)> = A(x)B(x)

0EAB a€EABEB a€EA LEB

Proof of Iteration Lemma
Generating function for A* is
pos

Y-y

oEA* k=0 ay,a,,..,apeAk

o ko
_ z (Z xl(d)) _ kZOA(x)k _ 1_;140()

k=0 \a€A
|

[e9)

xl(alaz Q) — Z

(k=0) a1€EA az€EA

} Z @) +ian) -+

aR€A



Language Expressions
September-21-11 1:32 PM

Rational Languages
e (,{0},{1} are rational languages.
e If A, Bare rational then so are A U B, AB, A*

Regular Expression
Any expression involving {0}, {1}, §,U,,-* that is well-formed.

Every regular expression determines a rational language.

Unambiguous
Every string can be constructed in exactly one way

Theorem

Every rational language has an unambiguous regular expression.

Proof: Take a graduate CS course

Notation

(0 U 1)* instead of ({0} U {1})*
€ = () —string of length 0

@ = {3} - null set

Block
Ablock in a binary stringo = b, b, ... by, is a substring of
consecutive equal letters that is maximal w.r.t length.

Note:
Maximal, not maximum
Blocks are always non-empty

Block Decompositions

0*(1*10*0)*1* and 1*(0*01*1)*0* are block decompositions for
the set of all binary strings. Block decompositions always
unambiguous.
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Examples of regular expressions

{0,1}* = ({0} U {1})* is an unambiguous regular expression.
The generating function of {0} U {1} is 2x?

By iteration:

{0,1}* has generating functlon z 2"x

00 is {0}*{0} = {0, 00,000, 0000, ...}
has generating function
x 1

ST

Blocks

Want to split a binary string into blocks. Can have a block of 1s followed by a block of Os, all
repeated.

Regular expression:
block of 0s: 0*0
block of 1s: 1*1
Block of 1s followed by block of 0s: (1*1)(0*0)

Therefore, the regular expression (1¥10*0)* allows constructing of any string that does not
start with 0 or end with 1

Claim: 0*(1*10*0)*1* produces all strings unambiguously
Generating function:

* * 1
01" >
0011 - (1—f-x)
1
0 (11001 = pm— sy
1= (1 - x)

Coin Flipping Game

Let G < {0,1}* be the set of binary strings that don't contain 000 as a substring.
(eu0U00)(1°1(0 U 00))"1*

A block decomposition for G

2

1 1 1
1-x (1-x)2-x2 1-2x

Generating function:
1 1 1+x+x2 &
(1 +x+x2)- . = Z
1 _1__( +x2) 1-x 1-x-x2-x &=
=% (x+x
Now use partial fractions to get a formula for g,
9o =1

g1—9=1>9,=2
J2—91—9Go=1>9,=4
In = Gn-1t Gn-2 1 Gn-3

Fair Game
» Player wages $n to flip n coins
e Ifno HHH, then player loses $n
¢ Ifthere is some HHH player wins R,, dollars

Chose R, so that the game is fair - expected value is 0
G < {H,T}*, strings that do not contain HHH

gn: number of strings of length n in G
Block decomposition

T* ((HUHH)T T) (¢ U H U HH)

1+ x+x?
60) = Z gnx"
n=0

T1-x—x2 -3
Expected value of coin-flipping game, wagering $n

1
0= Z_n ((Zn - gn)Rn + gn(_n))

ngn = 2" — g )Ry
_"9n

" —Gn

n

1—x—x?—-x3=1—-ax)(1—Fx)(1 —yx)
a,B ~ —0.4196 + 0.6063i

y = 1.839

By partial fractions

gn = Aa™ + Bf™ + Cy™, for constants A,B,C
Since |al, |8l < |yl < 2

n
——>0asn—- o
n
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Since™2 5 0 asn —» I'Hopital's Rule

2

Fair reward for n coin flips is
R, =

— 50

Zn_gn



2-Variable Generating Function

September-23-11

1:35PM

Example

What is the expected number of blocks among all binary strings of length n?

For each string, two pieces of information: the length [(¢) and the # of blocks b(a)

Use Two-Variable generating function

B(x, y) - xl(a)yb(a)
oe{0,1}*

Block decomposition of {0,1}*: 0*(1*10*0)1*
0*0 and 1*1 produce blocks of 0s or 1s respectively

0*=euU0"0
1*=egU1"1

Blocks of 0s 0*0 = {0, 00, 000, ...}
—>(x+x2+x3+~~~)y=nyx
Blocks of 1s 1*1 = {1, 11, 111, ...}

X, . .
- 2L similarly
1-x

xy xy 1+x(y—1)
0" - x0y° =1 =
CAY AT T T T—x
1* - same
From the block decomposition,
Xy \2 1 1-x+xy)? 1-x+xy
B(x,y)=(1+ ) 5| = 3 5=
1—x 1_(xy_) (1-=x)2—(xy) 1—x—xy
1—x
1
B(x,1) = xl(@) 1000 = Z xl@ =
1-—2x
oe{0,1}* o€e{0,1}*
6 [ee]
—B(x,y) | = x1@p(g)yb@)-1 ‘ = Z x'@p(g) = Z Z b(o) \ x™
8y y=1 y=1
oe{0,1}* oe{0,1}* n=0\ oe{0,1}*
l(o)=n

For every n € N, the total number of blocks among all binary string of length n is

)
lnl 55 BCoy) \yzl

2x — 2x2

§ (1—x+xy B x 1 —-x+xy)(=D(—x) _x(1-2x)+x
@( —x—xy>| _(1—x—xy >|y=1_

B 2x 2x2
T (1-2x)2 (1-2x)?

=2 Z (TL 'I 1) ann+1

n=0 n=0

[e9)

(1—x—xy)? (1-2x)2 = (1-2x)2

Z ”+ 1 2nx™2 = 0x0 + 2x1 = Z(kzk (k — 1)2k-1)

k=2

So for n=> 2 the total # of blocks among all binary strings of length nisn2" — (n — 1)2""1 =

(n+1)2n 1

So the average # of blocks per binary string of length n is

(n+1D2"1 n+1

2n 2

Alternate Method
Number of blocks, for string of length n
bybybs ...b,

First bit gives 2 possible blocks, every successive bit either is the same block or ads another block.

xP@) =2x(1 + )1 4+ x) .. (1 +x) = 2x(1 + )" !

oe{0,1}"

d
—2x(1 +x)* 1 |
x=

=21+ x)" 1
dx 1 x=

Lt 2x(n — 1D (x + 12

=2"+2" = (n+1)2"?

n+1

So average b(o) among all 2" ¢ € {0, 1}" is —

Similarly, for stringso € {1,2, ..., k}™

xb©) = fx(1 + (k — D)1
o€{1,2,..,k}

Average # of blocks among all o = {1,2, ...,

L4 e+ (k — Doynt
krdx " SEA M
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Context-Free Grammars
September-26-11 1:32 PM

Proposition
If £L < {0,1}* is a rational language, then

L(x) = Z xl(@)

oEL
is a rational function (quotient of two polynomials).

Context Free Grammars
Initial symbol I
Production rules

Binomial Series Expansion

Forana € C
[ee]

1+2)*= Z (z) zn

nzoa(a —1D.(a—n+1)
= n!

Where (z)

Proof
Taylor series expansion of (1 + x)*. Coefficient of x™ is
1 dt 1

——5 (140 =—a@-D.@-n+D=(})
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Proofoid of Proposition

L=AUBorL=ABor L =A*

By induction, A(x), B(x) are rational functions. Each operation takes rational functions to
rational functions, so £(x) is rational too. B

Converse is false
M = {¢,01,0011,000111, ...} = {0*¥1*: k € N}
M is a set of binary strings with generating function M (x) = iz— arational function.

But M is not a rational language.

Context Free Grammar Example
Initial symbol I

Production rule I - € U 011
Terminal symbols 0,1

Replace I by either € or OI1

Keep doing that until only terminal symbols remain
[-0I1 - 00111 - 0001111 —
e 01 0011 000111

Let D € {0,1}* be generated by the CFG:

I -ev0I1]

€,01,0011, 0101, 010011, 000111, 001101, ...
Equivalently replace 0 by (and 1 by )

I-eu DI

This generates all well-formed parenthesizations.

Let D(x) = z x1(@)

og€D

The CFG I- € UOI1l implies that
0-x,I-> D(x) 1-x,I- D(x)
D(x) =1+ xz(D(x))Z
D =1+ x%D?
0=x%?D>-D+1
p otV — 42

- 2x2

How to expand V1 — 4x2 as a power series in x?
(oo}

—_— 1
ST-ad=(-axdi=y (5) (—4)nx2n

n=0 ‘M
1
n=0: (E) (-9’ =1
0
nx=1:
1 /1 1 1
1 5/ 5—1)5—2)..(5—n+1
<§>(_4)n:(2)(2 )z n') (2 )(_1)n2n2n
b !
_ (1)(—1)(—3)(;'5) w(=2n+3) (C1ynan = — 1x3x%x5 xr-l~'- x (2n-3) - XZ_:
(1><3><5><-:-X(Zn—3))><(2><4><6><-~-><(2n))_t—Zn)(Zn—Z)!_ 2 n—2
- nln! - n!n! __E(n—l)
In summary
— 1on—2\ .,
Vimwi=1-2) 2 (00))x

Take -ve sign in D (x) to get nonnegative results

=9

_1 "L (20 -2\ o _il =2y ana 2§ L (20) o
DG =551 (1 G P B G P e LN
n=1 n=1 n=0
Thus for all n € N the number of well-formed parenthesizations withn '(" and n")" is

1
100



Paths

September-28-11 1:30 PM

Binomial Series

o

1+x)%*= Z ((:l) x™

n=0
foranya € C

(a)za(a—l)...(a—n+1)

n n!

