Background

September-12-11 9:34 AM

Fields

Basic theory of vector spaces works over any field. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$

- We will mostly work over $\mathbb C$ or $\mathbb R$
- Other fields if convenient

Algebraically Closed

 \mathbb{F} is called algebraically closed if every polynomial $p(x) \in \mathbb{F}[x]$ factors into linear terms.

 $p(x) = c(x - a_1) \dots (x - a_n)$ $x \in \mathbb{F}, n = \deg p$

Fundamental Theorem of Algebra

C is algebraically closed

Determinants

If $A = [a_{i,j}]_{n \times n}$ then det *A* is determined algorithmically.

$det I_n = 1$

Determinant is n-linear Think of $A = [v_1, v_2, ..., v_n] v_i \in \mathbb{F}^n$

$$\det\left(v_{1}, v_{2}, \dots, v_{i-1}, \sum a_{j}w_{j}, v_{i+1}, \dots, v_{n}\right) = \sum a_{i} \det(v_{1}, \dots, v_{i-1}, w_{j}, v_{i+1}, \dots, v_{n})$$

Determinant is antisymmetric

 $det(v_1, ..., v_{i-1}, u, v_{i+1}, ..., v_{j-1}, u, v_{j+1}, ..., v_n) = 0$ $\Rightarrow (except if 1+1=0)$ $det(v_1, ..., v_{i-1}, v_j, v_{i+1}, ..., v_{j-1}, v_i, v_{j+1}, ..., v_n) = -det(v_1, ..., v_n)$

Theorem 1

 $\det(AB) = \det A \times \det B$

Theorem 2

 $\det A = 0 \Leftrightarrow A \text{ is singular}$

Linear Transformation and Matrices

V is a vector space (over field \mathbb{F}) $\mathcal{L}(V)$ is the set of all linear transformations from V to V W another vector space over \mathbb{F} $\mathcal{X}(V, W)$ =linear transformation from V to W

If
$$\beta(v_1, ..., v_n)$$
 is a basis for V
 $T \in \mathcal{L}(V)$
 $T v_j = \sum_{i=1}^n a_{ij}, v_i$
 $[T]_{\beta} = [a_{ij}]$ is the matrix x of T with respect to β
 $x \in V, x = \sum_{i=1}^n \square$
 $[T_x]_{\beta} = [a_{ij}](x_1, ..., x_n) = [T]_{\beta}[x]_{\beta}$

Also if $S \in \mathcal{L}(V, W)$ $\beta = \{v_1, ..., v_n\}$ bases for V $\beta' = \{w_1, ..., w_m\}$ bases for W $S(v_j) = \sum_{i=1}^{m} a_{ij}w_i \quad i \le j \le n$ $[S]_{\beta}^{\beta'} = [a_{ij}]$

Theorem

If $T \in \mathcal{L}(V)$ then det $[T]_{\beta}$ is independent of the choice of basis.

So we can define det $T \coloneqq det[T]_{\beta}$

Sketch of Theorem 2

If A is singular (i.e. rank A < n) Some column $V_{i_o} = \sum_{i \neq i_0} a_i v_i$

$$\det A = \det\left(v_i, v_{i_0-1}, \sum_{i \neq i_0} a_i v_i, v_{i_0+1}, v_n\right) = \sum_{i \neq i_0} a_i \det\left(v_i, \dots, v_{i_0-1}, v_i, v_{i_0+1}, \dots, v_n\right) = 0$$

If A is invertible, $1 = \det I = \det(AA^{-1}) = \det A \times \det A^{-1}$ $\therefore \det A \neq 0$

Proof of Theorem

Let $\beta = \{v_1, \dots, v_n\}$ and $\beta' = \{w_1, \dots, w_n\}$ be two bases for V

Write

$$w_{j} = \sum_{i=1}^{n} a_{ij} v_{i}$$

$$Q = [a_{ij}] = [I]_{\beta'}^{\beta} = [[w_{1}]_{\beta}, [w_{2}]_{\beta}, \dots, [w_{n}]_{\beta}]$$

$$If x = \sum_{j=1}^{n} x_{j} w_{j} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{j} v_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j}\right) v_{i}$$

$$[x]_{\beta} = [a_{ij}][x]_{\beta'} = Q[x]_{\beta'}$$

$$\begin{split} &Look \ at \ Tx \\ &[Tx]_{\beta} = [T]_{\beta}[x]_{\beta} = [T]_{\beta}Q[x]_{\beta}, \\ &[Tx]_{\beta'} = Q^{-1}[T]_{\beta}Q[x]_{\beta'} \end{split}$$

 $\therefore \det[T]_{\beta'} = \det Q^{-1}[T]_{\beta}Q = \det Q^{-1} \times \det[T]_{\beta} \times \det Q = \det[T]_{\beta}$ QED

 $det[T]_{\beta}$ does not depend on which basis is used.

Eigenvalues

9:30 AM

Eigenvalue (a.k.a. characteristic value)

 $T \in \mathcal{L}(V) = set of all linear transformations from V to V$ A scalar $\lambda \in \mathbb{F}$ is an eigenvalue for T if $\exists v \neq 0$ s.t. $Tv = \lambda v$

Eigenvector

Any non-zero vector v s.t. $Tv = \lambda v$ is an eigenvector for (T, λ)

Eigenspace

The space ker $(T - \lambda I) = \{v: Tv = \lambda v\}$ is the eigenspace for (T, λ)

Theorem

 $T \in \mathcal{L}(V)$, The following are equivalent

- 1. λ is an eigenvalue for T 2. $T - \lambda I$ is singular
- 3. det $(T \lambda I) = 0$

Characteristic Polynomial

The characteristic polynomial of T is $P_T(x) = \det(xI - T)$

Note

 $P_T(x)$ is a monic polynomial of degree $n = \dim V$

Monic: coefficient on highest degree is 1

Spectrum

The spectrum of T is $\sigma(T)$, the set of all eigenvalues.

Corollary $\sigma(T)$ is the set of zeros of $P_T(x)$ Corollary $\sigma(T)$ has at most $n = \dim V$ eigenvalues. Corollary Similar transformations have the same spectrum

Direct Sums

Say *V* is the direct sum of V_1 and V_2 if $V_1 \cap V_2 = \{0\}$ and $V_1 + V_2 = \{0\}$ V. Write $V = V_1 + V_2$ or $V = V_1 \oplus V_2$

Say V is the direct sum of V_1, \ldots, V_k if

1.
$$V = \sum_{i=1}^{N} V_i$$

2.
$$V_j \cap \left(\sum_{i \neq j} V_i\right) = \{0\}, for \ 1 \le j \le k$$

Proposition

If $\{0\} \neq V_i$ subspaces of V such that

$$V = \sum_{i=1}^{n} V_i$$

- then TFAE (the following are equivalent) 1. Sum is direct: $V = V_1 + \dots + V_k$ 2. If $0 \neq v_i \in V_i$, then $\{v_1, \dots, v_k\}$ is linearly independent
 - 3. If $w_i \in V_i$ and $\sum_{i=1}^k w_i = 0$ then $w_i = 0, 1 \le i \le k$
 - 4. Every $v \in V$ has a unique expression as

$$v = \sum w_i$$
 , $w_i \in V_i$

Corollary

If $V = V_1 + V_2 + \dots + V_k$ Then if you take a basis for each V_i , say $v_{i_1}, \dots, v_{i_{d_i}}$ then the union $\{v_{11}, ..., v_{1d_1}, v_{21}, ..., v_{k1}, ..., v_{kd_k}\}$ is a basis for V.

Example

T is diagonal w.r.t. bases $\beta = \{v_1, \dots, v_n\}$ if $[T]_{\beta} = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$ = So $Tv_i = \lambda_i v_i$ So $\lambda_1, \ldots, \lambda_n$ are eigenvalues

If $u \in \{\lambda_1, ..., \lambda_n\}$ eigenspace for u $\ker(T - \mu T) = span\{v_i: \lambda_i = \mu\}$

 $\mu \neq \{\lambda_1, \dots, \lambda_n\}$

Only eigenvalues are $\{\lambda_1, \dots, \lambda_n\}$

T = diagonal(1, 2, 1, 2, 1, 3) $\ker T - \tilde{I} = span \{v_1, v_3, v_5\}$ $\ker(T - 2I) = span\{v_1, v_3, v_5\} \\ \ker(T - 2I) = span\{v_2, v_4\} \\ \ker(T - 3I) = span\{v_6\}$

Example

$$T = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$$
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

1 is an eigenvalue, $\ker(T - I) = \mathbb{F} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ \mathbb{F} – span or set of all multiples of

$$T\binom{3}{1} = \binom{6}{2} = 2\binom{3}{1}$$

2 is an eigenvalue
$$\ker(T - 2I) = \mathbb{F}\binom{3}{1}$$

$$u \neq \{1, 2\}$$

$$T - uI = \begin{pmatrix} 1 - \mu & 3 \\ 0 & 2 - \mu \end{pmatrix}$$

$$\begin{pmatrix} 1 - \mu & 3 \\ 0 & 2 - \mu \end{pmatrix} \begin{pmatrix} \frac{1}{1 - \mu} & -\frac{3}{(2 - \mu)(1 - \mu)} \\ 0 & \frac{1}{2 - \mu} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

So it is invertible, so rank is 0, so no more eigenvalues.

Proof of Theorem

1. λ is an eigenvalue for T $\Leftrightarrow \ker(T - \lambda I) \neq \{0\}$ $\Leftrightarrow 2.T - \lambda I \text{ is singular}$ \Leftrightarrow 3. det $(T - \lambda I) = 0$

Example

 $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ Look at $p(x) = \det(xI - T) = \begin{bmatrix} x & 1 \\ -1 & x \end{bmatrix} = x^2 + 1$ $\mathbb{F} = \mathbb{R}$ no eigenvalues $\mathbb{F} = \mathbb{C} x^2 + \tilde{1} = (x+i)(x-i)$ $T - iI = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{pmatrix} -i \\ -i \end{pmatrix} = 0$ $T + iI = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{pmatrix} i \\ -1 \end{pmatrix} = 0$ $\pm i$ are eigenvalues

In \mathbb{R}^2 , T is a rotation

Example

$$T = \begin{bmatrix} 4 & -1 & -1 \\ -2 & 5 & -1 \\ 3 & -3 & 6 \end{bmatrix}$$

$$p(x) = \det(xI - T) = \begin{vmatrix} x - 4 & 1 & 1 \\ 2 & x - 5 & 1 \\ -3 & 3 & x - 6 \end{vmatrix}$$

$$= (x - 4)((x - 5)(x - 6) - 3) - 1(2(x - 6) + 3) + 1(6 + 3(x - 5)))$$

$$= (x - 4)(x^2 - 11x + 27) - (2x - 9) + (3x - 9)$$

$$= x^3 - 15x^2 + 71x - 108$$

$$= (x - 3)(x - 6)^2$$
Eigenvalues are 3, 6

$$T - 3I = \begin{bmatrix} 1 & -1 & -1 \\ -2 & 2 & -1 \\ 3 & -3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} = 0$$

$$T - 6I = \begin{bmatrix} -2 & -1 & -1 \\ -2 & -1 & -1 \\ -2 & -1 & -1 \\ 3 & 03 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{pmatrix} a \\ a \\ -3a \end{pmatrix} = 0$$

$$T \begin{pmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$T\begin{pmatrix}1\\1\\-3\end{pmatrix} = 6\begin{pmatrix}1\\1\\-3\end{pmatrix}$$

Only 2-dimensions of eigenvectors!

Proof of 3rd Corollary

 $T \in \mathcal{L}(V), S$ invertible STS^{-1} is similar to T $P_{STS^{-1}}(x) = \det(xI - STS^{-1}) = \det(S(xIS^{-1}S - T)S^{-1}) = \det(xI - T) = P_T(x)$

Proof of Proposition

My Proofs **1** ⇒ **2**

Suppose $v_i \neq 0 \in V_i$ and $\sum_{i=0}^{k} a_i v_i = 0 \text{ for some } a_i \in \mathbb{F} \text{ not all } 0$ Then, for $a_i \neq 0$

$$a_i v_i = -\sum_{j \neq i}^{r} a_j v_j$$

$$a_i v_i \in V_i \text{ and } -\sum_{j \neq i}^{r} a_j v_j \in \sum_{j \neq i}^{r} V_j \text{ but}$$

 $V_i \cap \sum_{j \neq 1} V_j = \{0\},$

a contradiction since $a_i \neq 0$ and $v_i \neq 0$.

$$2 \Rightarrow 3$$
$$\sum_{i=1}^{k} w_i = 0 \Rightarrow w_i$$

 w_i are linearly dependent, but by $2 w_i \neq 0 \Rightarrow w_i$ are linearly independent, so $w_i = 0 \forall i$

3 ⇒ **4**

By definition of vector sums, for any $v \in V$ there exists at least one set of $v_i \in V_i$ such that v = $\sum_{i} v_{i}$

Now suppose there exists $w_i \in V_i$, such that $\sum \sum \sum$

$$v = \sum_{i} v_{i} = \sum_{i} w_{i}$$
$$\Rightarrow 0 = \sum_{i} v_{i} - w_{i}$$

But $v_i - w_i \in V_i$ therefore by 3, $v_i - w_i = 0 \Rightarrow v_i = w_i \forall 1 \le i \le k$

$$\begin{array}{l} 4 \Rightarrow 1 \\ \text{Already have} \\ V = \sum_{i=1}^{k} V_i \\ \text{Suppose for some } 1 \leq j \leq k, \exists e \neq 0 \text{ s. } t. \\ e \in V_j \cap \sum_{i \neq j} V_i \text{ , Select } w_i \in V_i \text{ s. } t. \ e = \sum_{i \neq j} w_i \\ \text{Let } w_j = e \in V_j \\ \text{Then} \\ e = w_j + \sum_{i \neq j} 0 = 0 + \sum_{i \neq j} w_i , \\ \text{This is not unique, a contradiction, so} \\ V_j \cap \sum_{i \neq j} V_i = \{0\} \\ \text{since } 0 \text{ is certainly in both } V_j \text{ and } \sum_{i \neq j} V_i \\ \text{QED} \end{array}$$