Special Cases
1.
a = d a positive integer

(‘Til) = 0ifn>dd

So(1+x)4¢= Z (i)x"

n=0
2.

a = —t a negative integer
oo

1 _
ami= 2, (M

Check that (e;(ercise)
G-
Catalan Numbers

1 (Zn)

n+1\n

Lattice Path

A path on the grid which can only move N or E.

a+b\_(a+b .
There are ( b ) = ( a ) lattice paths
from (0, 0) to (a,b)

Dyck Path
A lattice path which always stays above the
x =y line.

1 (2
There are I ( r:l) Dyck paths from (0, 0) to
(n, )
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Catalan Numbers
1 2n
n+1 ( n )
is the formula for the Catalan numbers. e.g. the number of well-formed parenthesizations.
(OO0
Interpret as a lattice path
(N:(y) > (ny+1)

)= E:(xy)—>(x+1,y)
Startat (0,0) and end at (n, n)

So the set of all well-formed parenthesizations is equivalent to the number of lattice paths from
(0, 0) to (n, n) that stays above the x = y line.
This is a Dyck Path.

Second Proof of # of Dyck Paths

Consider L(n, n) the set of all lattice paths from (0, 0) to (n, n)
Let D,, be the Dyck paths from (0, 0) to (n, n)

let G, be the others.

So L(n,n) = D, U G, is a disjoint union
_(2n

1 m) = ()

We need only count |G,| and subtract.

Consider any lattice path
P:51S .S, NGy

Since P ¢ D,, there is a first E step at which P goes below the diagonal x = y. Call it 5;, for some 1 <
b<2n

Construct the path
P*:tltz "'th
siif1<i<b
ti=<Nifs;=FEandb+1<1<2n
Eifs;=Nandb+1<1<2n

Claim: P* is a lattice path from (0, 0) to (n+1, n-1)

Conversely, every lattice path Q: p1p; ... p2, from (0, 0) to (n+1, n-1) has a first E step p;that goes
below the diagonal x=y. Reverse the procedure Q — Q* Result Q" is in G,, (exercise)

We have a bijection G, < L(n+ 1,n — 1) hence |G| = [L(n+ L,n— 1)| = (nz—nl)

Hence finally

2n)! (2n)! 1
|Dnl = (Zr:l) - (nz—n1) - n;;! _(n+1)!n(n— D (2:) _nil(zs) Tnt 1(277)

Analogously, lattice paths from (0, 0) to (a, b) where 0 < a < b that stay on or above the line x=y
How many such paths are there?

There are (a Z b) lattice paths from (0, 0) to (a, b)

Consider such a lattice path P that does go below the line x = y. P: 5,55, ..., Sq+p
Let s; be the first step at which P goes below the diagonal

Let N =EandE = N and p*: S; ... 5;5;41,5i42 - Sasb
p*ends at (b+1, a-1), strictly below x = y sincea < b

This is a bijection between bad lattice paths to (a, b) and all lattice paths to (b+1, a-1)

a+b)_(a+b)

Hence the number of good lattice paths to (a, b) is ( b b1

Where a = b equal formula for dyck path



Ternary Strings Example

Enumerate strings in {a, b, c}* that don't contain aa as a substring
September-30-11 1:47 PM

Look at block decomposition for binary string
0*(1*10*0)*1*
InterpretOasa, lasbUc

a*((b uco)(bu c)a*a)*(b Uo)*

Is a regular expression for {a, b, c}* that produces as block by block.
Just need to modify this to avoid substring aa
(eua)((buc)(buc)a) (buc)

Z 2@ = (14 x) ! ( ! ) = 1+x - partial fractions
= (1_( e )()> T—2x) 1-2x—222 P
OES 1—2x x)x
or
1, n=20
Cn— 2Cp_1— 2Cp_2 =11, n=1
0, nz=2
Co = 1
c1—2cg=1=c¢, =3
Cp = 2Cp—q1 + 2¢p_3
n 0 1 2 3 4 5
Cn 1 3 8 22 60 164

Example
Enumerate strings in {a, b, c}* with no two consecutive equal letters, D
Low tech solution

en = 2Cp_1 =3 X gon_l forn=>1

3x 1+x
chx”=1+322"_1x"=1+——

1-2x 1-2x
n=0 n=1
More information
Keep track of #a, #b, #c in string
mq (o) = #of a'sin string o
Similarly for my, m,

D(x,y,2) = Z Ma(@)ymy(@) ;me(o) — Z Z Z ¢ty zk
GED i=0j=0 k=0

Consider any string o € {a, b, c}. "Squish" each block into a single letter.
E.g. 0 = bbcccaccbbbaaa squish(c) = BCACBA€E€ D

The set of words ¢ € {a, b, c}* that get squished onto a € D is obtained by regarding
A as ablock of a's A=a*a, B=b*b, C=c*c
(a U b U c)*is aregular expression for {a, b, c}*

1
S ma(0),,mp(0) ;,mc(o) — mq(0)y,mp(0) ,mc(0)
1-(x+y+2) x Y z < 4 x Y z )

o€{ab,c}* a€D \gesquish~1(a)
x ma(@) mp(a) , 5 mc(a) x z
=Z(1—x) (1zy) (1—2) =D(1—x'1zy’1—z)
a€D

Change variables

x y z

X = Y= Z =
1—x’ 1-y’ 1-2z

X
X—xX=x>X= X=x(1+X)=2x=———m
x. x X+ x 1x( +X)=>x 1%

X Y Z
- (i v 142
A quotient of polynomials in X,Y,Z

D(X,Y,Z) =

More generally for strings D < {1, 2, ..., b}* with no two consecutive equal letters

1 _ ( X1 Xp Xp )
1—(+x+-+x)  M—x1—x"""1—x,

b -1
Xi
-y 2
1+ Xi]

i=1

D(x1,%2, .., Xp) =

MATH 249 Page 13



n-ary Strings

October-03-11

1:33 PM

Example
Among all 2™ binary strings of length n, what is the average number of times that 011 occurs as a
substring.

Block decomposition:
1*(0*01*1)0* is almost ideal, 1*(0*01u0*(011)1*)*0*

(o) length of sigma, r(¢) number of 011 in ¢

g A R
—\1

o€{0,1}* T—%x + (1_—x)2y

-1 - _1
=(1-0*-x*A-0-x"y) =0-2c+2*—x*+x° - x%y) 1=1—2x-;_x3(17—y)

Sum of r(o) overall ¢ € {0,1}" in

[x"]% G(x,y) | = D = i x3 Z (n + 1) 2Mx™ = Z(n +1)2" "3
n=0 n=

y=1 (1-2%)3  (1-202 1 .
= Z(n —2)2n 73y
n=3

Average # of occurrences of 011 among all ¢ € {0, 1}" is
(n—2)2"3 n—2

AL 8 '’
0, 0<n<g2

n=3

Block Patterns for b-ary strings

D c{1,2, ..., b}" strings with no two consecutive equal letters.
X1,X3, ..., Xp Variables

m; (o) is the # of times letter i occurs in o

Notation: x? = x]"(Px 127 xmb(@
b -1
X
D(xy, ..., xp) = Z x7 = (1 - ——l—>
a1+ x;
o€D =1

Proof:

squish: {1, ..., b}* - D by replacing each block of i's by a single i

Fora € D, the g € {1,2, ..., b}* that gets squished to «a are obtained from « by replacing i by i*i for
all 1 < i < b generating function for i*i is f‘;

So
1 _ ( X1 X3 Xp )

1= 4+x++x)  \d—x'1-—x"""1-x
Invert the variables y; = — iff x; =

1-x; 1+y;

b -1
Vi
So D(y1,y2, -\ =(1-
1, Y2, - ¥p) ( L, 1 +Yz>

Strings in D are block patterns. x; in D marks either
- Asingleiina €D
- Ablockofi'sino € {1,2,...,b}*

Example

What is the generating function for S, strings o € {1, 2, 3}* such that
- Blocks of 1s have odd length
- Blocks of 2s have length < 2
- Blocks of 3s have length > 2

D(y1,¥2,y3) where y; marks a block of is
(AD)*1 =y, = =L

1-x2
(2u22) 2 y, = x5 + x%

2
3%33 > y; = 3

1-x;
X x2 -1
1
S(x1,x2,x3) = D(y1,y2,¥3) = (1 - 5 — (x2 +x3) ——3—-> = Z x°
1—x7 1—x;3
OES

If we only want the length of eachoc € Seg. x; =x; =x3 =t

t t? 1—t?
Sttt =Zt’(")= 1————t(l+8t) - =

( ) 1-1)2 ( ) 1—-t 1—2t—3t% +t*
OES

1, n=20

0, n=1
Sn = 2Sp-1 — 3Sp—2 + Sp—4 = -1 n=2

0, nx=3

Keep going and get a recurrence relation.

MATH 249 Page 14



Example
a, crossings n steps from home on a rectangular grid (n is minimum distance)

a0=1
a1:4'
a2=8

@ = 1, n=20
™7 l4n, n=1

ia x"—1+4L
e (1-x)?

n=0

a, crossings n steps from home on a triangular grid (n is minimum distance)

Cl():l
a1=6
a2:12

@ = 1, n=20
m 7 | 6n, n=1

X
Zanx"=1+6(1_—x)2

n=0

Tile the plan with squares, 5 at a point.

MATH 249 Page 15



Tessellations Question

Fix a "home vertex" v, in the k = 4,d = 5 regular tessellation of the (hyperbolic) plane.