His Proof

$$3 \Rightarrow 1$$

If $v \in V_i \cap \left(\sum_{j \neq 1} V_j\right)$
 $v = v_i \in V$
 $= \sum_{j \neq i} v_j \quad v_j \in V_j$
 $\therefore -v_i + \sum_{j \neq i} v_j = 0$
By 3, $v_i = 0 = v_j$,
 $\therefore v_i \cap \sum_{j = i} V_j = \{0\}$

Proof of Corollary Suppose $0 = \sum_{i,j} a_{ij} v_{ij} = \sum_{i} \left(\sum_{j} a_{ij} v_{ij} \right) = \sum_{i} v_i \text{ where } v_i \in V_i$ by 3, $v_i = 0$ $1 \le i \le k$ $\{v_{ij}\}$ is a basis for v_i , so all $a_{ij} = 0$ $\{v_{ij}\}_{i=1,j=1}$ is lin indep. Clearly v_i spans V \therefore basis

Diagonalization

September-16-11 9:29 AM

Proposition

Let $T \in \mathcal{L}(v)$ $\sigma(T) = \{\lambda_1, ..., \lambda_k\}$ $W_i = \ker(T - \lambda_i I)$ $W = \sum_{i=1}^k W_i \subseteq V$ Then $W = W_1 + W_2 + \dots + W_k$

Diagonalizable

A linear transformation $T \in \mathcal{L}(V)$ is diagonalizable if it has a basis $\beta = \{v_1, ..., v_n\}$ so that

$$[T]_{\beta} = \begin{bmatrix} c_i & 0 & 0 & \dots & 0\\ 0 & c_2 & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \dots & c_n \end{bmatrix}$$

is diagonal

is diagonal.

Note

 $Tv_i = c_i v_i$ So v_i is an eigenvector T is diagonalizable \Leftrightarrow V has a basis containing eigenvectors of T $\sigma(T) = \{c_1, ..., c_n\} = \{\lambda_1, ..., \lambda_k\}$ $\{c_1, ..., c_n\}$ -might have repetitions $\lambda \in \mathbb{F}$, ker $(T - \lambda I) = span \{v_i : c_i = \lambda\}$

 $p \in \mathbb{F}[x]$ polynomial

p(T) =	$p(c_1)$	0	0	 0]
	0	$p(c_2)$	0	 0
	:	:	÷	:
	LO	0	0	 $p(c_n)$

Nullity

 $nul(T) = \dim \ker T$

Theorem

 $T \in \mathcal{L}(V), \sigma(T) = \{\lambda_1, \dots, \lambda_k\}$ TFAE 1. *T* is diagonalizable 2. $\sum_{i=1}^k nul(T - \lambda_i I) = n = \dim V$ 3. $p_T(x) = \prod_{i=1}^k (x - \lambda_i)^{d_i}$ where $d_i = nul(T - \lambda_i I)$

Corollary

If T has n distinct eigenvalues, then T is diagonalizable.

Proof of Proposition

Suffices to show that if $w_i \in W_i$ $1 \le i \le k$ and $\sum_{i=1}^k w_i = 0$ then $w_i = 0$ for $1 \le i \le k$ (By Proposition in previous lecture)

If $w \in W_i$ then $(T - \lambda_i I)w = 0$ and $Tw = \lambda_i w$, $T^2w = \lambda_i^2 w$, ... Therefore for any polynomial $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_p x^p$ $p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_p T^p$ $p(T)w = \sum_{j=0}^p a_j T^j w = \left(\sum_{j=0}^p a_j \lambda_i^j\right)w = p(\lambda_i)w$

Fix *i* and show $w_i = 0$:

Let
$$p(x) = \prod_{j \neq i} (x - \lambda_j)$$

Let $x = \sum_{j=1}^{k} w_j = 0$
 $0 = p(T)x = p(T) \left(\sum_{j=1}^{k} w_j\right) = \sum_{j=1}^{k} p(\lambda_j)w_j = \left(\prod_{j \neq i} (\lambda_i - \lambda_j)\right)w_i$
 $\prod_{j=i} (\lambda_i - \lambda_j) \neq 0$, so $w_i = 0$
 $\therefore w_i = 0 \ \forall i, \Rightarrow$ Sum is direct

Because given a, b, c $\exists p \ (of \ degree \ 2)$ s.t. p(0) = a, p(1) = b, p(2) = cA(T) is isomorphic to $C(\{0, 1, 2\})$, the algebra of functions in $\{0, 1, 2\}$

Question

Which $T \in \mathcal{L}(V)$ are diagonalizable?

Example

 $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, p_T(x) = x^2 + 1$ No eigenvalues in \mathbb{R} so it is not diagonalizable if $V = \mathbb{R}^2$ but $mV = \mathbb{C}^2, \sigma(T) = \{i, -i\}$ $\therefore \exists v_1, v_2 T v_1 = i v_1, T v_2 = -i v_2$ $\therefore \{v_1, v_2\}$ is a basis $[T]_\beta = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

Example

$$T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$P_T(x) = \det(xI - T) = \begin{vmatrix} x & -1 \\ 0 & x \end{vmatrix} = x^2$$

$$\sigma(T) = \{0\}$$

$$\ker(T) = \mathbb{C} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Need two linearly independent eigenvectors to diagonalize T - NOT POSSIBLE.

Proof

$$T \text{ has basis } \beta = \{v_1, \dots, v_n\}$$
$$[T]_{\beta} = \begin{bmatrix} c_i & 0 & 0 & \dots & 0\\ 0 & c_2 & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \dots & c_n \end{bmatrix}$$
$$1 \Rightarrow 2 \\ \text{ker}(T - \lambda_i I) = span\{v_j : c_j = \lambda_i\}$$

$$nul(T - \lambda_i I) = |\{j: c_j = \lambda_i\}|$$

So $\sum_{i=1}^k nul(T - \lambda_i I) = |\{j: 1 \le j \le n\}| = n$
$$\sum_{i=1}^{k} W_i = \ker(T - \lambda_i I)$$

 $\sum_{i=1}^k W_i = W_i \dotplus \dots \dotplus W_k$
$$\dim\left(\sum_{i=1}^k W_i\right) = \sum_{i=1}^k \dim W_i = \sum_{i=1}^k nul(T - \lambda_i I) = n, by (2)$$

 $\therefore \sum W_i = V$

Take a basis for each W_i

they are eigenvectors for the eigenvalues λ_i
put them together, get a basis for V consisting of eigenvectors ⇒ diagonalizable

 $1 \Rightarrow 3$ $T = \begin{bmatrix} c_1 & 0 & 0 & \dots & 0 \\ 0 & c_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & c_n \end{bmatrix}$ $nul(T - \lambda_i) = |\{j: c_j = \lambda_i\}|$ $p_T(x) = \det(xI - T) = \begin{bmatrix} x - c_i & 0 & 0 & \dots & 0 \\ 0 & x - c_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x - c_n \end{bmatrix} = \prod_{i=1}^k (x - \lambda_i)^{d_i}$ where $d_i = |\{j: c_j = \lambda_i\}| = nul(T - \lambda_i I)$ $1 \Rightarrow 3$

$$3 \Rightarrow 2$$

$$\sum_{i=1}^{k} nul(T - \lambda_i I) = \sum_{i=1}^{k} d_i = \deg(p_T) = n$$

Proof of Corollary

 $nul(T - \lambda_i I) = 1$ for $1 \le i \le n$ so by 2, T is diagonalizable.

Linear Recursion

September-19-11 10:09 AM

Computational Device

Suppose you are given T as in example * and you need to compute T^n If D is the diagonal matrix of T $T = QDQ^{-1}$

 $\begin{aligned} T^n &= (QDQ^{-1})^n = QDQ^{-1}QDQ^{-1} \dots QDQ^{-1} \\ &= QD^nQ^{-1} \end{aligned}$

Linear Recursion

In general, if we have $x_0, x_1, ..., x_n$ given, $x_{k+1} = a_0 x_k + a_1 x_{k-1} + \dots + a_n x_{k-n}$ linear recursion

$$\begin{pmatrix} x_{k+1} \\ x_k \\ x_{k-1} \\ \vdots \\ x_{k-n} \end{pmatrix} = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} x_k \\ x_{k-1} \\ x_{k-2} \\ \vdots \\ x_{k-n-1} \end{pmatrix}$$

$$p_A(x) = \det(xI - A) = \begin{vmatrix} x - a_0 & -a_1 & -a_2 & \dots & -a_n \\ -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & x \end{vmatrix}$$

$$= x^{n+1} - a_0 x^n - a_1 x^{n-1} - a_2 x^{n-2} - \dots - a_n$$
Now try to diagonalize A, and get a formula for x_n

Example * 3 $^{-1}$ -2^{-1} -3 3 -8 2 -4 T =2 -4 1 -2LO -44 1 J Using Matlab got $p_T(x) = (x - 1)^2 x(x + 1)$ So $\sigma(T) = \{1, 0, -1\}$ 1 1 $\ker(T-I) = span <$ 12 ker(T) = span $\ker(T+I) = span$ Change of basis matrix: 1 3 -2 г0 $Q = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ 1 2 1 1 1 $^{-1}$ -4_{0} 0 $^{-1}$ 4 J ⁴ 0 гĨ 0 1 0 0 $Q^{-1}TQ =$ = D0 0 0 0 0 L۵ 0 -1

Example: Fibonacci Sequence

$$\begin{aligned} x_0 &= 0, x_1 = 1 \\ x_n &= x_{n-1} + x_{n-2} \text{ for } n \ge 2 \\ {\binom{x_n}{x_{n+1}}} &= {\binom{0}{1}} {\binom{x_{n-1}}{x_n}} \\ \text{Let } A &= {\binom{0}{1}} {\binom{1}{1}} \\ {\binom{x_n}{x_{n+1}}} &= A^n {\binom{0}{1}} \end{aligned}$$

$$p_A(x) = \det \begin{pmatrix} x & -1 \\ -1 & x-1 \end{pmatrix} = x(x-1) - 1 = x^2 - x - 1$$

$$\tau = \frac{1 \pm \sqrt{1+4}}{2}$$

$$\tau = \frac{1 \pm \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2} = -\frac{1}{\tau}$$

$$\begin{aligned} \sigma(A) &= \left\{ \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2} \right\} = \left\{ \tau, -\frac{1}{\tau} \right\} \\ A &- \tau I = \begin{pmatrix} -\tau & 1\\ 1 & 1-\tau \end{pmatrix} \begin{pmatrix} 1\\ \tau \end{pmatrix} = \begin{pmatrix} 0\\ 1+\tau-\tau^2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \\ \ker(A-\tau I) &= \mathbb{C} \begin{pmatrix} 1\\ \tau \end{pmatrix} \end{aligned}$$

$$A + \frac{1}{\tau}I = \begin{pmatrix} \frac{1}{\tau} & 1\\ 1 & 1 + \frac{1}{\tau} \end{pmatrix} \begin{pmatrix} \tau\\ -1 \end{pmatrix} = \begin{pmatrix} 0\\ \tau - 1 - \frac{1}{\tau} \end{pmatrix} = \begin{pmatrix} 0\\ \frac{\tau^2 - \tau - 1}{\tau} \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\ker \left(A + \frac{1}{\tau}I\right) = \mathbb{C} \begin{pmatrix} \tau\\ -1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix}$$

$$Q^{-1} = \frac{1}{-1 - \tau^2} \begin{pmatrix} -1 & -\tau \\ -\tau & 1 \end{pmatrix} = \frac{1}{1 + \tau^2} \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix} = \frac{1}{1 + \tau^2} Q$$

$$Q^{-1}AQ = D = \begin{pmatrix} \tau & 0 \\ 0 & -\frac{1}{\tau} \end{pmatrix}$$

$$\begin{split} A^{n} &= QD^{n}Q^{-1} = \frac{1}{1+\tau^{2}} \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix} \begin{pmatrix} \tau^{n} & 0 \\ 0 & (-1)^{n} \\ \tau^{n} \end{pmatrix} \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix} \\ &= \frac{1}{1+\tau^{2}} \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix} \begin{pmatrix} \tau^{n} & \tau^{n+1} \\ (-1)^{n} & (-1)^{n+1} \\ \tau^{n-1} & \tau^{n+1} + (-1)^{n+1} \\ \tau^{n+1} & \tau^{n+2} + (-1)^{n+2} \\ \tau^{n} + \frac{(-1)^{n+1}}{\tau_{n+1}} & \tau^{n+2} + \frac{(-1)^{n+2}}{\tau^{n}} \end{pmatrix} \\ &= \frac{1}{(x_{n+1})} = A^{n} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \left(\frac{\tau^{n+1} + (-1)^{n+1} \\ \tau^{n+1} \end{pmatrix} \\ \frac{\tau^{n}}{1+\tau^{2}} \end{pmatrix} \\ & x_{n} = \left(\frac{\tau}{1+\tau^{2}} \right) \left(\tau^{n} - \left(-\frac{1}{\tau} \right)^{n} \right) \\ & \frac{\tau}{1+\tau^{2}} = \frac{1}{\sqrt{5}} \\ & x_{n} = \frac{\tau^{n} - \left(-\frac{1}{\tau} \right)^{n}}{\sqrt{5}} \end{split}$$

$$x \ge 2$$
, x_n is the closest integer to $\frac{\tau^n}{\sqrt{5}}$

Triangular Forms

September-21-11 9:31 AM

Upper Triangular

A matrix T is upper triangular if $a_{ij} = 0$ if j < i

Say $T \in \mathcal{L}(V)$ is triangularizable if there is a basis β such that $[T]_{\beta}$ is upper triangular.