October-05-11  2:03 PM . . )
ctober many vertices are at distance exactly n from vy? Call it a,,

n 0 1 2 3 4
Regular Tessellations of the Plane an 1 5 15
Let k > 3 and d > 3. Divide the plane into non-overlapping
k-gons such that they meet along edges. At each corner d

At distance 2 there are 2 kinds of vertices.
edges meet.

e Some have 1 neighbour at distance 1
¢ Some have 2 neighbours at distance 1
Showed geometrically can't have > 3 neighbours closer to base

Let b, be the number of vertices at distance n from the base, with 1 earlier neighbour
Let ¢, be the number of vertices at distance n from the base, with 2 earlier neighbours
Forn>1,a,=b,+c,
> 1: bpi1 = 2b, + ¢y

Cny1 =An=bp+ ¢y

ap=1

by =5,¢c,=0

Let A(x) = Z a,x",B(x) = Z bpx™,C(x) = Z Cpx™
n=0 n=1 n=1

A =1+ Z(bn Fe)xm =1+ B +C(x)

n=1

B(x) = Z bpx™ = 5x + Z(an,l +cp_g)x™ = 5x + xZ(Zb,— +¢)x/
n=1 n=2 =1

=5x + x(ZB(x) + C(x))

C(x) = Z cpx™ = x(B(x) + C(x))

n=1

A=1+B+C
B = 5x + 2xB + xC
C=xB+xC
Solve...
= 5x?

T 1—3x +x2

_ 5x —5x?

T1-3x+x2

_1+2x +x? 5x

_1—3x+x2=1+1—3x+x2
1-3x+x?2=1-ax)(1-px)

3+45
a,f =
5x =A(1—-px)+B(1 —ax) =(A+B) — (AB + Ba)x
A+B=0
Af + Ba =-5
AB—a)=-5=>A= S po_0
fra= “ap P
_ :¥_3‘_2‘/§:\/§
A=+5B=—-5
A(x) =1 V5 V5
= e T
o (B+VE) < (3-V5\"
=105y (C5D) 3 (28
<[ ~(3+V5)" 3-V5\"]
- S - (5

So for n = 1 the number of vertices in the k = 4,d = 5 hyperbolic tessellation at distance n
from the base is

n N N
3++/5 3—+/5 3445
a, = \/§< 2\/—> = \/§< 2\/—) = Integer closest to \/§< 2\/—)
Example
k=5, d=4

Four kinds of vertices in the k=5 d=4 case
* Base vertex
* One nbr closer to base, not on an equality (connects to same #) edge : p
e Two nbrs closer to base : q
e One nbr closer to base, is on an equality edge. : r

p(x) = Z ppx™ etc.
n=1

p1=4q=rn=0
p2=4q;=0r,=8
An+2 =Tn
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More Tessellations k=5, d=4

October-12-11 1:31PM Vertex Types
0: Origin
Matrix Method A: 1 neighbour closer to origin,

2 pentagons have apexes (unique vertex closest to origin) at this neighbour
B: 1 neighbour closer to origin, 1 neighbour at same distance
C: 1 neighbour closer to origin, that neighbour is of type B
D: 2 neighbours closer to origin

5 'types' of object 0,A,B,C,D
and some succession rules.

Initial population: {0}

0- 44
A— A 2B Descendants:
B B,C 0 - {44}
" A - {A,2B}
€~ A,B,2D B - {B,C}
1
D -2B C—»{A,B,ED}
1 D - {2B}
0 [o2)
Po=|0 . ) .
0 K(x) = Z k,x™ where there are k,, vertices of type k at distance n from the origin
-0 n=0
0 0 0 00 0x) =1
41 0 10 Forn=0
m=|0 2112 an+1=4gon+an+cn -
10 001 00
1 Alx) = Z Ap X" = 2(4 Op + ap +cp) X" = x[40(x) + A(x) + C(x)]
_0 0 0 E 0 n=0 n=0
P, = M"P, bpy1 =2a, + by + ¢, + 2d,

B(x) = x[2A(x) + B(x) + C(x) + 2D (x)]
C(x) = x[B(x)]

D(x) =x [%C(x)]

Solve:
A=x(4+4+0)
B=x(2A+B+C+2D)

C=xB
D—1 C

A= 4x +xA+ x*B
B = 2xA + xB + x*B + x°B
(1—-x)A=4x+x°B
2xA=(1—-x—x%-x*)B
1—x—x?—x3
Al_ 2x ) 5
A-00-x-x x)B=4x+sz
2x
(1-2x+x*)B = 8x? + 2x3B
(1 —2x —2x% + x*)B = 8x?
8x2

Bm—/m/mm -
1—2x—2x3 +x*
(1 —x—x*—x®)ax
T 1—2x—2x3+x*
8x3
C=—m—m——
1—2x —2x3 +x*
Do 4x*
T 1—2x—2x3 4 x*
G()_1+A+B+C+D_1+2x+4x2+2x3+x4_1+ 4(x + x% +x%)
= T o1 -—2x—2x3 4+xt T 1 —2x — 2x3 + x*
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Matrix Method

October-14-11 1:29 PM

Matrix Method

Find a set of types {1, 2, ..., t}

Succession Rules

For each type i, a weighted collection of successors:

i - {11,652, ..., cit}

An object of type i gives rise to successors in the next generation:
c; of type i

Initial Population
A column vector

ay
az
Po=|:
ag
a; objects of type i, (1 < i < t) in the initial population.

Goal
Determining the number of objects of type i in the n-th generation forall (1 <i <
t)yandalln >0

Construction

For each n € N let p,, be the column vertex of length 1 with i-th entry equal to the #
of type i objects in the n-th generation.

Let M be the t X t matrix such thatp,,; = Mp,, Vn € N

The j-th column of M has i-th entry equal to the number of objects of type i
occurring as successors to an object of type j

Since pp+1 = Mp, Vn €N

Py = M"pg

Generating Function

Letp() = ) pua™ = ) Mpox™ = <Z(xM)"> po = (I —xM)~p,
n=0 n=0 n=0

Reasoning
S=1+A42+A4%+ -
AS=A+ A2+ A3+
S—AS=1
1-4A)S=1=>S=01-4A)"

Total Population

1
1, =1

1~>
Pop = 1;pn

Generating function
T1.(T — xM)p,
Note

1
A= ——adj(4
detA adj(4)

det(l —xM) # 0sol — xM is invertible since ] — xM is a polynomial in x and
det(l — (M) =1

MATH 249 Page 18

Example
t = 3types{a,b,c}
Succession Rules a - {a, b}, b - {a,c},c - {a,a,a}

1
P0=[Ol

0

1 1 3
M=[1 0 0]

010
Pn=M"po

1—-x —x —-3x
I—xMZ[—x 0 1]

0 —x 1
det(l —xM) =1 —x —x% —3x3
1 x+3x2 3x
ad](l—XM)=[x 1—x 3x? ]
x? x—x% 1—-x-—x?

P(x) = (I —xM) 'p,
1 [ 1 x+3x? 3x 1
TIx—xr_3g3| % 1% 3x* [Ol
L=x—x"=3x x? x—x* 1—-x-x%110
1 1
T1-x—x? —3x_3[xz]
x
Total population generating function
1+ x +x?
1—x—x?—3x3

Total population w,, at generation n satisfiesw, = 0 if n < 0 and w,, —
3w ={1, n=012
n-1 n-2 n-3 0,n=>3
wo =1
Wi —wog=1=>w; =2
Wy —wi—wyg=1=>w,=4
Wp =Wp_q+Wp_3 +3w,_3,n=>3



Domino Tilings

October-14-11

2:09 PM

Domino Tilings

Count all ways of covering all squares of a 3 X n rectangle with

non-overlapping dominoes.

|
!
—

Columns instead of Dominoes
A - {A3, B}
B - {A, B3}
2
ot 2

X X
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How
Consider all possible ways of covering the three leftmost squares:

— |
|

iy o N I

A b

A A AB

Label the boundary types, but also keep track of the number of dominoes used in the subscript
A - {43, By, By}

HEN]
1 i
& b b

B - {B3, A}
Instead of xM we wanta 2 X 2 matrix Q where Q;; is the sum of x¥ over all transitions
from boundary j to boundary i using k dominoes.

3
M:Ix xl
2x% %3

Start with a 3xn domino tiling. Remove all dominoes that intersect the leftmost column
(together with any dominoes they "force™)

Repeat this to decompose each domino tiling uniquely as a sequence of "successions”
Two boundaries {A, B}
A - {A3,2B,}
B - {Ay, B3}

x3  x
M= Isz x3l
The (1,]) entry of M™ is the generating function from boundary J to boundary [ using
exactly n successions.
Sum over all n € N since # of successions is arbitrary.

;M" =1-m

The generating function we wantis (I — M)
— 53 —
det(I—M)=|1 X Xol= -2 —2x% = 1- 43 + x6
—2x° 1-—x
adj(I = M)yp=1-x3
Generating function for 3 X n domino tilings is
3
G(x) — Z x# dominoes _ _1 —x

1—4x3 + x5
T

2 x #dominoes = total # squares = 3n

2 2

n= 3 (# dominoes), let x = t3
2 . -t

G — Z t§# dominoes _ Z = -

) ‘n 1—4t2 +t*

T n=0

¢, domino tilings of a 3 X n rectangle.



Examples
October-17-11

1:55 PM

Example
Tilings of a 3xn rectangle using dominoes and 1x1 squares.