Triangular Determinant

det $T = \prod_{i=1}^{n} a_{ii}$ 1. $\sigma(T) = \{a_{11}, a_{22}, \dots, a_{nn}\}$ 2. $p_T(x)$ factors into linear terms.

Invariant Subspace

If $T \in \mathcal{L}(V)$, a subspace $W \subseteq V$ is an invariant subspace for T if $TW \subseteq W$

 $W_k = span \{ v_1, v_2, ..., v_k \} 0 \le k \le n$

Theorem

For $T \in \mathcal{L}(V)$, TFAE

- 1. *T* is triangularizable
- 2. $P_T(x)$ factors into linear terms
- 3. T has a chain of invariant subspaces $\{0\} = W_0 \subset$
- $W_1 \subset W_2 \subset \dots \subset W_n = V$ With dim $W_k = k$ for $1 \le k \le n$

Corollary

If \mathbb{F} is algebraically closed (such as \mathbb{C}) then every $T \in \mathcal{L}(V)$ is triangularizable.

Determinant of Upper Triangular

 $\begin{vmatrix} a & b \\ 0 & d \end{vmatrix} = ad$

For n > 2, take determinant of first column leaves a_{11} *determinant of upper triangular matrix with n -1

So by induction, det $T = a_{11}a_{22} \dots a_{nn}$

Alternate Proof

$$|a_{ij}| = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i=1}^n a_{i\sigma(i)}$$

If $\sigma \in S_n$ and for some $i, \sigma(1) = j < i$ then $a_{i\sigma(i)} = 0 \Rightarrow \prod_{i=1}^n a_{i\sigma(i)} = 0$ Only $\sigma = identity$ satisfies $\sigma(i) \ge i \forall i$ because if say $\sigma(i) = 1$ for $1 \le i < i_0$ but $\sigma(i_0) > i_0$ then some j has $\sigma(j) = i_0$, but $j > i_0$ $\therefore \prod_{a_{i\sigma(i)}} a_{i\sigma(i)} = 0$

$$|a_{ij}| = \prod_{i=1}^{n} a_{ii}$$

Types of Invariant Subspaces

If T is upper triangular w.r.t. $\beta = \{v_1, ..., v_n\}$ $Tv_1 = a_{11}v_1$ eigenvector $\therefore W_1 = span\{v_1\}$ is invariant

 $W_0 = \{0\}$ is invariant for every T $W_n = V$ is invariant for every T

 $T_{v_2} = a_{22}v_2 + a_{12}v_1 \in span\{v_1, v_2\}$ $T_{v_1} = a_{11}v_1 \in span\{v_1, v_2\}$ $\therefore W_2 = span\{v_1, v_2\} \text{ is invariant for T}$

 $W_k = span \{ v_1, v_2, \dots, v_k \} 0 \le k \le n$

$$Tv_j = \sum_{i=1}^n a_{ij}v_i = \sum_{i=1}^j a_{ij}v_i \in span\{v_1, \dots, v_j\} = W_j \subseteq W_k \text{ if } j \leq k$$
$$T_{v_j} \in W_k \ 1 \leq j \leq k$$
$$\therefore TW_k \subseteq W_k$$

Suppose conversely that I have such a chain of invariant subspaces. Pick $0 \neq v_1 \in W_1$ dim $(W_1) = 1$, so $W_1 = span \{v_1\}$ In W_2 , pick $v_2 \in W_2$ independent of v_1 so $\{v_1, v_2\}$ is a basis for W_2 , since dim $W_2 = 2$

In W_2 , pice $v_2 \in W_2$ independent of v_1 so $\{v_1, v_2\}$ is a basis for W_2 , since $\dim W_2 = 2$. End up with a basis $\beta = \{v_1, ..., v_n\}$ such that $W_k = span \{v_1, ..., v_k\} \ 1 \le k \le n$

Find
$$[T]_{\beta}$$
, $Tv_1 \in W_1$ since $(TW_1 \subseteq W_1)$
 $\therefore Tv_1 = a_{11}v_1$
 $Tv_2 \in W_2$
 $\therefore Tv_2 = a_{22}v_2 + a_{12}v_1$
 $T_{v_k} \in W_k$
 $T_{v_k} \in \sum_{i=1}^k a_{ik}v_i$
So $[T]_{\beta} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ 0 & a_{22} & a_{23} & \cdots \\ 0 & 0 & a_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$ is triangular

Proof

Already proved $1 \Rightarrow 2, 1 \Rightarrow 3, \text{ and } 3 \Rightarrow 1$ Let's show $2 \Rightarrow 1$ by induction on n. $n = 1: T = [a]_{1 \times 1}$ is always upper triangular n > 1: assume theorem for n - 1 $P_T(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n)$ λ_1 is an eigenvalue of T So we can find an eigenvector $v_1 \neq 0$ so $Tv_1 = \lambda_1 v_1$ Extend v_1 to a basis $\beta_1 = \{v_1, w_2, w_3, \dots, w_n\}$ Express T in this basis. $[T]_{\beta_1} = \begin{bmatrix} \lambda_1 & b_{12} & \dots & b_{1n} \\ 0 & & \\ \vdots & & T_1 \end{bmatrix}$ $P_T(x) = \det(xI_n - T) = \det\left(\begin{bmatrix} x - \lambda_1 & -b_{12} & \dots & -b_{1n} \\ 0 & & \\ \vdots & & xI_{n-1} - T_1 \end{bmatrix} \right) = (x - \lambda_1)|xI_{n-1} - T_i|$ $= (x - \lambda_1)P_{T_1}(x)$

 $P_T(x) = (x - \lambda_1)P_{T_1}(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n)$ $\therefore P_{T_1}(x) = (x - \lambda_2) \dots (x - \lambda_n)$ So $P_{T_1}(x)$ factors into linear terms. By the induction hypothesis, $W = span \{ w_2, \dots, w_n \}$ has another

basis
$$\beta' = \{v_2, \dots, v_n\}$$
 so that $[T_1]_{\beta} = \begin{bmatrix} a_{22} & \dots & a_{2n} \\ 0 & \dots & a_{3n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{n_n} \end{bmatrix}$ is upper triangular.
So $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and
 $[T]_{\beta_1} = \begin{bmatrix} \lambda_1 & a_{12} & \dots & a_{1n} \\ a_{22} & \dots & a_{2n} \\ 0 & 0 & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n_n} \end{bmatrix}$
So $[T]_{\beta}$ is upper triangular \blacksquare

Cayley-Hamilton Theorem

September-23-11 9:56 AM

Cayley-Hamilton Theorem $T \in \mathcal{L}(V)$, then $p_T(T) = 0$

Computational Aside

If $T = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$, block upper triangular. $T^2 = \begin{bmatrix} A^2 & AB + BD \\ 0 & D^2 \end{bmatrix}$ $T^3 = \begin{bmatrix} A^3 & A^2B + 2ABD + BD^2 \\ 0 & D^3 \end{bmatrix}$ $T^{k} = \begin{bmatrix} A^{k} & * \\ 0 & D^{k} \end{bmatrix}$ $p(x) = a_{0} + a_{1}x + \dots + a_{d}x^{d}$ p(T) $= \begin{bmatrix} a_{0}I_{k} & 0 \\ 0 & a_{0}I_{n-k} \end{bmatrix} + \begin{bmatrix} a_{1}A & * \\ 0 * a_{1}D \end{bmatrix} + \dots$ $+ \begin{bmatrix} a_{d}A^{d} & * \\ 0 & a_{d}D^{d} \end{bmatrix} = \begin{bmatrix} p(A) & * \\ 0 & p(D) \end{bmatrix}$

Example $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $p_T(x) = x^2 + 1 \text{ does not factor over } \mathbb{R} \text{ so it is not triangularizable over } \mathbb{R}$ It does factor over ${\mathbb C}$ so it is triangularizable over ${\mathbb C}$ $T \sim \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix},$ ~ similar

$$p_{T(T)} = T^2 + I = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

Example

$$T = \begin{bmatrix} 2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1 \end{bmatrix}$$

$$p_T(x) = \begin{vmatrix} x-2 & -3 & -5 \\ 1 & x+3 & 4 \\ 0 & -1 & x-1 \end{vmatrix} = (x-2)((x+3)(x-1)+4) - 1((-3)(x-1)-5) = x^3$$

$$x^3$$
 splits into linear terms so T is triangularizable
$$\sigma(T) = \{0\}$$
- look for kernel

$$\begin{bmatrix} 2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

ker $T = \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$
Take new basis $v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
 $v_2 \mapsto \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + (-6) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
 $v_3 \mapsto \begin{pmatrix} 5 \\ -4 \\ 1 \end{bmatrix} = 5 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - 9 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 6 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
 $T_{\beta_1} = \begin{bmatrix} 0 & 3 & 5 \\ 0 & -6 & -4 \\ 0 & 4 & 6 \end{bmatrix}$
 $T_1 = \begin{bmatrix} -6 & -9 \\ -6 & -9 \\ -2 \end{pmatrix}, p_{T_1}(x) = x^2$
ker $T_1 = \mathbb{R} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

New bases

New bases $w_{1} = v_{1} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, w_{2} = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix}, w_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $Tw_{2} = \begin{bmatrix} 2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = -w_{1}$ $Tw_{3} = \begin{pmatrix} 5 \\ -4 \\ 1 \\ -1 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $T_{\beta} = \begin{bmatrix} 0 & -1 & 5\\ 0 & 0 & -3\\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} T \\ \rho \end{bmatrix}_{\beta} \text{ is upper triangular, diagonal entries all 0 since roots of } p_{T}(x) = x^{3} \text{ are } 0, 0, 0$ $\begin{bmatrix} T^{2} \\ \rho \end{bmatrix}_{\beta} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} T^{3} \\ \rho \end{bmatrix}_{\beta} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} T^{3} \\ \rho \end{bmatrix}_{\beta} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $T^3 = 0 = p_T(T)$

Proof of Cayley-Hamilton Theorem

First assume $p_T(x)$ splits into linear factors.

Apply triangular theorem, find basis to triangularize T. So wlog, T is triangular $p_T(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n)$

Proceed by induction on n. n=1 $T = [\lambda_1], p_T(x) = x - \lambda_1, p_T(T) = T - \lambda_1 I = [\lambda_1] - [\lambda_1] = 0$ Assume for k < nWrite $T = \begin{bmatrix} \lambda_1 & t_{12} & \dots & t_{1n} \\ 0 & & & \\ 0 & & & T_1 \end{bmatrix}$ From the proof of triangularizability $p_{T_1} = (x - \lambda_2)(x - \lambda_2) \dots (x - \lambda_n)$ By the induction hypothesis $p_{T_1}(T_1) = 0$

$$p_T = (x - \lambda_1) P_{T_1}(x)$$

$$P_T(T) = (T - \lambda_1 I) P_{T_1}(T) = \begin{bmatrix} 0 & * \\ 0 & T_1 - \lambda_1 I \end{bmatrix} P_{T_1} \left(\begin{bmatrix} \lambda_1 & * \\ 0 & T_1 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & T_1 - \lambda_1 I \end{bmatrix} \begin{bmatrix} p_{T_1}(\lambda_1) & * \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= 0$$

So by induction $p_T(T) = 0$. For algebraically closed fields.

In general, $p_T(x)$ does not split on $\mathbb{F}[x]$ but there is always a bigger field $\mathbb{G} \supseteq \mathbb{F}$ so that $p_T(x)$ splits

In general, $p_T(x)$ does not split on $\mathbb{F}[x]$ but there is always a bigger held $\mathbb{G} \supseteq \mathbb{F}$ on $\mathbb{G}[x]$ $T = [t_{ij}] \in M_n(\mathbb{F})$ Can think of T as an element of $M_n(\mathbb{G})$. $p_T(x)$ splits in $\mathbb{G}[x] : p_T(T) = 0$ But the calculation of $p_T(T)$ happens over \mathbb{F} since all the coefficients $a_k \in \mathbb{F}[x]$ So $p_T(x) = a_0 I + a_1 T + \dots + a_n T^n$, this is all in $M_n(\mathbb{F})$ $\therefore p_T(T) = 0$ in $M_n(\mathbb{F})$

Ideals

September-26-11 9:31 AM

Look at $\mathbb{F}[x]$ - the ring of polynomials with coefficients in \mathbb{F}

Ideal

An ideal in $\mathbb{F}[x]$ is a non-empty subset $J \subseteq \mathbb{F}[x]$ which is 1) a subspace 2) if $p \in J$ and $q \in \mathbb{F}[x]$ then $pq \in J$

Principal Ideal

A principal ideal is an ideal of the form $(p_0) = \{p_0 q : q \in \mathbb{F}[x]\}$

Theorem

Every ideal in $\mathbb{F}[x]$ is principal

Lemma

 $T \in \mathcal{L}(V)$ $J = \{p \in \mathbb{F}[x]: p(T) = 0\}$ is a non-zero ideal in $\mathbb{F}[x]$

Corollary ${p: p(T) = 0} = (m_T)$

Minimal Polynomial

The unique monic polynomial $m_T(x)$ generating $\{p: p(T) = 0\}$ is the minimal polynomial of T

Theorem

 $T \in \mathcal{L}(V)$

Then $m_T(x)$ has the same roots as $p_T(x)$, namely $\sigma(T)$, except for multiplicity. Furthermore, it also has the same irreducible polynomial factors.

Principal Ideal

Check that (p_0) is an ideal 1. $p_0, p_r \in (p_0), \lambda \in F$ then $p_oq + p_or = p_o(q+r) \in p_o$ $\lambda(p_0q) = p_o(\lambda q) \in p_o$ \therefore (p_0) is a vector space

2. If $p_0 q \in (p_0), r \in \mathbb{F}[x]$ then $(p_oq)r=p_0(qr)\in p_o$

Proof

Let J be an ideal of $\mathbb{F}[x]$. If $J = \{0\}$, then J = (0). Otherwise let p_o be a monic polynomial in J of minimal degree. $p_0 = x^d + a_{d-1}x^{d-1} + \dots + a_0$

Let q be any non-zero element of J. Use the division algorithm to divide p_0 into q. $q = p_0 q_1 + r$, deg $(r) < deg(p_0)$, but p_0 was the element of smallest degree. \therefore by minimality, r = 0, so $q = p_0 q$. $\therefore J = (p_0)$ *monic generator is unique

Proof of Lemma

 $p_T \in J$, so $J \neq \{0\}$ (by Cayley-Hamilton)

If $p, q \in J, \lambda \in \mathbb{F}[x]$ (p+q)(T) = p(T) + q(T) = 0 $(\lambda p)(T) = \lambda p(T) = 0$ ∴subspace

 $p \in I, q \in \mathbb{F}[x]$ then $(pq)(T) = p(T)q(T) = 0 \blacksquare$

Example

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$p_T(x) = x^4, m_T(x) = x^2$$

T = diag(1,1,2,2,2,3)

 $p_T(x) = (x-1)^2(x-2)^3(x-3)$ $m_T(x) = (x-1)(x-2)(x-3)$

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$p_T(x) = (x - 1)^3$$

$$m_T | p_T \text{ so } m_T(x) = (x - 1)^d, d \in \{1, 2, 3\}$$

$$T - I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(T - I)^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(T - I)^3 = 0$$

$$\therefore m_T = p_T = (x - 1)^3$$

Proof of Theorem

 $m_T | p_T \text{ so } roots(m_T) \subseteq roots(p_T) = \sigma(T)$ If λ is an eigenvalue of T $\exists v \neq 0$ eigenvector $Tv = \lambda v$ $\therefore T^k v = \lambda^{\bar{k}} v, \forall k \ge k$ $\Rightarrow p(T)v = p(\lambda)v$ So $0 = m_T(T)v = m_T(\lambda)v$, $\therefore m_T(\lambda) = 0$ So $roots(m_T) \supseteq \sigma(T)$ \therefore roots $(m_T) = roots(p_T) = \sigma(T)$

Remark

Over a non-algebraically closed field $\mathbb F$ this proof does not show the stronger fact that the same irreducible factors will be in both p_T and m_T

Possible Problem

 $T\in\mathcal{L}(\mathbb{R}^4)$ $p_T(x) = (x^2 + 1)^2$ $m_T | p_T, m_T \neq 1$ $\therefore m_T = x^2 + 1, or (x^2 + 1)^2$

If we can calculate $T \in \mathcal{L}(\mathbb{C}^4)$ then m_T can be $x^2 + 1$, $(x^2 + 1)^2$, $(x^2 + 1)(x - i)$, or $(x^2 + i)(x - i)$. 1(x + i)Calculate $m_T(T)$ using a real basis Take $p(x) = (x^2 + 1)(x - i)$ $0 = p(T) = (T^2 + I)(T_{iI}) = (T^2 + I)T - i(T^2 + I) = 0 + i0$ $T^2 + I = 0$

Better Proof of Theorem

The minimal polynomial $m_T(x)$ of $T \in \mathcal{L}(V)$ has degree of d if $\{I, T, T^2, ..., T^{d-1}\}$ is linearly independent, but $\{I, T, T^2, ..., T^d\}$ is linearly dependent. $m_T(x)$ is given the unique way to express T^d as $\sum_{i=0}^{d-1} a_i T^i$

$$T^{d} = \sum_{i=0}^{d-1} a_{i}T_{i}$$

$$T^{d+k} = \sum_{i=0}^{d-1} a_{i}T^{i+k} = \sum_{i=0}^{d-1} b_{i}T_{i}$$

$$\therefore A(T) = span \{ I, T, T^{2}, ..., \} = span \{ I, T, T^{2}, ..., T^{d-1} \}$$

 $\therefore d = \dim(A)$

This unique way to express m_T does not depend on a larger field. $\therefore m_T(x)$ is unchanged if we enlarge the base field so that $p_T(x)$ splits.

Diag. & Nilpotent

September-28-11 9:45 AM

Theorem

 $T \in \mathcal{L}(V) \text{ and } p_T(x) \text{ splits then}$ T is diagonalizable $\Leftrightarrow m_T(x) \text{ has only simple roots.}$ *i. e.* $m_T(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_k)$ where $\sigma(T) = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$

Lemma

 $A, B \in \mathcal{L}(V)$ $nul(AB) \le nul(A) + nul(B)$

Nilpotent Matrices

 $T \in \mathcal{L}(V)$ is **nilpotent of order k** if $T^k = 0$ and $T^{k-1} \neq 0$

Proof of Theorem

" \Rightarrow " $T = diag(c_1, c_2, ..., c_n)$ $\sigma(T) = \{\lambda_1, \lambda_2, ..., \lambda_k\}$ Rearrange bases so $T = diag(\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., \lambda_k, ..., \lambda_k)$ $m_T(x)$ has $\lambda_1, ..., \lambda_k$ as roots $(T - \lambda_1 I)(T - \lambda_2 I) ...(T - \lambda_k I)$ $diag(0, ..., 0, \lambda_2, ..., \lambda_2, ..., \lambda_k, ..., \lambda_k) *$ $diag(\lambda_1, ..., \lambda_1, 0, ..., 0, ..., \lambda_k, ..., \lambda_k) *$ $diag(\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_2, ..., 0, ..., 0) = diag(0, ..., 0) = 0$ $\therefore m_T(x) = (x - \lambda_1) ...(x - \lambda_k)$

? 2nd Proof of \Rightarrow

$$\operatorname{nul}(T - \lambda_i) = |\{c_j : c_j = \lambda_i\}|$$
$$\sum_{i=1}^k \operatorname{nul}(T - \lambda_i I) = \sum_{i=1}^k |\{c_j : c_j = \lambda_i\}| = |\{c_j\}| = n$$
$$\operatorname{ker} \prod_{i=1}^k (T - \lambda_i I) \supseteq \sum \operatorname{ker}(T - \lambda_i I) = V$$

" ⇐ "

Proof of Lemma

 $\ker(AB) \supseteq \ker B$ $\operatorname{chose} a \operatorname{basis} v_1, \dots, v_b \text{ for } \ker B, b = nul(B)$ $\operatorname{Extend} to a \operatorname{basis} \operatorname{for } \ker(AB): v_1, \dots, v_b, v_{b+1}, \dots, v_{b+c}$ $\operatorname{span}\{v_{b+1}, \dots, v_{b+c}\} \cap \operatorname{span}\{v_1, \dots, v_b\} = \{0\}$ $\operatorname{So} B \mid \operatorname{span}\{v_{b+1}, \dots, v_{b+c}\} \text{ is injective (1-1)}$ $\operatorname{B} \operatorname{maps} \operatorname{sp}\{v_{b+1}, \dots, v_{b+c}\} \text{ into } \ker A$ $\therefore nul A = \dim \ker A \ge \dim \operatorname{span}\{v_{b+1}, \dots, v_{b+c}\}$ $nul AB = b + c = nul(B) + c \le nul(B) + nul(A)$

Back to Theorem

By hypothesis $0 = m_T(T) = (T - \lambda_1)(T - \lambda_2 I) \dots (T - \lambda_k I)$ $n = nul(m_T(T)) \le \sum_{i=1}^k nul(T - \lambda_i I)$ but know that $\sum_{i=1}^k \ker(T - \lambda_i I)$ is a direct sum, so $\sum_{i=1}^k nul(T - \lambda_i I) = \dim\left(\sum \ker(T - \lambda_i I))\right) \le n$

Example of Nilpotent

 $T = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, T^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ {0} $\subset \ker T \subset \ker T^2 = R^2$ ker $T = \mathbb{R} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Chose a new basis $v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $Tv_1 = 0, Tv_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = v_1$ $\beta = \{v_1, v_2\}$ $[T]_{\beta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Example $T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$T^{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T^{3} = 0$$

$$T^{d} = 0 \Rightarrow T^{n} = 0, p_{T}(x) = x^{n}$$

$$\{0\} \subset \ker T \subset \ker T \subset \ker T^{2} = \mathbb{R}^{3}$$

$$\ker T = \mathbb{R} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\ker T^{2} = span \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$[T]_{\beta} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Jordan Nilpotent

September-30-11 9:41 AM

Jordan Nilpotent

The Jordan nilpotent of order k is $J_k = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{bmatrix}_{k \times k}$ *i. e.* There is a basis e_1, e_2, \dots, e_k and $J_k e_i = e_{i-1} \ 2 \le i \le k$ $J_k e_1 = 0$

We can get a lot of nilpotent matrices by taking direct sums of Jordan nilpotents (Canonical form) : $n_1 \le n_2 \le \dots \le n_k$ $J_{n_1} \bigoplus J_{n_2} \bigoplus \dots \bigoplus J_{n_k}$

Complement

If subspace $W_1 \subseteq V$ then a complement of W_1 in V is a subspace $W_2 \subseteq V$ s.t. $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. i.e. $V = W_1 + W_2$

Extension

Suppose $W_1, W_2 \subseteq Y \subseteq V$ $W_1 \cap W_2 = \{0\}$ but $W_1 + W_2 \subset Y$ Can find $W_3 \supset W_2$ s.t. $Y = W_1 \dotplus W_3$

Note: Nimpotence

If T is nimpotent of order k, then $m_T(x) = x^k$ and $p_T(x) = x^n$, $n = \dim V$

Theorem

 $T \in \mathcal{L}(V)$ is nilpotent \Leftrightarrow there is a basis in which T is strictly block upper triangular

Complement Example

Suppose $V = \mathbb{R}^3$ $W_1 = span \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ then $W_2 = sp \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a complement but $W_2' = sp \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$ is also a complement In general $W_2'' = span \left\{ \begin{bmatrix} * \\ * \\ 1 \end{bmatrix} \right\}$

Find a Complement

To find a complement, choose a basis for W_1 , say $\{v_1, \dots, v_k\}$ extend to a basis of V $\{v, \dots, v_k, v_{k+1}, \dots, v_n\}$ let $W_2 = span \{v_{k+1}, \dots, v_n\}$ Then W_2 is a complement of W_1

Proof of Extension

Same proof:

Chose basis for W_1 , W_2 combine and extend to basis for Y. Remove W_1 basis and have remainder is span of W_3

Proof of Nimpotence note

 $T^{k} and T^{k-1} \neq 0$ $q(x) = x^{k}$ $\Rightarrow q(T) = 0 \therefore q \in J = \{p(x): p(T) = 0\} = (m_{T}) = \{m_{T}(x)r(x)\}$ So $m_{T} \mid x^{k} \therefore m_{T}(x) = x^{d}$ for some $d \leq k$ But $T^{k-1} \neq 0$ so $d \geq k \therefore m_{T}(x) = x^{k}$

 $p_T(x)$ has the same roots $\therefore 0$ is the only root of p_T deq $(p_T) = n \therefore p_T(x) = x^n$

Proof of Theorem

 \Rightarrow Look at $V_0 = \{0\}, V_1 = \ker T, \dots, V_i = \ker T^i, \dots, V_k = \ker T^k = V$ $\{0\} = V_0 \subset V_1 \subset \dots \subset V_k = V$

If I choose a basis v_1, \ldots, v_{n_1} for V_1 and extend to basis $v_1, \ldots, v_{n_1}, v_{n_1+1}, \ldots, v_{n_2}$ And so on to $v_1, \ldots, v_{n_1}, v_{n_1+1}, \ldots, v_{n_2}, \ldots, v_{(n_{k-1}+1)}, \ldots, v_{n_k}$

T is block upper triangular with diagonal blocks = 0. \leftarrow Strictly block upper triangular Conversely, if $[T]_{\beta}$ is strictly block upper triangular then T is nilpotent

$$\begin{split} & \text{Suppose } T = J_{n_1} \bigoplus J_{n_2} \bigoplus \cdots \bigoplus J_{n_k} \\ & n_1 \leq n_2 \leq \dots \leq n_k \\ & \text{ker } J_n = \mathbb{F} e_1 \\ & \text{ker } J_n^2 = sp\{e_1, e_2\} \\ & \text{ker } J_n^i = sp\{e_1, \dots, e_i\} \end{split}$$
 $nul (J_n^i) = \begin{cases} i \text{ if } i \leq n \\ n \text{ if } i > n \end{cases}$ $nul (J_{n_1} \bigoplus \dots \bigoplus J_{n_k}) = k$ $nul (J_{n_1} \bigoplus \dots \bigoplus J_{n_k})^2$

Example

 $T = J_1 \oplus J_1 \oplus J_2 \oplus J_5 \oplus J_7$ nul (T) = 5, nul(T²) = 8, nul(T³) = 10, nul(T⁴) = 12, nul(T⁵) = 14, nul(T⁶) = 15, nul(T⁷) = 16 $= \dim V$