~+ 1=l 4
“
-l =1 T

J’_T:PL.J

Possible boundary shapes

A By cC

b E
] N

J = Kgp Succession from boundary ] to boundary K using a dominoes and b squares

A- {AO,SrA3,0' 2D1,2' EI,ZI 2BZ,li C2,1' 2Al,b 2D2,0 }
B = {Ao,1, D10}

C- {Ao,mEl,o}

D- {AO,Z'AI,OrBZ,O'Dl,llEl,l}

E - {Ao,z,C2,0,2D1,1}

2tu+t3+ud u ou t+u? u?
2t%u 0 0 t? 0
M= t?u 00 0 t?
2t242tu> t 0  tu 2tu
tu? 0 t tu 0
Example

A < {a, b, c}* Blocks of c's have odd length and does not contain aa or ab as a substring.
a, = # of words of lengthnin A

Determine Z apx™

n=0
First determine the generating function for "block patterns" of A: the set of words in {a,b,c}* not
containing any of aa, bb, cc, or ab.

P(xy,2) = Z xMal@)ymp(@) ;me(@)
a€EP
Then replace each a in @ with a block of a's, each b in @ with a block of b's and each c in a by a block
of c's. Keep track of the lengths of the blocks.
The lengths of the blocks are constrained:
no aa substring — block of a's is justa = ¢t

block of b's = b*b - i

block of ¢'s = (cc)*c =

1-t2

¢ t
At =Ztl(”)=P<t,—.—')
© 1-t'1-1¢?

TEA

Matrix Method

Find P(x, y, z) using matrix method

P < {a, b, c} * words not containing aa, bb, cc, or ab.

4 types: E,A,B,C: empty string, ends in a, ends in b, ends in c; respectively.
E - {A,B,C}

A-{C}

B - {A,C}

C - {A,B}

generate all the block patterns in A

My, is the sum over all transitions from K to L

0000
_lx 0 x «x
M=1y 0 0y
z z z 0
1 o 1 o
PeyA =0 1 1 0= =D 1 1 1mk[f=) D amaymzme)
0 k=0 0 k=0[(§§=Pk
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t
0=+ (erprts)
® Ptl t'1—t2
0 0 0
—t 1 —t —t
I1-M t 1 ‘
Q=I=-M=|-773 1—t
t t t
1

T1—¢t2 T 1—-t2  1-¢2

Example
Domino tiling. Start with A type boundary (straight line) and end with A type boundary.
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Graph Theory

October-21-11 1:30 PM

Graph

A graphisa pair G = (V,E) where V is a finite set, and E a set
of 2-element subsets of V.

The elements of V are vertices and the elements of E are
edges.

Isomorphism
An isomorphism ¢ from G to H is a function ¢: V(G) - V(H)
such that ¢ is a bijection (one-to-one and onto)

e ¢ is abijection (one-to-one and onto)

e Yo,weV(G)

{v,w} € E(G) = {p), p(W)} € E(H)

G and H are isomorphic, denoted by G = H, when there is an
isomorphism ¢ from G to H.

Terminology

Inagraph G = (V,E)

v €V isincidentwithe € EifvEe

v,w € V are adjacentif {v,w} € E

e, f € E are adjacentife N f = {v} for somev € V
The degree of v is the number of edges incident with v.
Denoted degg(v)

The degree sequence is the multiset {degs(v) : v € V}

Fact
If : V(G) - V(H) is an isomorphism then degH(go(v)) =
degs(v) Vv EG

Corollary
If G = H then the degree sequences of G and H are the same.

Subgraph
G = (V,E) is a graph
J = (W,F)isasubgraphof Gif W € V,F € E and ] is a graph.

K-Regular
A graph G is k-regular if every vertex has degree k.

Cycle
A cycle in G is a connected 2-regular subgraph.

Hamilton Cycle
A Hamilton cycle is a cycle through all the vertices.

Bipartite
A graph G is bipartite if one can writeV = AU B withAN B =
@ such th very ed EenNA+@andenB # 0

A %

Equivalently, you can colour the graph with 2 colours such
that every edge has one vertex of one colour and the other
vertex having the other colour.

Proposition
a) If Gisbipartite then every subgraph of G is bipartite.
b) 0dd cycles are not bipartite

Corollary
If G contains an odd cycle, then G is not bipartite.

Notation
Complete graph: K,,
p vertices

(g) edges; Every pair of vertices has an edges

E = {{vi,v}:i % j}

Complete bipartite graph: Kq
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Graph Example
G = ({1,2,3,4},{{1,2},{1,3},{2,3},{2.4}})

Picture of G:

Other graphs: N

o~ o

G Y :

N
e 1

These are the same graph: same vertices same edges. So the graphs are equal.
T t

\(

G # H but they have the "same shape". i.e. they are isomorphic.

SR

In this case G(left) contains an odd cycle while H(right) does not.
SoG=H

Proof of Proposition
(a) Let (A,B) be a bipartition for G and let H = (W, F) be a subgraph of G. Then
(W n A, W n B) is a bipartition for H.

(b) Let C,, be an odd cycle with vertices vy, vy, ..., v, (n odd) and edges
{vy, v} {va, w3}, oo {vn—g, vn} {vn, v1}

Suppose that (A,B) is a bipartition of C,,. Wlog we can assume v; € A (exchange A
and B if necessary)
SV, EB>v3EA> -
By inductionfrom1 <i<n
v; € Aifiisodd
v; € B ifiiseven
Since n is odd, v, € A. But then {v,, v} € A contradicting that (A,B) is a
bipartition of G.
]



a + b vertices

A={vy,..,va},B = {wy, ..., wp}
ab edges
E={{vi,wj}:1sjsb,1siﬁa}

Girth of G
if G has no cycles then girth(G) = +o
If G has cycles then girth(G) = min{|E(C)|: C is a cyle in G}
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Connectedness
October-24-11 1:32 PM

Walk

A walkin a graph is a sequence: voe;v,€,V;, ... Vg_1 €,V
Eachv; € V,eache; € E and ¢; = {v;_q,v;}

Note that vertices and edges can be repeated.

Trail
A trail is a walk with no repeated edges

Path
A path is a walk with no repeated vertices.

Path = Trail, but Trail # Path

Closed & Cycle

A walk is closed if vy = vy.

A cycle is (sometimes, incorrectly,) said to be a closed walk in which
Vo = Vg is the only repeated vertex.

Reach

Define a relation R on the set V of vertices. vRw means there is a walk in
Gfromvtow:v =vye vy ...ep v = w.

Say "v reaches w"

Fact
Ris an equivalence relation.

Proof
Reflexive, Symmetric, Transitive

Connected Components
The equivalence classes of R on V induce subgraphs of G called the
connected components of G

Induced Subgraph
For § € V, the subgraph of G induced by S has the vertex-set S and the
edgesetF ={e € E:e C S}

Connected
The graph G is connected if it has exactly one connected component.

For graphs with at least one vertex, this is equivalent to:
Vv,w € V there is a path from v to w (VRw)

Length of a Walk
The length of a walk is the number of edges in the walk.

Lemma
If there is a walk from v to w then there is a path from v to w.

Deleting an Edge
Deleting an edge from G = (V, E) gives the graph G\e = (V, E{e})

Minimally Connected Graph
A graph is minimally connected if it is connected but G\e is not
connected Ve € E.

Let ¢(G) be the number of connected components of G. e € E is a cut-
edge if c(G\e) > c(G)

G is minimally connected if c(G) = 1 and every edge is a cut-edge.
Lemma

Let G = (V,E) be a graph. Lete = {x, y} € E. Then e is a cut-edge of G iff
e is not contained in a cycle of G.

Corollary

G is a minimally connected graph iff G is connected and contains no
cycles.
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Reach example

The green vertex can reach only the red vertices.

Proof of Lemma 1
Let W: v = vye v,e; ... eV, = w be a walk from v to w which has a s few edges as
possible.

If W has arepeated vertex v; = v; with0 < i <j <k
Then W': voe v ... ¢;V;€j41Vj11 - €,V is a walk from v to w with strictly fewer edges
than W. This contradictions the choice of W, so W has no repeated vertices. m

Proof of Lemma 2

Restricting attention to the connected component of G that contains e, we can
assume that G is connected.

First assume that e is in a cycle C in G. Then C\e has two vertices x, y of degree 1 and
the rest have degree 2.

P:x =vpe vy ..epvp =y

To show that not a cut-edge, we show that G\e is connect. Let v,w € V. Since G is
connected there is a walk In G from v to w. By lemma there is a path Q from v to w in
G.

If Q does not use the edge e, then Q is a path in G\e from v to w.

If Q uses e, then replace the edge e with the path P to get a walk from v to win G\e.
So there is also a path from v to win G\e. So G\e is connected, so e is not a cut-edge.

Conversely, assume that e is not a cut-edge.

Then c(G\e) = ¢(G) so vRw in G iff vRw in G\e

Let e = {x, y}. Clearly xRy in G. Hence xRy in G\e as well.

X = Vg V1€3V; .. €V =Y

Now C = ({vg, vy, ..., Vi), {eq, €y, ..., €k, €}) is a cycle containing edge e. m

Examples of Minimally Connected Graphs

p=1 *
p=2 —p
p=3

4 __S~—9

b=t SN \/_\n
s AN -\}ﬂ VAN



Trees Proof of Lemma

T is a connected graph with p > 2 vertices so T has g > 1 edge.

Let P be a path in T that is as long as possible. Then P has length > 1, so the ends x, y of P are
distinct: x # y

October-26-11 1:44 PM

Tree
A graph is a tree if it is connected and contains no Claim
cycles. degr(x) =1
Then degr(y) = 1 by symmetry
Lemma
Let T be a tree with p > 2 vertices. Then T has at Suppose degr(x) = 1. Let P:voeiviez - exV =y

Since e, is incident with x, there is another edge f = {x, z} € E incident with X.

Since P is as long as possible zfxejvie; ...wg Vg = y is not a path. It is a walk and has no repeated
edges the only way it can fail to be a path is if z € {v,, ..., vx} . This implies that T contains a cycle, a
contradiction m

least two vertices of degree 1.