 $\begin{aligned} nul\left(T^{i}\right) - nul(T^{i-1}) &= |\{n_{j}: n_{j} \geq i\}| = |\{n_{j}: n_{j} = i\}| + |\{n_{j}: n_{j} > i\}| \\ &= |\{n_{j}: n_{j} = i\}| + |\{n_{j}: n_{j} \geq i + 1\}| = |\{n_{j}: n_{j} = i\}| + nul(T^{i+1}) - nul(T^{i}) \\ &\therefore |\{n_{j}: n_{j} = i\}| = 2 \ nul\left(T^{i}\right) - nul\left(T^{i+1}\right) - nul\left(T^{i-1}\right) \end{aligned}$

Nilpotent Jordan Canonical Form

October-03-11 9:37 AM

Theorem

 $T \in \mathcal{L}(V)$ nilpotent of order k, then T is similar to a direct sum of Jordan nilpotents. $T \sim J_{n_1} \bigoplus J_{n_2} \bigoplus \cdots \bigoplus J_{n_s}$ $k = n_1 \ge n_2 \ge \dots \ge n_s$ Moreover, $|\{n_i = j\}| = 2nul(T^j) - nul(T^{j+1}) - nul(T^{j-1})$

Proof of Theorem

(taken from Herstein, Intro to Alg) Induction on $n = \dim V$ $n = 1: T = [0] = J_1$

Now assume it holds for dim V < n $T^k = 0 \neq T^{k-1}$ $\exists u_1 \in V \ s.t.T^{k-1}u_1 \neq 0$

Claim

 $\{u_1, Tu_1, T^2u_1, \dots, T^{k-1}u_1\}$ is linearly independent. $If \ 0 = \sum_{i=1}^{k-1} a_i T^i u_1, \qquad a_i \text{ not all zero, } then \ \exists i_0 \ s. t. \ a_i = 0 \ \forall i < i_0, a_{i_0} \neq 0$ $0 = T^{k-i_0-1} \left(\sum_{i=0}^{\infty} a_i T^i u_1 \right) = a_{i_0} T^{k-1} u_1 + a_{i_0+1} T^k u_1 \dots = a_{i_0} T^{k-1} u_1$ $T^{k-1}u_1 \neq 0 \Rightarrow a_{i_0} = 0$: linearly independent Let $U = sp\{u_1, Tu_1, ..., T^{k-1}u_1\}$ dim U = k, $TU \subseteq U$ $A = T \Big|_{U}$ $A \begin{cases} (T^{i}u_{1}) = T^{i+1}u_{1} \ 0 \leq i < k-1 \\ (T^{k-1}u_{1}) = 0 \end{cases}$ $\therefore A \sim J_k$ Need to find subspace W s.t. 1) $U \cap W = \{0\}$ 2) U+W=V3) $TW \subseteq W$ $\Rightarrow V = U + W$ $\Rightarrow T \sim T \Big|_{U} \oplus T \Big|_{W}$ $0 = T^{k} = \left(T \Big|_{U}\right)^{k} \oplus \left(T \Big|_{W}\right)^{k}$ $B = (T |_{W})$ is nilpotent of order $\leq k$ By induction, $B \sim J_{n_2} \oplus J_{n_3} \oplus \cdots \oplus J_{n_s}$ $\therefore T \sim J_k \oplus J_{n_2} \oplus \cdots \oplus J_{n_s}$ Take a maximal subspace W satisfying 1) $U \cap W = \{0\}$ 2) $TW \subseteq W$ So $U \stackrel{.}{+} W$ is direct Claim: If $Tv \in U + W$, so $Tv = u + w u \in U$, $w \in W$ then $u = \sum_{i=1}^{k-1} a_i T^i u_1$ Let $u = \sum_{i=0}^{k-1} a_i T^i u_1$ Tv = u + w $\stackrel{.}{.} 0 = T^{k-1}(Tv) = T^{k-1}u + T^{(k-1)}w$ $\in U \quad \in W \quad \text{because } TU \subseteq U, TW \subseteq W$ $U \cap W = \{0\} \therefore T^{k-1}u = 0, T^{k-1}w = 0$ $0 = T^{k-1} a_0 u_1 \Rightarrow a_0 = 0$ Claim U + W = VSuppose otherwise. Pick $v \notin U + W$ Look at $v \notin U + W, Tv, T^2v, \dots, T^{k-1}v, T^kv = 0 \in U + W$ $\begin{aligned} & \text{LOOK at } v \notin 0 + w, Iv, I^{-v}, ..., I^{-v} v, ..., I^{-v} v \\ & \therefore \exists v_1 = T^i v \notin U + W, but \ Tv_1 \in U + W \\ & Tv_1 = u_2 + w_2, u_2 \in U, w_2 \in W \\ & u_2 = \sum_{i=1}^{k-1} a_i T^i u_1 = T \left(\sum_{i=0}^{k-2} a_{i+1} T^i u_1 \right) = Tu_3 \end{aligned}$ Let $v_2 = v_1 - u_3 \notin U + W$ $Tv_2 = Tv_1 - Tu_3 = (u_2 + w_2) - u_2 = w_2 \in W$ Let $W' = span \{W, v_2\} \supset W$ $TW' = span \{TW, Tv_2\} \subseteq W \subseteq W'$ $W' \cap U = \{0\}$

(otherwise $\alpha v_2 + w \in W = u \in U \Rightarrow \alpha = u - w \in U + W \Rightarrow \alpha = 0 \Rightarrow W = 0, U = 0$

So W is not maximal w.r.t 1), 3) a contradiction. So $U + W = V \therefore V = U \stackrel{.}{+} W$ This completes the proof. ■

2nd Proof

More constructive Let $N_i = \ker T^i \ 0 \le i \le k$ $\{0\}=N_0\subset N_1\subset N_2\subset\cdots\subset N_k=V$ Choose a complement W_k to N_{k-1} : $N_{k-1} + W_k = V$ Choose a basis w_1, \ldots, w_{r_1} for W_k $w_j, T_{w_i}, \dots, T^{k-1}w_j$ all non-zero As first proof, they are linearly independent

$$T\Big|_{span\{w_j,\dots,T^{k-1}w_j\}} \sim J_k$$

Claim

 $Tw_1, Tw_2, \dots, T_{w_r}$ are linearly independent, and $sp\{Tw_1, \dots, T_{w_r}\} \cap N_{k-2} = \{0\}$

Proof

Suppose
$$\sum_{i=1}^{r} a_i T w_i = v \in N_{k-2}$$

 $\therefore T^{k-2} \sum_{i=1}^{r} a_i T w_i = T^{k-2} v = 0 = T^{k-1} \left(\sum_{i=1}^{r} a_i w_i \right)$
 $\therefore \sum_{i=1}^{r} a_i w_i \in N_{i-1} \cap W_k = \{0\}$
 $\{w_i\} \text{ lin. indep. } \Rightarrow a_i = 0$

 $\therefore \{Tw_i\} lin. independent, sp\{Tw_1, \dots, Tw_{r_1}\} \cap N_{k-2} = \{0\}$

$$\begin{split} & N_{k-2} \dotplus sp\{Tw_1, \dots, Tw_{r_1}\} \subseteq N_{k-1} \\ & \text{Find } W_{k-1} \text{ s.t. } N_{k-2} \dotplus span\{Tw_1, \dots, Tw_{r_1}\} \dotplus W_{k-1} = N_{k-1} \\ & \text{Choose a basis for } W_{k-1}\{w_{r_1+1}, \dots, w_{r_2}\} \end{split}$$

Claim

Suppose $N_j = N_{j-1} + U_{j,j} \ge 2$. U_j has basis u_1, \dots, u_m then $\{Tu_1, \dots, Tu_m\}$ is linearly independent and $sp\{Tu_1, \dots, Tu_m\} \cap N_{j-2} = \{0\}$ **Proof** If $\sum_{i=1}^m a_i Tu_i = v \in N_{j-2} \Rightarrow T^{j-2} \left(\sum a_i Tu_i\right) = T^{j-2}v = 0 \Rightarrow T^{k-1} \left(\sum a_i u_i\right)$ $\Rightarrow \sum a_i u_i \in N_{j-1} \cap U_j = \{0\}$

 $\therefore a_i = 0, v = 0$

Then I can extend $\{Tu_1, ..., Tu_m\}$ to a complement of N_{j-2} inside N_{j-1} by adding new basis vectors $v_{r_{k-j+1}}, ..., v_{r_{k+1-j}}$

This process builds the Jordan form. Get dim $V - \dim(N_{k-1})$ blocks of length k Our formula was $2nul(T^k) - nul(T^{k+1}) - nul(T^{k-1}) = 2n - n - \dim(N_{k-1}) = \dim V - \dim(N_{k-1})$ $N_j = N_{j-1} + U_j$ dim $U_j = \dim N_j - \dim N_{j-1} = \#$ of Jordan blocks of size $\ge j$ $nul(T^j) - nul(T^{j-1}) = |\{n_j \ge j\}|$ $nul(T^{j+1}) - nul(T^j) = |\{n_i > j\}|$ $2 nul(T^j) - nul(T^{j+1}) - nul(T^{j-1}) = |\{n_i = j\}|$

The Algebra of Nilpotent Transformation

October-05-11 10:05 AM

Homomorphism

A homomorphism between two algebras A and B over a ring K is a map $F: A \rightarrow B$ with the following properties: $\forall k \in K, x, y \in A$

1) F(xk) = kF(x)

2) F(x + y) = F(x) + F(y)3) F(xy) = F(x)F(y)

Modulo Polynomials

If $m \in \mathbb{F}[x]$, (m) ideal of all multiples of m. Say $p \equiv q \mod(m)$ if $p - q \in (m) \equiv m | (p - q)$ Make $\mathbb{F}[x]/(m)$ into a ring. Elements are equivalence classes. $[p] = \{q \equiv p \mod (m)\}$ $[p] \pm [q] = [p \pm q]$ $\lfloor p \rfloor \lfloor q \rfloor = \lfloor pq \rfloor$

Check that this is well-defined.

If $p_1 \equiv p_2 \mod(m), q_1 \equiv q_2 \mod(m)$ $(p_1 \pm q_1) - (p_2 \pm q_2) = (p_1 - p_2) + (q_1 - q_2) \in (m)$ $p_1 \pm q_1 \equiv p_2 \pm q_2$ $p_2q_2 - p_1q_1 = (p_2 - p_1)q_2 + p_1(q_2 - q_1) \in (m)$ $p_2q_2 \equiv p_1q_1$

Algebra

An algebra is a set A which is

- 1) A vector space over a field \mathbb{F}
- 2) Has an associative multiplication
- 3) Distributive law

 $a(x\pm y)=ax\pm ay\,,$ $a, x, v \in A$ $\lambda(x+y) = \lambda x + \lambda y,$ $\lambda \in \mathbb{F}$

Algebra of Nilpotent Transformation $T \in \mathcal{L}(V)$

 $A(T) = sp\{I, T, T^2, T^3, ...\} = \{p(T) : p \in \mathbb{F}[x]\}$ There is a map from $\mathbb{F}[x] \to A(T),$ $\Phi: p \mapsto p(T)$

This is a homomorphism. i.e. $\alpha, \beta \in \mathbb{F}, p, q \in \mathbb{F}[x]$ $(\alpha p + \beta q) \mapsto (\alpha p + \beta q)(T) = \alpha p(T) + \beta q(T)$ $(pq) \mapsto (pq)(T) = p(T)q(T)$

Lemma

If $T^d = 0 \neq T^{d-1}$, $p \in \mathbb{F}[x]$ then

1) p(T) is invertible $\Leftrightarrow p(0) \neq 0$

2) $p(T) = 0 \Leftrightarrow x^d | p$

Equivalence Class

$$\begin{split} T &= J_k = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ & \ddots & \ddots \\ & 0 & 1 \\ & & 0 & 1 \\ & & & 0 & 1 \\ & & & 0 & 1 \\ & & & 0 & 1 \\ & & & & 0 & 1 \end{bmatrix}_{k \times k} \\ p(T) &= a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m \\ &= \begin{bmatrix} a_0 & \ddots & & \\ & a_0 \end{bmatrix} + \begin{bmatrix} 0 & a_1 & & \\ & \ddots & \ddots & \\ & & 0 & a_1 \\ & \ddots & \ddots & \vdots \\ & & a_0 & a_1 \\ & & & a_0 \end{bmatrix} + \dots + \begin{bmatrix} 0 & \dots & a_{k-1} \\ & \ddots & & \vdots \\ & & & 0 \end{bmatrix} \\ &= \begin{bmatrix} a_0 & a_1 & \dots & a_{k-1} \\ & \ddots & \ddots & & \vdots \\ & & a_0 & a_1 \\ & & & a_0 \end{bmatrix} \\ &\text{If q is some polynomial } q(x) = b_0 + b_1 x + \dots + b_m x^m \\ p(T) &= q(T) \\ &\Leftrightarrow a_i = b_i \text{ for } 0 \leq i \leq k-1 \\ &\Leftrightarrow x^k | (p(x) - q(x)) \\ &\Leftrightarrow p \equiv q \mod (x^k) \end{split}$$

Algebra of Nilpotent Transformation Explanation

 $T^d = 0 \neq T^{d-1}$

map is linear, preserves product Show $p(T) = \Phi(p) = \Phi(q) = q(T) \Leftrightarrow p - q \in (x^d) \Leftrightarrow x^d | p - q$

 $m \in \mathbb{F}[x]$ $\mathbb{F}[x]/(m)$ is a "quotient ring" of polynomials modulo m. $p \equiv q \Leftrightarrow m | p - q$ $\Psi: \mathbb{F}[x] \to \mathbb{F}[x]/(x^d)$ is a homomorphism Showed if $p_1 \equiv p_2, q_1 \equiv q_2 \pmod{x^d}$ then $\alpha p_1 + \beta q_1 \equiv \alpha p_2 + \beta q_2$ and $p_1 q_1 \equiv p_2 q_2 \pmod{x^d}$ ∴ maps are well defined

 $\ker \Phi = (x^d) = \ker \Psi$ $\mathbb{F}[x] \rightarrow \Phi A(T)$ $\mathbb{F}[x] \to^{\Psi} \mathbb{F}[x]/(x^d)$ $\mathbb{F}[x] \to^{\Phi^{\sim}} A(T)$ Can defined Φ^{\sim} by $\Phi^{\sim}(\lfloor p \rfloor) = p(T)$ Well defined $p_1 \equiv p_2 \pmod{x^d}$ then $x^d | p_1 - p_2$ $(p_1 - p_2)(x) = x^d r(x)$ $p_1(T) - p_2(T) = T^d r(T) = 0$ $\therefore p_1(T) = p_2(T)$ $\therefore \Phi^{\sim}$ is well defined

Claim: Φ^{\sim} is 1-1 and onto $\Phi^{\sim}([p]) = 0 \Leftrightarrow p(T) = 0$

Proof

2) $p_T(x) = x^d$

 $p(T)=0 \Leftrightarrow x^d p$ 1) Write $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$, $p(0) = a_0$

If $p(0) = a_0 = 0$ then p(x) = xq(x) $\therefore p(T) = Tq(T)$ T is not invertible $\therefore p(T)$ is not invertible

If $p(0) = a_0 \neq 0$

 $p(x) = a_0 \big(1 + xq(x) \big)$ $p(T) = a_0 \big(I + Tq(T) \big)$

Proof 1:

T upper triangular, 0 on diagonal $p(T) = \begin{bmatrix} a_0 & \dots \\ & \ddots \\ & \ddots \end{bmatrix}$ a_0

 $\therefore \sigma(p(T)) = \{a_0\} \neq 0 \therefore invertible$

Proof 2:

Let
$$\beta = a_0^{-1} \left(I - Tq(T) + (Tq(T))^2 - \dots + (-1)^d T^d q(T)^d \right)$$

 $p(T)\beta = a_0 \left(I + T(q(T)) \right) \frac{1}{a_0} \left(I - Tq(T) + (Tq(T))^2 - \dots + (-1)^d T^d q(T)^d \right)$
 $= I - Tq(T) + (Tq(T))^2 - \dots + (-1)^d T^d q(T)^d + Tq(T) - (Tq(T))^2 - \dots + (-1)^d T^{d+1} q(T)^{d+1} = I$

 Φ^{\sim} is 1-1 Φ^{\sim} is onto, $\Phi^{\sim}(\lfloor p \rfloor) = p(T) \in A(T)$

If $\Phi^{\sim}([p]) = \Phi^{\sim}([q]) \Leftrightarrow \Phi^{\sim}([p-q]) = 0 \Leftrightarrow x^{d} | p - q \Leftrightarrow [p-q] = 0 \Leftrightarrow [p] = [q]$ Φ^{\sim} is an isomorphism (It is a bijection, homomorphism, and Φ^{\sim} is a homomorphism)

Jordan Forms

October-07-11 10:09 AM

Jordan Block

A Jordan block is a matrix
$$J(\lambda, k) = \lambda I_k + J_k = \begin{bmatrix} \lambda & 1 & \dots \\ \ddots & \ddots \\ & \lambda \end{bmatrix}$$

Jordan Form

A Jordan form is a direct sum of Jordan blocks

From the nilpotent case, we get

Corollary If $T \in \mathcal{L}(V)$ and $p_T(x) = (x - \lambda)^n$ then $m_T(x) = (x - \lambda)^d$ where $\ker(T - \lambda I)^{d-1} \subset \ker(T - \lambda I)^d = \ker(T - \lambda I)^{d+1}$ and T is similar to $T \sim J(\lambda, n_1) \oplus J(\lambda, n_2) \oplus \cdots \oplus J(\lambda, n_s), d = n_1 \leq n_2 \leq \cdots \leq n_s$ Moreover, $|\{u_j = i\}| = 2nul(T - \lambda I)^i - nul(T - \lambda I)^i - nul(T - \lambda^{i-1})$

4

:

1 7

Lemma

If $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F}$ then $N_j = \ker(T - \lambda I)^j$ and $R_j = \operatorname{range}(T - \lambda I)^i$ are invariant subspaces for T (and for any A s.t. AT = TA)

Proof of Corollary

 $p_T(x) = (x - \lambda)^n \Leftrightarrow p_{T-\lambda I}(x) = x^n \Leftrightarrow T - \lambda I$ is nilpotent

Goal

The goal is to prove that if $p_T(x)$ splits into linear terms $p_T(x) = \prod_{i=1}^{k} (x - \lambda_i)^{e_i}$ then V splits as a direct sum $V = V_1 + V_2 + \dots + V_k$ where $V_i = \ker(T - \lambda_i I)^{e_i}$

Then T is similar to $T \sim \left(T \Big|_{V_1}\right) \bigoplus \left(T \Big|_{V_2}\right) \bigoplus \cdots \bigoplus \left(T \Big|_{V_k}\right) = T_1 \bigoplus T_2 \bigoplus \cdots \bigoplus T_k$ $\left(T_j - \lambda_j I\right)^{e_j} V_j = \{0\}$ So $\left(T_j - \lambda_j I\right)^{e_j} = 0$ $\left(T_j - \lambda_j I\right) \sim J(\lambda_j, n_{j,1}) \bigoplus \cdots \bigoplus J(\lambda_j, n_{j,s_j})$

Proof of Lemma

 $x \in N_j$, then $(T - \lambda I)^j x = 0$ AT = TA then $(T - \lambda I)^j Ax = A(T - \lambda I)^j x = 0$ $\therefore Ax \in \ker(T - \lambda I)^j$

If $y \in Ran(T - \lambda I)^j$, $y = (T - \lambda I)^j x$ $Ay = A(T - \lambda I)^j x = (T - \lambda I)^j (Ax) \in ran(T - \lambda I)^j$

$$\begin{split} J_d, ker J_d &= sp\{e_1, \dots, e_i\} \\ \mathrm{ran}\, J_d &= sp\{e_{n-i}, e_{n-i+1}, \dots, e_i\} \end{split}$$

Jordan Form Theorem

October-12-11 9:32 AM

Lemma

 $T \in \mathcal{L}(V) \text{ s.t. } (T - \lambda I)^d = 0 \text{ then if } p \in \mathbb{F}[x],$ p(T) is invertible \Leftrightarrow $p(\lambda) \neq 0$

Lemma

 $T \in \mathcal{L}(V), \lambda \in \sigma(T)$ Let $N_i = \ker(T - \lambda I)^i$ $R_i = ran(T - \lambda I)^i, i \ge 0$ Suppose $\{0\} = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_d = N_{d+1}$

Then $N_{d+j} = N_d \ \forall j \ge 1$ and $V = R_0 \supset R_1 \supset \cdots \supset R_d = R_{d+j} \ \forall j \ge 1$ and $V = N_d \dotplus R_d$

Lemma

 $T \in \mathcal{L}(V)$ ker $(T - \lambda I)^{d-1} \subseteq \text{ker}(T - \lambda I)^d = \text{ker}(T - \lambda I)^{d+1}$ Then $m_T(x) = (x - \lambda)^d n(x)$ where $n(\lambda) \neq 0$

Theorem

 $T \in \mathcal{L}(V)$ Assume $p_T(x)$ splits into linear factors $p_T(x) = \prod_{i=1}^{S} (x - \lambda_i)^{e_i}$ Let $m_T(x) = \prod_{i=1}^{S} (x - \lambda_i)^{d_i}$ $V_i = \ker(T - \lambda_i I)^{d_i}$ Then $V = V_1 + V_2 + \dots + V_S$

Corollary

If $p_T(x)$ splits $V = V_1 + \dots + V_s$ $T_i = T \Big|_{V_i} \in \mathcal{L}(V_i)$ then $(T_i - \lambda_i I)^{d_i} = 0$ $T \sim T_1 \oplus T_2 \oplus \dots \oplus T_s$

Proof of Lemma

 $T - \lambda I \text{ is nilpotent}$ $T - \lambda I \sim J_{n_1} \bigoplus \dots \bigoplus J_{n_s}$ $T \sim J(\lambda, n_1) \bigoplus \dots \bigoplus J(\lambda, n_s)$

Expand p around $x = \lambda$ $p(x) = a_0 (= p(\lambda)) + a_1(x - \lambda) + a_2(x - \lambda)^2 + \dots + a_n(x - \lambda)^n$ $p(T) = p(\lambda)I + a_1(T - \lambda I) + \dots + a_n(T - \lambda I)^n = p(\lambda)I + (T - \lambda I)q(T)$ $(T - \lambda I)q(T)$ is strictly upper triangular Invertible $\Leftrightarrow p(\lambda) \neq 0$

Example

Proof of Lemma

$$\begin{split} & N_{d+1} = N_d, \text{Proceed by induction} \\ & \text{Assume } N_{d+j} = N_{d+j-1} \\ & \text{take } v \in N_{d+j+1} \\ & \therefore (T - \lambda I)v \in N_{d+j} = N_{d+j-1} \\ & \therefore (T - \lambda I)^{d+j-1}(T - \lambda I)v = 0 = (T - \lambda I)^{d+j}v \Rightarrow v \in N_{d+j} \\ & \text{dim}(N_i) + \text{dim}(R_i) = n \\ & \therefore N_i \subsetneq N_{i+1} \Leftrightarrow R_i \supset R_{i+1} \\ & \text{So } R_{d+j} = R_d \forall j \ge 1 \end{split}$$

Claim

 $N_d \cap R_d = \{0\}$ Take $v \in R_d :\exists x \in V \text{ s. } t.v = (T - \lambda I)^d x$ $v \in N_d :0 = (T - \lambda I)^d v = (T - \lambda I)^{2d} x$ $:x \in N_{2d} = N_d$ So $v = (T - \lambda I)^d x = 0$

 $N_d \cap R_d = \{0\}$ So dim $N_d + R_d = \dim N_d + \dim R_d = n$ $\therefore N_d + R_d = V$

Proof of Lemma

Factor $m_T(x) = (x - \lambda)^e n(x)$ where $n(\lambda) \neq 0$ Let $N_d = \ker(T - \lambda I)^d$ From Lemma, $n(T)|_{N_d}$ is invertible on $\mathcal{L}(V)$

Claim: $e \ge d$ Take $v \in N_d \setminus N_{d-1} \therefore (T - \lambda I)^{d-1} v \ne 0$ $\therefore n(T)(T - \lambda I)^{d-1} v \ne 0$ $\therefore n(T)(T - \lambda I)^{d-1} \ne 0$ $\therefore e \ge d$ because $0 = m_T(T) = n(T)(T - \lambda I)^e$

Claim e = dSince $0 = m_T(T)v = (T - \lambda I)^e n(T)v$ $\Rightarrow n_T(T)v \in N_e = N_d (since \ e \ge d)$ $\Rightarrow (T - \lambda I)^d n(T)v = 0$ $\Rightarrow (T - \lambda I)^d n(T) = 0$ $m_T | (x - \lambda)^d n(x) \text{ or } e = d$

Proof of Theorem

Let $R_1 = ran(T - \lambda_1 I)^{d_1}$, Know $V = V_1 \dotplus R_1$ Claim: $V_i \subseteq R_1$ for $i \ge 2$ $[(x - \lambda_i)^{d_i}](\lambda_1) = (\lambda_1 - \lambda_i)^{d_i} \ne 0$

 V_1 and R_1 are invariant for T and hence invariant for $(T - \lambda_i I)^{d_i}$ $(T - \lambda_i I)^{d_i} \Big|_{V_1}$ is invertible

Take $v \in V_i, i \ge 2$. Write $v = n + r, n \in N_1, r \in R_1$ $0 = (T - \lambda_i I)^{d_i} v = (T - \lambda_i I)^{d_i} n + (T - \lambda_i I)^{d_i} r = 0 + 0$ (Because of direct sum, both terms are 0) Since $(T - \lambda_i I)|_{V_1}$ is invertible, $n = 0 \therefore v = r \in R_1$

Now we can prove the theorem by induction on $n = \dim V$ $n = 1: T = [\lambda]$ $\lambda_1 = \lambda, V_1 = V$ Done

Assume result for
$$m < n$$

 $V = V_1 + R_1, T = T \Big|_{V_1} + T \Big|_{R_1} = T_1 \bigoplus S$
 $(T_1 - \lambda_1 I)^{d_1} = 0$
S acts in R_1 , dim $R_1 < n$
 $T \sim \begin{bmatrix} T_1 & 0 \\ 0 & S \end{bmatrix}$ on $V = N_1 + R_1$
 $p_T(x) = p_{T_1}(x)p_S(x)$
 $p_{T_1}(x) = (x - \lambda_1)^{e_1}, e_1 = \dim V_1$
 $p_S(x) = (x - \lambda_2)^{e_2}(x - \lambda_3)^{e_3} \dots (x - \lambda_s)^{e_s}$
By induction Hypothesis
 $R_1 = V_2 + V_3 + \dots + V_s$
 $\therefore \ker(S - \lambda_i I)^{d_i} = \ker(T - \lambda_i I)^{d_i} \subseteq R_i$

Applications of Jordan Forms

October-14-11 9:43 AM

Jordan Form Theorem

 \mathbb{F} algebraically closed (or $p_T(x)$ splits into linear terms)

$$T \in \mathcal{L}(V), p_T(x) = \prod_{i=1}^{n} (x - \lambda_i)^e$$

Then T is similar to
$$s \bigoplus k_i \bigoplus k_i$$

 $\sum_{i=1}^{l} \sum_{j=1}^{l} J(\lambda_i, n_{i,j})$ where $n_{i1} \ge n_{ik_i}, \sum_{j=1}^{k_i} n_{ij} = e_i$ Moreover, for each i, $|\{n_{i,j} = r\}| = 2nul(T - \lambda_i l)^r - nul(T - \lambda_i l)^{r+1} - nul(T - \lambda_i l)^{r-1}$

Note

Jordan blocks can be used to answer similarity-invariant questions.