Lemma
Let G be a graph and let v € V be a vertex of degree
1. Let G\v be the subgraph of G spanned by V\{v}
a) G is connected iff G\v is connected
b) G contains a cycle iff G\v contains a cycles.

Proof of Proposition

Induction on p.

Basisp = 1. T has 1 vertexand noedges. = g =p —1

Proof by observation . i .

Induction: Assume holds for a tree with p — 1 vertices

p = 2. T has a vertex v of degree 1 by Lemma 1. By Lemma 2 T'\v is connected and contains no

Eror?ESItlon ith . daed Th _ cycles = T\vis a tree with p — 1 vertices. By induction hypothesis T with v deleted has p — 2 edges.
pei 1 eatree with p vertices and q edges. Then g = T with v deleted has 1 fewer vertiex, and 1 fewer edge so T has (p — 2) + 1 = p — 1 edges.

Proof of Handshake Lemma

Handshake Lemma Let X be the set of paris X = {(v,e) €V X E:v € e}

Let G = (V,E) be a graph. Then

Zdegav=2q |X|=Z|{e€E:w€e}|:Zdega(w)

wEevV wWEV
vEV
IXI:ZI{VEV:vEf}I:ZZ:Zq
fEE f€E
[ ]
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Spanning Trees
October-28-11 1:30 PM

Proposition

LetG = (V,E),and e = {x, y} a cut-edge of G.

Then G\e has exactly 2 components X,Y with x € V(X),y €
409]

Let ¢(G) be the number of connected components of G

Corollary 1
c(G) <c(G\e) <c(G)+1

Corollary 2
If G has p vertices and q edges then ¢(G) = p —gq.

Corollary 3
If G is connected with p vertices and q edges then g > p — 1

The 2/3 Theorem (Trees)
Consider the following 3 conditions:
1) Gis connected
2) Ghas no cycles

3) g=p-1
Then any two of these implies the remaining one.

Spanning Subgraph
Let G(V, E) be a graph. A subgraph H(W, F) of G is spanning
if W = V. That is, H uses all the vertices of G.

Spanning Tree
A spanning tree is a spanning subgraph of G that is a tree.

Proposition
G has a spanning tree iff G is connected.
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Proof of Proposition

Let X be the component of G\ e containing x, an let Y be the component of G\ e containingy.

We need to show that X # Y and every z € V is either in X orin Y.

First, suppose that X = Y. Then xRy in G\e

Then there is a path Pin G\e from x to y

Now (V(P), E(P) U {e}) isacycle in G containing e. Hence e is not a cut-edge of G; contradiction.

Secondly, let z € V(G). Since G is connected, there is a path Q in G from x to z. If Q does not use
the edge e then xRz in G\e so z € V(X) in this case.

If Q does use the edge e, then e is the first edge of Q (starting at x) since Q has no repeated
vertices.

Q:xey ..exz
The segment of Q from y to z is a path in G\e from y to z, so yRz in G\e, so z € V(Y)
]

Proof of Corollary 2

Induction on q.

Basis: g = 0, G has p vertices, 0 edges, p components.
¢(G) = p — 0 in this case.

Induction step,q > 1. Lete € E
Then c(G\e) < c(G) + 1
and c(G\e) = p — (¢ — 1) by inductionsoc(G) = p —q

Proof of Corollary 3
1 = p — q by the previous corollary m

Proof of 2/3 Theorem

1&2 =3

Proved last lecture

1&3=> 2

Assume that G is connected and g = p — 1. Suppose that G has a cycle C. Let e be an edge in C.
Then e is not a cut-edge of G. So G\e is connected with p verticesandg=(p—1)—-1=p -2
edges.

This contradicts corollary 3

2&3 =1

G has no cycles and q(G) = p(G) — 1

Let G4, G5, ..., G, be the connected components of G and let G; have p; vertices and q; edges. Each
G; is a connected graph with no cycles. Since 1&2 = 3 we have thatq; =p; —1V1<i<c
Nowp(G) =p1+p2+ - +pe (G =aq1 + a2+ +qc

1=p6)-q@ =@+ +p) =@+ +9)=@1—q) + (2 —q) +~+({c—q)=c
Since ¢(G) = 1, G is connected m

Proof of Proposition
If G has a spanning tree T then G is connected, since T is connected and spanning. Conversely,
assume that G is connected. Proceed by induction on q(G)

Basis: ¢ = p — 1. This this case 2/3 theorem implies that G is a tree. So it is a spanning tree of
itself.

Induction Step: ¢ > p — 1. Then G has a cycle (otherwise itis a tree,andq = p — 1). Let e be an
edge in a cycle of G. Then G\e is still connected and has g — 1 edges. By induction G\e has a
spanning tree, which is also a spanning tree of G.



Search Trees
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Search Tree Algorithm

Let G = (V,E) be a graph, and v, € V be a "base”
vertex.

Initially, let W = {vy}and let F = @

*

Let A be the set of edges with one end in W and one end
notin W.

If A = @ then output (W, F) and stop.
IfA # @thenlete = {x,y} € Awithx e Wandy ¢ W
Update: W « W U{y}, F « F U{e}and goto *

Proposition

Let G = (V,E) be a graph, vy avertex of G, and let T =
(W, F) be output by an application of the search tree
algorithm to G and v,. Then T is a spanning tree for the
connected component of G containing v,

Note
Note that the search tree algorithm gives a path from
any vertex to the base vertex.

Specialize search tree algorithm so that for eachw € W
the path from w to vy in T is a shortest path from w to
Vo in G

Length of a path
# of edges of the path

Distance between vertices
The distance from vertex x to vertex y is the minimum
length of any path from x to y. Denoted distg; (x, y)

Breadth-First Search

Vertices in W are recorded in a queue.

Calculate A as before. If A # @ lete = {x,y} € A with
x € W and y # W and x as early in the queue as
possible. y joins the end of the A queue.

disty(ag, z) = distg(ag, z)

Depth-First Search

Record the vertices in W in a stack.

Calculate A as before. Chose e = {x,y} € Awithx as
close to top of the stack as possible. Add y to the top of
the stack.
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Proof of Proposition
(W,F)is atree.
Induction on the number of iterations of the loop:

Basis of induction: W = {vy},F = 0.
({vp}, @) is connected and has no cycles - it is a tree.

Induction step: Assume that (W, F) is a tree.

A#@ande ={x,y}and W' =W U{y},F' = F U {e}

Since (W, F) isatree, xRw in (W', F") forallw € W

Also xRy sincee € F' soxRzVz € W'

So (W', F'") is connected.

Let |W| =pand |F| = gsothatq =p — 1as (W, F)isatree
Now |[W'|=p+1land|F'|=q+ 1so|F'|=[W'|-1

From these and the 2/3 algorithm we get that (W', F') is a tree.
End of induction, so (W, F) is a tree.

To see that (W, F) spans the component H of G containing v:

Since voRwVYw € W (W, F) is a subgraph of H. Let z be any vector in H.

Suppose that z # W. Since vyRz in G there is a path P in G from v to z. Since vy € W and z ¢
W there is an edge f of P with one end in W and one end not in W.

But then f € A so A # @ so the algorithm has not terminated yet. Contradiction m



Breadth-First Search
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Notation
G = (V,E) and v € V let E(v) be the set of edges of G incident with v.
E(w)={e €EE:v€Ee}

Symmetric Difference
For sets A,B, the symmetric difference of Aand Bis A @ B = (A\B) U (B\A) =
(A U B)\(A N B) the set of elements in A or B but not both.

Breadth First Search

Input:

Graph G = (V,E), vertexvy €V
Initialize:

W = {vo}, F=0, A = E(vo)
Put v, on front of queue Q.

While A # 0
Let v; be the earliest vertex on Q such that AN E(v;) # @
Lete ={v;,y}€ANEW)soyeW

Update:
W« Wwuf{y}, F « Fu{e}
Put y on the end of Q

Level: I(y) = l(v;) + 1
Parent: pr(y) = v;
A=ABDE()

Output ((W. F), 1, pr)

Eventual Claim

The pathin T = (W, F) from v to vq is a path in G from v to v, that is a short as
possible.

That is, distg (v, vg) = L(v)

Observation
1. When v joins the queue, earliest vertex on Q with E(v;) N A # @ is pr(v)

Call v;, the earliest vertex on the queue, the active vertex.

2. Avertex can become active, then stop being active, but then it never
becomes active again.

3. Ifx occurs before y in Q (and neither one is vq) then pr(x) occurs before
pr(¥) inQ or pr(x) = pr(y).

4. Ifxoccurs before y on Q then I(x) < I(y)
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Proof of Observations

3rd Part

Suppose x occurs before y in Q but pr(y) occurs before pr(x)

Since pr(x) is active when x joins the queue E(pr(y)) NA=9

By y joins Q after x so when x joins Q the edge e = {pr(¥), y}isin E(pr(y)) n
A + @. Contradiction m

3=>2
The active vertex moves from left to right along Q.

4th

By induction on the positions of y in the queue since x occurs before y, y # v,.
If x = vg then 0 = I(vy) = I(x) < I(y)

So assume that x # v,

Now by 3 pr(x) occurs before pr(y) on Q. By induction l(pr(x)) < l(pr(y))
Sol(x) = (pr(0) + 1< Upr()) +1=1O)

]



Distance in Graphs
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Construct a Breadth First Search Tree
e pr(x) is active when x joins the queue
¢ Ifx occurs before y on the queue then pr(x) occurs before pr(y)
inQ
e The active vertex moves left to rightin Q
¢ The level of vertices increases from left to right on Q.

Fundamental Property of BFS
Let G = (V,E) be a connected graph. Let T be a breadth first search
tree for G. Let l3(v) be the level of v € Vin T.

Lete = {x,y} € E be any edge of G. Then |I;(x) — l;(y)| < 1

Note:
Not true for search trees in general.

Theorem

Let G = (V,E) be a connected graph, vy € V, and let T be a BFST for G
with base vertex vy them for every v € V

distg(v,vg) = lp(v)

Facility Location Problem
Measure of v

F) = Z distg (v, w)

WEvV
Find a vertex that minimizes f (v)
Algorithm
Foreachv € V:
e Compute a BFST T for G based at v

. f@)= ) W)

wev

Computed Girth

For each v € V grow a BFST T of G based at v

For each edge e = {x,y}in Gbutnotin Tletm(e) = l;(x) + I;(y) + 1
Letg(v) = erg(i;\nTm(e)

Lety = ming(v)

Claim
y is the girth of G

Correctness of this algorithms depends on if C is a cycle in G that is as
short as possible and v is a vertex in C then g(v) is the length of C.

Test of Bipartness

Input a connected graph G = (V, E). Grow a BFST based at any vy € V.

G is bipartite iff for every e = {x,y} € E |I;(x) = l; ()| =1
By partition: (even level, odd level)

Diameter of a Graph
diam(G) = max dist; (v, w)
v,WEV
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Proof of Fundamental Property of BFS
If e = {x,y}isin T then either x = pr(y) or y = pr(x) so
lr(x) =l ) —Torly(x) =1 +1

Suppose that |l7(x) = lry)| = 2

Assume that [, (x) < Ip(y) — 2

So pr(x),x,pr(y),y occur in that order on Q (since l;(x) is weakly increasing from left
to right.)

pr(y) is active when y joins the queue, so E(x) N A = @ when y joins the queue. But

e = {x,y} € E(x) N A when y joins the queue.

Proof of Theorem

The unique path in T from v to vy has I (v) edges.
Thus dist; (v, vg) < lp(v)

Conversely, let P be any path in G from v to v,

P:v = zye,z €525 ... 2 1ekzk = vy,say P has k edges

L) = Lp () — Ly () = ZIZT(Zl 1)—lT(z)I<Z —k

So every path from v to 170 has at least I (v) edges
Sodistg;(v,vg) =



Planar Graphs
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Graphs which can be drawn without crossing edges.

Planar Embedding
Let G = (V,E) be a graph.
A plane embedding of G is a pair {p,: v € V}and {y,: e € E} whose
* py are pairwise distinct points in R? (if v # w then p, # py)
and
e ¥, are simple curves in R? (image of [0,1] under some
continuous function f: [0,1] - R? that is injective) i.e. ¥, does
not intersect itself and
« ife = {x,y} € E then y, has end points p, and p,, and
o Ifye Nyy # @ then both e and f are incident with a common
vertex wand e N ¥y = {py}

Y. are images of functions (the set of points corresponding to the
curve in R?

Planar Graph
A planar graph is a graph that has some plane embedding.

Faces
Let {p,: v € V} and {y,: e € E} be a plane embedding of a graph G =

(V,E).
The faces of the embedding are the connected components of

Rﬁljn

e€EE

Degree of a Face
The degree of a face is the number of edges on its boundary counted
with multiplicities.

E.g.

The embeddings drawn for 'two plane embeddings' have 4 faces each.

Handshake Lemma for Faces
Let G be a graph property embedded in the plane, with q edges
deg(F) = 2q

F:a face

Proposition
Let G = (V,E) be a plane embedding. Let e € E and let the faces with
e on their boundaries be F; and F,. Then F; = F, iff e is a cut-edge.

Euler's Formula

Let G be a plane graph with p vertices, q edges, r faces, and ¢
connected components.
Thenp —gq+r=c+1
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Not Planar

Planar

Two plane embeddings of the same graph

TR

First embedding is the same as:

Degree of Faces Example

6

Proof of Proposition
If e is not a cut-edge then e is contained in a cycle C.

Then U Yr separates Fy fromF,soF, #F,

fEE(C)
Conversely, if F; # F, then walk around F; starting and ending at the edge e - you geta
closed walk containing e. Deleting subwalks between repeated vertices produces a cycle
containing e. So e is not a cut-edge.

Platonic Solids

8 6 20 12
12 12 30 30
r 6 8 12 20

Proof of Euler's Formula
Induction on q:

Basis: ¢ = 0 Thenr = 1 and so
p—1+r=p+1=c+1. Good

Induction step:
Let e € E and consider G’ = G\e withp’,q’,r’, ¢’ vertices, edges,
faces, and components.

If e is a cut-edge then

p=p, 4q=q+1, r=rc=c-1



p—q+r=p - (@ +D+r' =@ -q¢+r)-1=c"+1-1
=c'=c+1

If e is not a cut-edge then

p=p, q=q +1, r=r'+1, c=c
p—q+r=c+1
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Condition for Embedding
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Euler's Formula

Let G be embedded in R? with p vertices, q edges, r faces, and ¢
components.

Thenp —q+r=c+1

Corollary

Let G be a graph with p vertices and q > 2 edges. If G is planar
then

q<3p-—-6

Note of Exception
Ifg=1p=2:1¥3%x2-6
Ifg=0p=1:0£3%x1-6

Corollary

Let G be a bipartite graph with p vertices and q > 2 edges. If G is
planar then

q<2p—4

Subdivision

Subdivision of an edge e = {x,y} ina graph G = (V,E)

This is the graph G - e with vertex-set V' = V U {z} where z ¢ V
andedgeset E' = (E \{e}) U {{x, z3{y, z}}

Claim
G is planariff G - e is planar.
Exercise

Two graphs related by a finite sequence of subdivisions or reverse

subdivisions are either both planar or both not planar

Lemma
If H is a subgraph of G and G is planar then H is planar.

Corollary
Any graph that contains a (repeated) subdivision of K5 or K3 3 is

not planar.

Kuratowski's Theorem

A graph is planar iff it does not contain a subdivision of K5 or K3 3

as a subgraph.

Proof
CO 342
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Proof of Corollary

Consider any plane embedding of G, with r faces. Since q > 2 every face of the

embedding has degree > 3.
By the Handshake Lemma for faces:

2q = Z deg(F) = 3r

face F
Sinceq = 2,p = 1soc = 1 by Euler's Formula
p—q+r=c+1=2
3p—3q+3r=6
3p—3q+29=3p—3q+3r=6
3p—q=6soq<3p—6m

Proof of Corollary

Consider any plane embedding of G with r faces

Since g > 2 and G is bipartite, every face has degree > 4
By Handshake lemma for faces, 2q > 4r = q > 2r
Sinceq = 2,p>1,s0c=>1

p—q+r=2

2p—2q+2r=4

2p—2q+q=4

q<2p—4



Numerology for Planar Graphs
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Vertex Degrees in a Planar Graph
Planar graph, p vertices, q edges (q = 2), n, vertices of degree k (k = 0)

Theng <3p -6
p=ngt+tn +ny+-+n,4

2q=ank
k
2q<6p—12 = ankska—lz
k k
14

-1
12 < Z(e —)ng
k=0

=12 < 6ng + 5ny +4ny + 3nz + 2ny + ns —ny; — 2ng — 3ng — -+
ns + 2ny + 3nz +4n, + 51y + 6ng = 12 + ny; + 2ng + 3ng + -+

In a planar graph of minimum degree > 2
ns + 2ny + 3n3 +4n, = 12
In a simple planar graph there must be a vertex of degree < 5

The Four-Colour Theorem
Conjecture made in 1851 by Guthrie

For any plane graph, the faces can be coloured with a most four colours so that
neighbouring faces get different colours.
Proved in 1974 by Appel and Haken.

Planar Duality

G is a plane graph

G* is its dual graph.

Draw one vertex of G* on each face of G. Draw one edge of G* across each edge of
G

With this can end up with duplicate edges, or edges back to the same vertex.

Multigraph

G =(V,E)

V: set of vertices

E: multiset of 2 element multisubsets of V

eg G = ({1,2,3}, {{1,13,{2,3},{2,3},{1,2},{2,2},{2,2}})

Proposition
G* can be drawn on G without any edges of G* crossing.

Proposition
@Gy =a

Four Colour Theorem
Let G be a planar multigraph without loops. Then V (G) can be coloured with < 4
colours so that adjacent vertices get different colours.

x@G) <4

Proper k-Colouring
Leg G = (V,E) be a multigraph proper k-colouring.
f:V > {1,2,.., k} such thatif {v,w} € E then f(v) # f(w).

Chromatic Number
The chromatic number of G is
X(G) = minf{k : G has a proper k-colouring}

Spherical Projections

A graph can be drawn on a plane iff it can be drawn on a sphere.
You just need to avoid the north pole.
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Exercise
p = 3 vertices, q edges, c components
No faces of degree 3

a) q<2p-—4c

b) Phrase this in terms of ny

Proof of Proposition

By induction on q = |E(G)|
Basis

q = 0 is trivial

Induction

If every edge of G is a cut-edge then G has no cycles, so it has only one face. G*
has one vertex, and one loop for each edge of G. Loops can be drawn without
overlap.

If e is not a cut-edge of G then consider G\e and (G\e)* By induction can draw
(G\e)* without crossing edges. Can add in e without crossing.

Alternately
Put a vertex in each face. Can draw a half-edge to each edge of that face in G.
Connect those half-edges at the edges of the faces and have no crossings.

G and G* are both embedded in the plane. Edge e of G meets edge f* of G* if and
only if e=f in which case e N e* is a single point.



Colour Theorems
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Note

x(G) < 2iff G is bipartite.

x(G) < 1iff G has no edges

x(G) = 0iff G has no vertices

Six Colour Theorem

If G is a planar graph then y(G) < 6

Five Colour Theorem
If G is a planar graph then y(G) <5

N

Graphs on Surfaces

L
>
/;ﬁ\j
™

S
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Proof of The Six Colour Theorem
Induction on p, the number of vertices.