Proof of Jordan Form Theorem

Already been done $V = V_1 + V_2 + \dots + V_s$ where $V_i = \ker(T - \lambda_i I)^{e_i}$ Each V_i is invariant for T, and $T_i = T|_{V_i}$, then $(T_i - \lambda_i I) = 0$ $\therefore T_i \sim \sum_{j=1}^{k_i} J(\lambda_i, n_{i,j}), \qquad \sum n_{i,j} = \dim V_i = e_i$

Cardinality of # $\{n_{ij}, = r\}$ was done

Example

Which $A \in \mathcal{M}_3(\mathbb{C})$ satisfy $A^3 = I$?

If $A^3 = I$ and $A \sim B B = SAS^{-1}$ then $B^3 = SA^3S^{-1} = SS^{-1} = I$

Look for similarity classes of solutions

Say
$$A \sim \sum_{i=1}^{\infty} J(\lambda_i, k_i)$$

 $A^3 \sim \sum_{i=1}^{\infty} J(\lambda_i, k_i)^3$

Look at $J(\lambda, k)^3 = (\lambda_i I + J_k)^3 = \lambda^3 I + 3\lambda^2 J_k + 3\lambda J_k^2 + J_k^3$ Need $\lambda^3 = 1$ and $3\lambda^2 = 0$ or k = 1 $\therefore \lambda \in \{1, e^{i\pi_3^1}, e^{-i\pi_3^1}\}$ and k = 1So A is diagonalizable $A \sim diag(\lambda_1, \lambda_2, \lambda_3), \ \lambda_i^3 = 1$ Count similar classes: All λ_i same 3 2 same 1 other 3×2 3 different 1 = 10

Example

Find all A with $p_A(x) = (x - 4)^4 (x + 1)^3$ and $m_A(x) = (x - 4)^3 (x + 1)^2$ $\Rightarrow \dim V = 7 = \deg p_A$ $nul (A - 4I)^4 = nul(A - 4)^3$ $nul(A + I)^3 = nul(A + I)^2$ Size of largest Jordan block is 3 (from $m_a(x)$) $\Rightarrow A \sim J(4, 3) \oplus J(4, 1) \oplus J(-1, 2) \oplus J(-1, 1)$

Example

Find all A with $p_A(x) = (x + 2)^4 (x - 1)^3$ and $m_{A(x)} = (x + 2)^2 (x - 1)$

 $\dim V = 4 + 3 = 7 = \deg p_A$ $\sigma(A) = \{-2, 1\}$ $nul ((A + 2I)^7) = nul((A + 2I)^2) = 4$ $nul(A - I)^7 = nul((A - I)^1) = 3$

 $\begin{array}{l} A \sim J(-2,2) \oplus J(-2,k_2) \oplus J(-2,k_3) \\ 2 + k_2 + k_3 = 4 \\ \oplus J(1,1) \oplus J(1,1) \oplus J(1,1) \end{array}$

Two choices $k_2 = 2$ or $k_2 = k_3 = 1$ Gives $\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \oplus \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \oplus I_3$ or $\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \oplus [-2] \oplus [-2] \oplus I_3$ The similarity classes of these are the solutions

Example

Which matrices have square roots? Suppose $A \sim \sum_{i=1}^{n \oplus} J(\lambda_i, k_i)$ Then $A^2 \sim \Sigma^{\oplus} J(\lambda_i, k_i)^2$ $B = J(\lambda, k)^2 = \begin{bmatrix} \lambda & 1 & \dots & \\ \ddots & \ddots & \lambda \end{bmatrix}^2 = \begin{bmatrix} \lambda^2 & 2\lambda & 1 & \dots & 0 \end{bmatrix}$ $\sigma(B) = \{\lambda^2\}$. If $\lambda \neq 0$ then $(B - \lambda^2 I) = \begin{bmatrix} 0 & 2\lambda & 1 & \dots & 0 \end{bmatrix}$ $(B - \lambda^2 I)^{k-1} = \begin{bmatrix} 0 & 0 & \dots & 0 & (2\lambda)^{(k-1)} \end{bmatrix}$ Jordan form for B is $J(\lambda^2, k)$

Conversely, if $\lambda \neq 0 J(\lambda^2, k)$ has a square root. $S \begin{bmatrix} \lambda^2 & 1 & 0 & \dots & 0 \\ \vdots & & & \ddots & \ddots \\ \vdots & & & & \dots & n \end{bmatrix} S^{-1} = \begin{bmatrix} \lambda^2 & 2\lambda & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots \\ & & & & \dots & n \end{bmatrix}^2$

$$S^{-1} \begin{bmatrix} \lambda & 1 & \dots \\ & \ddots & \ddots \\ & \dots & & \lambda \end{bmatrix} S$$

$$\lambda = 0$$

$$J_k^2 = \begin{bmatrix} 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

If $k \ge 2$ $J_k^2 \sim J_{\lfloor \frac{k}{2} \rfloor} \bigoplus J_{\lfloor \frac{k}{2} \rfloor}$ So if A is a square, the nilpotent part of A must come in pairs of size differing by 0 or 1 Plus we can have as many J_1s as we want So e.g. $A \sim J(1,7) \oplus J(2,9) \oplus J(0,5) \oplus J(0,4) \oplus J(0,3) \oplus J(0,3) \oplus J(0,2) \oplus J(0,1) \oplus J(0,1)$ Is a square

The Algebra A(T)

October-17-11 9:30 AM

Generalized Eigenspace

 $V_i = \ker(T - \lambda_i)^{e_i}$

Idempotent

A map E is idempotent iff $E^2 = E$ Projections are idempotent

Proposition

$$T \in \mathcal{L}(V), p_T(x)$$
 splits, $p_T(x) = \prod_{i=1}^{s} (x - \lambda_i)^{e_i}$

Let $V_i = \ker(T - \lambda_i)^{e_i}$ Then the idempotents E_i in $\mathcal{L}(V)$ given by $V = V_1 \bigoplus V_2 \bigoplus \cdots \bigoplus V_s$ $E_i(v) = E_i\left(\sum_{j=1}^s v_j\right) = v_i, 1 \le i \le s$ belong to A(T)

Chinese Remainder Theorem

 $m_1, m_2, \dots, m_s \in \mathbb{N}$ relatively prime $(\operatorname{gcd}(m_i, m_j) = 1 \text{ for } i \neq j)$

Then $x \equiv a_i \pmod{m_i}$ has a unique solution $x \equiv a \left(mod \prod_{i=1}^{s} m_i \right)$ for every choice of a_i $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m_i\mathbb{Z} \oplus \mathbb{Z}/m_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_s\mathbb{Z}$ $n \mapsto n \pmod{m}$ $\mapsto (n \mod m)$ $\mapsto (n \mod (m_1), n \mod (m_2), \dots, n \mod (m_s))$

CRT says $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \oplus \mathbb{Z}/m_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_s\mathbb{Z}$ is a bijection.

Chinese Remainder Theorem for Polynomials

If $m_i(x) \in \mathbb{F}[x], 1 \le i \le s, \gcd(m_i, m_j) = 1 \ i \ne j$ then if $p_i \in \mathbb{F}[x]$, the equation $p \equiv p_2 \mod(m_i)$ has a unique solution modulo $m = m_1 m_2 \dots m_s$

Theorem

$$T \in \mathcal{L}(V), p_T \text{ splits } m_T = \prod_{i=1}^{s} (x - \lambda_i)^{a_i}$$

Then $A(T) \cong A\left(T \Big|_{V_1}\right) \bigoplus A\left(T \Big|_{V_2}\right) \bigoplus \cdots A\left(T \Big|_{V_s}\right)$
 $A(T) \leftrightarrow \mathbb{F}[x]/(m_t)$
 $A\left(T \Big|_{V_1}\right) \bigoplus A\left(T \Big|_{V_2}\right) \bigoplus \cdots A\left(T \Big|_{V_s}\right)$
 $\leftrightarrow \mathbb{F}[x]/(m_1) \bigoplus \cdots \bigoplus \mathbb{F}[x]/(m_s)$

The Algebra A(T) Description $T \in \mathcal{L}(V)$

$$\begin{split} &A(T) = span\{I, T, T^{2}, ..., T^{n-1}, ...\} \\ &p_{T}(x) = x^{n} + \cdots \\ & \text{Cayley-Hamilton Theorem: } p_{T}(T) = 0 \\ &T^{n} = -\sum_{i=0}^{n-1} a_{i}T^{i} \in span\{T, T, ..., T^{n-1}\} \\ &T^{n+k} = -\sum_{i=0}^{n-1} a_{i}T^{i+k} \in sp\{I, ..., T^{n+k-1}\} = sp\{I, ..., T^{n-1}\} \\ &\text{by induction.} \\ & \text{In fact } m_{T}(T) = 0, m_{T}|p_{T} \deg m_{T} = d \le n \\ &T^{d} = = \sum_{i=0}^{d-1} b_{i}T^{i} \\ &\text{Same argument shows } A(T) = sp\{I, T, ..., T^{d-1}\} \dim A(T) = d = \deg m_{T} \end{split}$$

$$p,q \in \mathbb{F}[x] \ p(T) = q(T) \Leftrightarrow (p-q)(T) = 0 \Leftrightarrow m_T | (p-q) \Leftrightarrow p \equiv q \ mod(m_T)$$

 $\mathbb{F}[x] \to A(T): p \mapsto p(T)$ is a homomorphism; It is linear and multiplicative. $\mathbb{F}[x] \to \mathbb{F}[x]/(m_T): p \mapsto [p]$ is a homomorphism $\mathbb{F}[x]/(m_T) \to A(T): [p] \to p(T)$ is an isomorphism.

Proof 1 of Proposition

Let
$$m_T(x) = \prod_{i=1}^{n} (x - \lambda_i)^{d_i}$$

 $V_j = \ker(T - \lambda_j I)^{d_j}$
So for a polynomial $p(T)$ to satisfy $p(T)v = 0 \forall v_j \in V_j \text{ need } (x - \lambda_j)^{d_j} | p$
Let $q_i(x) = \prod_{\substack{j \neq i \\ j \neq i}} (x - \lambda_j)^{d_j}$
Then $q_i(T)v_j = 0 \forall v_j \in V_j, j \neq i$
Look at $q_i(T)|_{V_i}$. $T|_{V_i} = \lambda_i I + N_i$, N_i nilpotent
 $q_i(T) \Big|_{V_i} = q_i \left(T \Big|_{V_i}\right) \Rightarrow q_i(\lambda_i) = \prod_{\substack{j \neq i \\ j \neq i}} (\lambda_i - \lambda_j)^{d_j} \neq 0$
By Lemma, $q_i(T)_{V_i}$ is invertible. Moreover, the inverse is a polynomial of T

$$\left(\text{recall}, N = T - \lambda_i I \text{ nilpotent } q_i(N) = a_0 \left(I + Nr(N) \right) \Rightarrow q_i(N)^{-1} \\ = \frac{1}{a_o} \left(I - Nr(N) + N^2 r(N)^2 - \cdots \right) \text{ terminates } N^d = 0 \right) \\ \text{So there is a polynomial } r_i \in \mathbb{F}[x] \text{ s.t. } e_i(T) = q_i(T) r_i(T)|_{V_i} = I|_{V_i}$$

Let
$$e_i(x) = q_i(x)r_i(x)$$

Let $E_i = e_i(T) \in A(T)$
 $v_j \in V_j, j \neq i, \quad E_iv_j = r_i(T)q_i(T)v_j = 0$
 $E_iv_i = v_i$
 $\therefore E_i\left(\sum_{j=1}^{s} v_j\right) = v_i$
 $E_i^2v = E_iv = v_i \Rightarrow E_i^2 = E_i$

Proof 2 of Proposition

Consider q_1, \dots, q_s , q_i defined as before

$$gcd(q_1, q_2, \dots, q_s) = 1 \Rightarrow \sum E_i = I$$

By the Euclidian Algorithm $\exists r_i \in \mathbb{F}[x]$ s.t. $\sum_{i=1}^{s} q_i r_i = 1$ Let $e_i = q_i r_i$, and $E_i = e_i(T)$ $E_i v = E_i(v_1 + \dots + v_s) = r_i(T)q_i(T)(v_1 + \dots + v_s) = E_i v_i \in V_i \ (q_i(T)v_j = 0, j \neq i)$ $v = Iv = \left(\sum_{i=1}^{n} E_i\right)v = \sum_{i=1}^{n} E_i v_i$ Direct sum $V = \sum_{i=1}^{s} V_i$ \therefore unique decomposition $v_i = E_i v_i$, $i = 1, 2, \dots, s$

$$\therefore E_i^2 = E_i$$
 has range V_i and kernel $\sum_{j \neq i} V_j$

Example of CRT

$$m = 6, m_1 = 2, m_3 = 3$$

$\mathbb{Z} \to \mathbb{Z}$	Z/6Z	
Z	$\mathbb{Z}/6\mathbb{Z}$	$(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/3\mathbb{Z})$
0	[0]	(0,0)
1	[1]	(1, 1)
2	[2]	(0, 2)
3	[3]	(1,0)
4	[4]	(0, 1)
5	[5]	(1, 2)
:	:	:

Proof 3 of Proposition

By Proof 2 we get $e_i = q_i r_i \in \mathbb{F}[x] \ s.t. \sum_{i=1}^{s} e_i(x) = 1$ Let $m_i(x) = (x - \lambda_i)^{d_i}, \gcd(m_i, m_j) = 1 \ \forall i \neq j$ Let $m = m_1(x)m_2(x) \dots m_s(x) = m_T(x)$ Now $e_i \equiv 0 \mod(m_j), j \neq i$ $1 = \sum_{j=1}^{s} e_j = e_i \pmod{m_i}$ $\therefore e_i \equiv \begin{cases} 0 \pmod{m j} \neq i \\ 1 \pmod{m_i} i = j \end{cases}$ To solve $\{p \equiv p_i \pmod{m_i} \} i \leq i \leq s\}$ Let $p = \sum_{i=1}^{s} p_i e_i(x), \qquad p \equiv p_i(x) \cdot 1 + \sum_{j \neq i} p_j(x) \cdot 0 \equiv p_i \pmod{m_i}$ $p \equiv q \pmod{m_i} i \leq i \leq s$ $\Leftrightarrow m_i | (p - q) \ 1 \leq i \leq s \Leftrightarrow m_i | (p - q) \iff p \equiv q \pmod{m_i}$

Jordan Form Application

October-19-11 9:25 AM

Proposition

 $T \in \mathcal{L}(V), p_T \ splits$

Then T can be expressed uniquely as T = D + N where D is diagonalizable and N is nilpotent and DN = ND.