Base:
If p < 6 then give every vertex a different colour.

Induction:
Let G be planar with p vertices. G has a vertex of degree 5 or less, let v be such a vertex.

By induction, G\v has a proper six-colouring f: V\e - {1,2,...,6}
Let the neighbours of vb zy, ..., zx where k < 5. {f(z1), ..., f (zx)} has at most 5 colours.
JIc €{1,...,6}such thatc & {f(z1), ..., f(zx)}and set f(v) = ¢

Proof of the Five Colour Theorem
Inductiononp = |V (G)|

Base
p < 5: give every vertex a different colour.

Induction Step:

Let G be planar with p vertices. Letv € V have degree < 5.

Let f:V \ {v} - {1,2,3,4,5} be a proper 5 colouring of G\v.

Let the neighbours of vbe z4, ..., z; and let S = {f (zy), ..., f (z.)}

IfS #{1,2,3,4,5} then 3c € {1,2,3,4,5} \ S and we can set f(v) = ¢ to get a proper 5-colouring of G.

Remaining case: S = {1,2,3,4,5}
So v has 5 neighbours z;, z,, 73, 74, z5. We can assume that G is embedded in the plane. WLOG zq, ...
occur in that order clockwise around v. Can also assume that f(z;) = i

43

For {i,j} € {1,2,3,4,5} let H;; be the subgraph of G\v induced by the set of vertices coloured eitheri or
J by f.1f Kis a connected component of H;; then one can define a new 5-colouring of G\v as follows:

fw), weVvk)
gw) =<i,  weV(K)and f(w) =
L weV(K)and f(w) =i
Check: g is a proper 5-colouring of G\v

For every w € V\{v},

If z; and z3 are in different components of H;3 then let K be the component of H;3 containing z3.
Switch colours 3 and 1 on K to get g. Then g(z3) = g(z;) = 1
So we can set g(v) = 3 to get a proper 5-colouring of G.

If z; and z3 are in the same connected component of H3 then there is a path in G\v from z; to z; in
which every vertex is coloured 1 or 3 by f.

Since G is planar the path P with edges {v, z;}, {v, z3} forms a cycle that separates z, from z4. Thus z,
and z, are in different connected components of H,4. Recolour the component of Hp4 that contains z,

and then give v colour 4. m

Surfaces
Torus = rectangle with opposite sides identified

K5




Graphs on Surfaces
November-16-11 1:32 PM

VAVAVAN
VAVASTAN VALVAV
AVAVAVAVA
\VAVAVAVAV
NNV avAY

Every graph can be embedded on some surface. K7 on the torus

You can add loops for every vertex.

For any surface, there are finitely many
obstructions to embedding a graph on that
surface. It is hard to determine the surface with
the fewest number of holes which allows a
given graph to be embedded.

Surface Representations

Every surface can be represented (possibly
non-uniquely) by a polygon with pairs of sides
identified with each other.

Klein Bottle

This is a non-orientable surface. There is no distinction between clockwise and counter clockwise.

Non-orientable surfaces cannot be embedded in 3 dimensions, require at least 4.
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Matching Theory

November-16-11 2:00 PM

Matching

Let G = (V,E) be a graph. A matching, M, is a set of edges
so that (V, M) has maximum degree < 1.

Every vertex is in at most one edge of M.

Problem
Given G, find a matching on G of maximum size.

Perfect
A matching is perfect if every vertex has degree 1 in (V, M)

Non-Perfect Matching
A 2 regular graph consisting of an odd cycle has no perfect
matching.

"Let's consider the next value of 2, which is 3."

M-Saturated
v € V is M-saturated if v is on an edge of M
v € V is M-unsaturated if v is not on any edge of M.

M-Alternating, M-Augmenting

Let G = (V,E) be a graph.

M a matching of G

P apathinG, p: vpeivy ... vg_1 e,y is M-alternating if
either

e, €EM < iisodd or

e; EM < iiseven

P is M-augmenting iff
e; €M & iiseven, and
P has an odd number of edges, and
Vo and vy, are M-unsaturated

Proposition

If M is a matching in G and P is an M-augmenting path then
M' = M @ E(P) is a matching in G with one more edge
than M.

S®T=EUTI\(SNT)

Theorem

Let G = (V,E) be agraph. M C E a matching. Then M is a
maximum matching iff G does not have an M-augmenting
path.

Vertex Cover
A vertex cover is aset S € V such that every edge e € E has
atleast one end in S.

Matching Vertex Cover

Set of edges M Set of vertices S

Everyv € Vison < Everyv€Vison>1le €
leeM M

Find a maximum Find a minimum vertex
matching cover

Proposition

Let G be a graph, M a matching, and S a vertex cover in G.
Then [M] < |S]

Example: Odd Cycle

n
max |M| = b]

n
min |S| = [E]
Corollary

Let G be a graph, M a matching, S a vertex cover.
If IM| = |S| then M is a maximum matching and S is a
minimum vertex-cover.

For a non-bipartite graph, there may be a gap, as in odd
cycles (but not necessarily).
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Toy Application

Processors Jobs

{p,j}is an edge when processors in p can perform job j

Assign jobs to processors to maximize the number of busy processors.
< one job per processor

< one processor per job

3-Regular with no Perfect Matching

Example

|

Red are vertices in M, terminate on M-saturated vertices.
Blue is an M-augmenting path

Proof of Theorem
If P is an M-augmenting path in G, then M’ = M @ E(P) is a matching on G with [M'| = 1 4+ [M] so
M is not a maximum matching.

Conversely, assume that M is not a maximum matching. Let M* be a maximum matching in G, so
M7 > M|

Consider the spanning subgraph (uses all the vertices) H of G with edges M U M™.

In H, every vertex has degree 0, 1, or 2. Every connected component is either a path or a cycle. The
cycles all have even length. Since |[M*| > |M|, there is a component K of H that has more edges in
M* than in M. Since connected components alternate 1 edge in M with 1 edge in M* this cannot be a
cycle. This connected component must be a path with both end edges in M* but not in M.

The end vertices of K are not saturated by M. Thus K is an M-augmenting path.

[ ]

Proof of Proposition
LetX ={(v,e):vE S,e e M and v € e}
Since M is a matching, every v € S is in at most one e € M so

1, VEe _
IXI—ZZ{O‘ vees Y=l
VES

VES eEM
Since S is a vertex cover, every e € M is incident with at least one v € S

1, VEe _
le—ZZ{O_ UEezZuIMI
eEM

eEM VES
So [M| < [X] < S|



Konig's Theorem

November-21-11 1:55 PM

Ko6nig's Theorem

Let G be a bipartite graph.

Then max|M| = min|S]|

(Maximum over matchings M of G, minimum over vertex-
covers S of G)

Algorithmification of Kénig's Theorem
How to compute a maximum matching in a bipartite graph.

Input: a graph G with bipartition (4, B).
Initialize: M = @
Computation:
e ComputethesetX € 4,Y € B asin Claims 1,2,3.
e Ify €Y is M-unsaturated, find an M-alternating path P
from some xy € X to y.
e UpdateM « M @ E(P),
e Repeat until there are no more M-unsaturated y € Y.

Output: (M, Y U (4A\X))

Computing the sets X, Y systematically.
Input:
e Graph G with bipartition (4, B)
e MatchingMin G
Initialize:
¢ X, to the M-unsaturated vertices in A.
e Putall vertices in X, on the front of queue Q.
e X=Xo,Y=0
Computation:
While Q # @ do the following:
e Let qbe the first vertex in Q
¢ Ifq € B and M-saturated then let {q, x} € M,
putx at the end of Q if x is not already in A. Delete q
from the front of Q.
X< XU{x}
e Ifg € B and M-unsaturated then use q to find any M-
augmenting path.
¢ Ifq € A then choose any non-matching edge e = {q, b}
with b not already on the Q. Adjoin b to the end of the
Q. If there is no such b, delete q from the front of Q.
Y «YuU{b}
Output: (X,Y)
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Anatomy of a Matching in a Bipartite Graph

Let G have bipartition (A, B)

Let M be a matching in G

Let X, € A be the set of M-unsaturated vertices in A.

Let X < A be the set of vertices reachable from some x, € X, by an M-alternating path.

Let Y € B be the set of vertices in B reachable from some x, € X, by an M-alternating path.

Claim 1
If there is an M-unsaturated vertex y € Y then G has an M-augmenting path from some x, € X, to y.

Proof
Let xy € X, and let P be an M-alternating path from x, to y in G. Since neither x4 nor y is saturated
by M (and xy # y) P is an M-augmenting path.

Claim 2
there are no edges of G between the sets X and B\Y

Proof

Suppose that e = {x, b} withx € X and b € B.

If e € M then consider an M-alternating path P from some x, € X, to x € X. Then Peb is an M-
alternating path from x, to b, so b € Y (since the last edge in P is in M)

If e € M then consider an M-alternating path P from some x, € Xy to x € X.
P:xgeqXq ... Xg—1€xXx = x. P has an even number of edges, e; € M so e, € M, ey, is the unique
matching edgeon x.Soe, =eandy = x;_4 €Y.

Claim 3
There are no edges of M between the sets Y and A\X.

Proof

Suppose that e = {a, y} withy € Y and a € A\X.

Let P be an M-alternating path from x, to y. Then Pea is an M-alternating path from x, to a. So
a € X, a contradiction.

Ko6nig's Theorem

Let G be a bipartite graph. Let M be a maximum matching. Let S be a minimum vertex-cover.
Then [M| = |S|

Proof

Let M be a maximum matching in G and constructs sets X, Y as in claim 1,2,3.

Since M is a maximum matching, there are no augmenting paths.

By Claim 1, every vertex in Y is saturated by M.

By Claims 2, 3 every edge of M with one end in Y has its other end in X, and every edge of M with
one end in A\X as other end in B\Y.

Every vertex in (A\X) U Y is M-saturated. Now |[M| = |S| with S = (A\X) U Y. (Since each edge has
one adjacent vertex in S)

By Claim 2, S is a vertex cover of G (since G has no edges between X and B\Y, which are the only
sets of M-unsaturated vertices.)

Hence S is a minimum size vertex-cover and |S| = |[M| m

Example Computation of X, Y

—
L

1
& -+

W




Hall/Tutte Conditions

November-23-11 1:31PM

A-Saturating

Let G = (V,E) be a graph with bipartition (A, B). A
matching M is A-saturating when every a € 4 is saturated
by M.

Hall Condition

If G has an A-saturating matching M this defines an
injective function f: A - B by saying that f (a) = b iff
{a,b} € M.

If this exists then for all S € 4, f restricts to an injective
function from S to N(S).

Thus, if G has an A-saturating matching then |S| <
IN(S)|VSc A

Hall's Matching Theorem
Let G = (V, E) be a graph with bipartition (4, B). Then G
has an A-saturating matching iff |S| < [N(S)|VS c A.

Corollary
Let G be a k-regular graph with bipartition (A, B). If k > 1
then then G has a perfect matching.

Corollary
A k-regular bipartite graph can be partitioned into k
edge-disjoint perfect matching.

Tutte Condition

Let G = (V,E) be a graph.

For S € V let G\S be the subgraph of G induced by
vertices in V\S.

Let odd(G\S) be the number of connected components of
G\S with an odd number of vertices.

If G has a perfect matching then for every
S cV,IS| = 0dd(G\S).

Tutte's Matching Theorem

A graph has a perfect matching iff
vscv, [S| = 0dd(G\S)

MATH 249 Page 38

Which bipartite graphs have A-saturating matchings?

3
R

Does not have an A-saturating matching.

Foreach S € A,let N(S) = {b € B:{a, b} € E for a€S}

This example has aset S € A with S| = 3 and I[N(S)| =2

If G has an A-saturating matching M this defines an injective function f: A - B by saying that
f(a) = biff{a,b} € M.

Proof

We've seen that if G has an A-saturating matching then VS € A: [S| < [N(S)]|

Conversely, assume that there is no A-saturating matching. Let M* be a maximum matching in
G.So |[M*| < |A|.

By Konig's Theorem, there is a vertex-cover Q in G with [Q| = [M*|.

Since Q is a vertex cover, there are no edges from S = A\Q to B\Q

In other words, N(S) € Q N B

[@QnAl+1@nBl=1Ql=IM"| < |Al

|[Al =1@ n Al > |Q n B|

ISI=1A4\Ql = 1Al = 1@ n Al > [Q N Bl = IN(S)| = IS| > IN(S)| m

Proof of Corollary
Since k > 1 we have |A| x k = g = |[B| X k so |A| = |B|
So every A-saturating matching is also a B-saturating matching.

Check Hall's Conditions
Let S € A and consider N (S). Counting edges of G with one end in S we get k|S| < kIN(S)I.
By Hall's Theorem there is an A-saturating matching.

Proof of Tutte's Condition
On homework

Problem

Consider a bipartite graph that is biregular. There are integers a > 0, b > 0 such that every
vertex in A has degree a and every vertex in B has degree b.

Assume that gcd(a, b) = d and writea = da’ and b = db'.

Does G have a spanning subgraph that is (a’, b") biregular?
Yes, true for all a and b.

Example:a = 4,b =2
Note thatwhena = b,d =a = b,a’ = b’ = 1 and (a’, b") biregular subgraph is a perfect
matching.



Counting Spanning Trees
November-25-11 1:31 PM

Notation

K(G) is the number of spanning trees of G

G\e Gdelete e

G/e G contracte

"Shrink" the edge until the ends of it merge intro a single vertex.
Produces a multigraph.

Deletion-Contraction Recurrence
For any graph Gand e € Ep

k(g) = k(G\e) +x(G/e)

Cut-Vertex
A cut vertex is a vertex which, when deleted, increases the number of
connected components in the graph.

If G has a cut-vertex v Then let Gy, ... G, be the components of G\v each
with vjoined back in. Then
(4

k(@) = [ [

i=1

Cycle
The number of spanning trees for an n-cycle is n.
This is true even for cycles of length 1 or 2.

Adjacency Matrix
The adjacency matrix G = (V,E) A, indexed by V X V
A {1 if {v,w}€E
W0 if {v,w} g E
more generally for multigraphs:
— {#edges joining vand wifv # w
vw 2X #loopsatvifw=v

A square diagonal matrix indexed by V x V
A = Oifv+w
YW T | degg(v) if v=w

Laplacian Matrix
L=A-A

Matrix-Tree Theorem

Let v € V be any vertex and let L(v|v) be obtained by deleting row v and

column v of L.
k(G) = detL(v|v)

Signed Incidence Matrix

Let G = (V, E) be a connected multigraph

Draw an arrow on each edge {v, w} in an arbitrary direction, either v —
worw - v

Disindexedby V X E
+1 if e points into v but not out

D, . = §—1 if e points out of v but not in
0 otherwise

Fact

For any orientation of G

DDT =A—-A
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/1

Contracting, Deleting

V

G G\e G

Example of Deletion-Contraction Recurrence

/f)—\\

@ o

/N )\

A TS

Example of Laplacian Matrix

<

' p
g 3

,]

2 -1 0 0 -1
-1 3 -1 0 -1
L=l0 -1 3 -1 -1
0 0 -1 2 -1
-1 -1 -1 -1 4
_21_31_010 3 -1 0y -1 -1
detL(5]5) = =2]-1 3 -1|+
0 -1 3 -1 ‘0 1 2‘ ‘
0 0 -1 2
=2(3l6-1/+(-2)-(6-1)=26-6+1=21

Example of Signed Incidence Matrix
|

N
3 \
/]
4 3
1 -1 0 0 0 0 0
0 1 1 0 0 0 -1
D=0 0 0 1 0o -1 1
[ 0 0 0 0o -1 0 J
-1 0 -1 -1 1 0



Matrix Tree Theorem
November-28-11 1:33 PM

G = (V,E) a connected multigraph

A adjacency matrix indexed by V x V

A = # edges with ends {v, w}, vEW
vw 2 x # loops at v, v=w

Degree matrix diagonal V x V

Dpy = degg (v)

Laplacian matrix: L(G) = A—A

DisaV X E signed incidence matrix for G with respect to an
arbitrary orientation of G
+1 if e points into v but not out
D, . = {—1if e points out of v but not in
0 otherwise
L(G) = A— A = DDT if G has no loops

Matrix-Tree Theorem
For any vertexw € V, k(G) = det L(w|w)

The Binet-Cauchy Identity
Let M be an r X m matrix and P be an m X r matrix. Then

det(MP) = Z det(M(IS]) - det(P[S]))
S
with summation over all r-element subsets S € {1, 2, ..., m}

For a matrix Q and sets I, ] of row and column indices,

Q[I|J]is the submatrix of Q indexed by rowsi € I and columns j € J.
Q(I|)) is the submatrix of Q indexed by rows i & I and columns j & |

M(|S) means delete no rows, keep only columns in S

Proposition

Let G = (V,E) be a connected multigraph. LetR € Vand S € E be

such that|[R| +|S|=|V|and R # @
Consider D(R|S].

Then det D(R|S]=%1iff (V,S) is a forest has a unique vertex in R

and det D(R| S]=0 if not.
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Example Laplacian Matrix

2 -1 -1 0
-1 2 0 -1
-1 0 3 =2
0o -1 -2 3

T =

Setup of Matrix-Tree Theorem Proof
Since L = A — A = DDT use Binet-Cauchy

Summation over all sets § € E with [S| =p — 1

det L(w|w) = [det(DwISDI?
|S|I=p-1

To prove the Matrix-Tree Theorem it suffices to show the proposition on the left (proof of
that later).

Proof of Matrix-Tree Theorem
det(w|S] = +1iff (V,S) is a spanning tree of G (by the Proposition)
Otherwise, det D(w|S] = 0. Hence

detL(wlw) = ) detD(w|S] x det DT[S|w) = ) |det D(w|S]|? = k(G)
2 2

Proof of Proposition

Have D ). Every column has exactly one +1 and one -1 and the rest 0.

Delete |R| rows and keep [S| columns. So there are |[V| — |R| = |S| rows and the
submatrix D (R|S] is square.

Consider the graph (V, S). Suppose it contains a cycle C. Consider the columns of D
corresponding to edges in the set C. This set of columns is linearly dependent.

o . 3
2 ¢
‘ D
=
LJf
[1 -1 0 0 0 0
I—l 0o 1 1 0 O
D=0 1 -1 0 o0 1
lO 0 0 -1 1 0
0 o0 00 0 0—1 —01’ 0
HENEMEE
lollol,] [ 1
et+td—c—f=10 |+ 0 |+]1|+|-1|=0
S e el
-1 0 - 1
Sum the columns in C with +1 signs according to whether e agrees in direction with the

orientation around C.



Missing Lectures, Extra Content
December-05-11 1:35 PM

Section 1 of "Combinatorics of Electrical Networks"
Not on exam

Theorem (Euler)

A graph G has a trail T passing through every edge exactly once iff G has
at most 2 vertices of odd degree.

(An Euler tour)

Plane Graph Numerology
Give examples of connected plane graphs with the following properties:
e 3-regular

e Every face has degree 4 or 7

Use handshake for faces and Euler's formula
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