Cyclic Vectors

 $T \in \mathcal{L}(V)$ has a **cyclic vector** x if $sp\{x, Tx, T^2x, ..., \} = V$ T is **cyclic** if it has a cyclic vector.

T has a cyclic vector iff $m_T = p_T$

Theorem

- $T \in \mathcal{L}(V)$ TFAE
 - 1) T is cyclic
 - 2) $m_T = p_T$
 - 3) T has a single Jordan block for each eigenvalue

Remark

 $1 \Leftrightarrow 2$ is always true, does not require $p_T(x)$ to split.

Example use of Jordan Form

 $T \in \mathcal{L}(V), m_T = \prod (x - \lambda_i)^{d_i}$ $A(T)\cong \mathbb{F}[x]/(m_T)\cong \sum^{\oplus} \mathbb{F}[x]/\left((x-\lambda_i)^{d_i}\right)$ $V_i = \ker(T - \lambda_i I)^{d_i}$ $V = V_1 \dotplus V_2 \dotplus \dots \dotplus V_s$ $T_i = T \Big|_{V_i}$, $m_{T_i} = (x - \lambda_i)^{d_i}$ $T \sim T_1 \oplus T_2 \oplus \cdots \oplus T_s$ $p(T) \sim p(T_1) \oplus p(T_2) \oplus \cdots \oplus p(T_s)$ but $p(T_i) = q(T_i)$ if $f p \equiv q \pmod{(x - \lambda_i)^{d_i}}$ Express p(x) as a Taylor around λ_i $p(x) = a_0 + a_1(x - \lambda_i) + a_2(x - \dot{\lambda}_i)^2 + \cdots$ $\begin{aligned} p(x) &= u_0 + u_1(x) \\ T_i \sim \sum_{i=1}^{k_i} \lambda_i I + J_{n_{ij}} \\ J &= \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \\ p(x) &= 1 + 2x^2 + 1 \end{aligned}$ $p(x) = 1 + 2x^2 + x^3$ p(3) = 1 + 29 + 27 = 46 $p'(x) = 4x + 3x^2$ p'(3) = 12 + 27 = 39p''(x) = 4 + 6x, p''(3) = 22 $p^{(3)}(x) = 6$

$$p(x) = p(3) + p'(3)(x-3) + \frac{p''(3)}{2!}(x-3)^2 + \frac{p^{(3)}}{3!}(x-3)^3$$

= 49 + 39(x-3) + 11(x-3)^2 + (x-3)^3

$$p(J) = \begin{bmatrix} 46 & 39 & 11 & 1\\ 0 & 46 & 39 & 11\\ 0 & 0 & 46 & 39\\ 0 & 0 & 0 & 49 \end{bmatrix}$$

Proof of Proposition

$$T \sim \sum_{i=1}^{s} T_{i} \sim \sum_{i=1}^{s} \sum_{j=1}^{k_{i}} \lambda_{i}I + J_{n_{ij}}$$
$$D \sim \sum_{i=1}^{s} \sum_{j=1}^{k_{i}} \Delta_{i}I$$
$$D = \sum_{i=1}^{s} \lambda_{i}E_{i}, E_{i} \text{ idempotent } ran(E_{i}) = V_{i}, \ker(E_{i}) = \sum_{j \neq i} V_{j}$$

D is a polynomial in T, $D = \sum \lambda_i E_i = (\sum \lambda_i e_i)(T)$ $\therefore TD = DT$ D is diagonalizable $N = T - D \sim \sum_{i=1}^{s} \sum_{i=1}^{k_i} J_{n_{ij}}$ is nilpotent

N is also in A(T)

Uniqueness

Suppose $T = D_1 + N_1$, D_1 diag, N_1 nilpotent $D_1N_1 = N_1D_1$ D_1 commutes with $D_1 + N_1 = T \therefore D_1$ commutes with A(T) $\therefore D_1$ commutes with D, N Similarly, N_1 commutes with D,N D_1 commutes with E_i . If $v_i \in V_i, v_i = E_iv_i$ $D_1v_i = D_1E_iv_i = E_iD_1v_i \in ran E_i = v_i$ So V_i is invariant for D_1 (and N_1) $D_1 = D_1\Big|_{V_1} \bigoplus D_1\Big|_{V_2} \bigoplus \cdots \bigoplus D_1\Big|_{V_s}$ $D = \lambda_i I\Big|_{V_1} \bigoplus \lambda_2 I\Big|_{V_2} \bigoplus \cdots \bigoplus \lambda_s I\Big|_{V_s}$ Each $D_1|_{V_1}$ is diagonalizable so $(D_1 - \lambda_i I)|_{V_i}$ is diagonalizable $\therefore D_1 - D$ is diagonalizable $\sim diag(\mu_1, \mu_2, \dots, \mu_s)$ $D_1 + N_1 = T = D + N$

$$\therefore D_1 - D = N - N_1 (N - N_1)^{2n} = \sum_{j=0}^{2n} (-1)^j {2n \choose j} N^j N_1^{2n-j} = 0$$

(Because N, N_1 commute, first =) (Second =) $j \ge n N_j = 0, j \le n \Rightarrow 2n - j \ge n \therefore N_1^{2n-j} = 0$ $0 = (D_1 - D)^{2n} \sim diag(\mu_1^{2n} \otimes \mu_2^{2n}, ..., \mu_n^{2n}) \therefore \mu_i^{2n} = 0 \Rightarrow \mu_i = 0 \Rightarrow D_1 = D$ $\therefore N_1 = T - D_1 = N$

Cyclic Vectors

If $m_T(x) = x^d + a_{(d-1)}x^{d-1} + \dots + a_0$ $0 = T^d + a_{d-1}T^{d-1} + \dots + a_1T + a_0I$ $T^d = -a_{d-1}T^{d-1} - \dots - a_1T - a_0I$ $\therefore T^d x \in sp\{x, Tx, \dots, T^{d-1}x\}$

So $sp\{x, Tx, ...\} = sp\{x, Tx, ..., T^{d-1}x\}$, where $d = \deg m_T(x)$ dim $sp\{x, Tx, ..., T^{d-1}x\} \le d$

A necessary condition for T to be cyclic is deg $m_T = n$, *i. e.* $m_T = p_T$

Note that $m_T = p_T \Leftrightarrow$ there is a single Jordan block for each eigenvalue. $m_T(x)$

$$= \prod_{\substack{i=0\\s \oplus \\i=1}}^{n} (x - \lambda_i)^{d_i}$$
, where d_i is the size of the largest Jordan block for λ_i
 $T \sim \sum_{i=1}^{s} (\lambda_i I + J_{d_i})$

A Jordan block with basis $\{e_1, ..., e_k\}$ has a cyclic vector e_k Let $v_i \in V_i$ be a cyclic vector for $T|_{V_i}$

Let $v = v_1 + v_2 + \dots + v_s$

Claim: v is cyclic for T $E_i \in A(T)$ So $v_i = E_i v \in A(T)v = sp\{v, Tv, ...\}$

$$\therefore T^{k}v_{i} \in A(T)v \Rightarrow V_{i} \subseteq A(T)v \Rightarrow V = \sum V_{i} = A(T)v$$

Linear Recursion Revisited

October-21-11 9:31 AM

Linear Recursion Formulae

Given x_0, x_1, \dots, x_{k-1} and the linear recursion $x_{k+n} + a_{n-1}x_{k+n-1} + a_{n-2}x_{k+n-2} + \dots + a_0x_n = 0$ Find a formula for x_k

$$\text{Let } A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{bmatrix}$$

$$\begin{bmatrix} x_k \\ x_{k+1} \\ \vdots \\ x_{k+n-1} \end{bmatrix} = A^k \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

$$P_A(x) = \begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_0 & a_1 & \dots & x + a_{n-1} \end{vmatrix} = \begin{vmatrix} x & 0 & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & x & 0 \\ a_0 & a_1 + \frac{a_0}{x} & \dots & x + a_{n-1} + \frac{a_{n-2}}{x} + \dots + \frac{a_0}{x^{n-1}} \end{vmatrix} = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0$$
Factor $p_A(x) = \prod_{i=1}^{s} (x - \lambda_i)^{d_i}$

Case 1: n distinct roots \therefore A is diagonalizable $A \sim diag(\lambda_1, \lambda_2, ..., \lambda_n)$

Let
$$v_i = \begin{pmatrix} 1\\ \lambda_i\\ \lambda_i^2\\ \vdots\\ \lambda_i^{n-1} \end{pmatrix} \Rightarrow Av_i = \begin{pmatrix} \lambda_i\\ \lambda_i^2\\ \cdots\\ \lambda_i^{n-1}\\ -a_0 - a_1\lambda_1 - \cdots - a_{n-1}\lambda_i^{n-1} - a_0 - a_1\lambda_1 - \cdots - a_{n-1}\lambda_i^{n-1} \end{pmatrix}$$

 $-a_0 - a_1\lambda_1 - \cdots - a_{n-1}\lambda_i^{n-1} = \lambda_i^n - p_A(\lambda_i) = \lambda_i^n$
 $Av_i = \begin{pmatrix} \lambda_i\\ \lambda_i^2\\ \vdots\\ \lambda_i^{n-1}\\ \lambda_i^n \end{pmatrix} = \lambda_i v_i$

So v_1, \ldots, v_n is the basis that diagonalizes A.

$$\operatorname{Express}\begin{pmatrix}x_{1}\\\vdots\\x_{n-1}\end{pmatrix} = b_{1}v_{1} + \dots + b_{n}v_{n}$$

$$\begin{pmatrix}x_{k}\\x_{k-1}\\\vdots\\x_{k+n-1}\end{pmatrix} = A^{k}\begin{pmatrix}x_{0}\\x_{1}\\\vdots\\x_{n-1}\end{pmatrix} = A^{k}(b_{1}v_{1} + \dots + b_{n}v_{n}) = b_{1}\lambda_{1}^{k}v_{1} + b_{2}\lambda_{2}^{k}v_{2} + \dots + b_{n}\lambda_{n}^{k}v_{n} = \begin{pmatrix}b_{1}\lambda_{1}^{k} + b_{2}\lambda_{2}^{k} + \dots + b_{n}\lambda_{n}^{k}\\\vdots\\\vdots\\\end{bmatrix}$$
So $\boxed{x_{k} = b_{1}\lambda_{1}^{k} + \dots + b_{n}\lambda_{n}^{k}}$

The set of possible sequences we get is the linear span of $(1, \lambda_i, \lambda_i^2, \lambda_i^3, ...)$

Note

If $p \in \mathbb{C}[x]$ has repeated roots, say $p(x) = (x - \lambda)^2 q(x)$ Then $p'(x) = 2(x - \lambda)q(x) + (x - \lambda)^2q'(x) = (x - \lambda)r(x)$ If $p(x) = (x - \lambda)q(x), q(\lambda) \neq 0$ $p'(x) = q(x) + (x - \lambda)q'(x)$ $p'(\lambda) = q(x) \neq 0$

So p, p' have a common factor $(x - \lambda)$ iff λ is a root of p of multiplicity ≥ 2 $\therefore p$ has simple roots \Leftrightarrow gcd(p, p') = 1

Case 2 Repeated roots:

$$p_A(x) = \prod_{i=1}^{n} (x - \lambda_i)^{d_i}$$

A has a cyclic vector e_n

$$A^{2} = A \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_{0} & -a_{1} & \dots & -a_{n-1} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = A \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ * \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ * \end{pmatrix}$$

∴ only one Jordan block for each eigenvalue $A \sim \sum_{i=1}^{S} J(\lambda_i, d_i)$ Pick $v_{i,0} \in \ker(A - \lambda_i I)^{d_i}$ but not in $\ker(A - \lambda_i I)^{d_i - 1}$ Let $v_{i,j} = (A - \lambda_i I)^j v_{i,0}, \ 1 \le j \le d_i - 1$ $\{v_{i,0}, \dots, v_{i,d_i-1}\}$ is a basis for Jordan block $\lambda_i I + J_{d_i}$ So $\{v_{i,j}: 1 \le i \le s, 0 \le j \le d_i - 1\}$ is a basis for V Write $\begin{bmatrix} x_0 \\ \vdots \\ x_{n-1} \end{bmatrix} = \sum b_{ij} v_{ij}$

What is
$$A^{\kappa}v_{ij}$$
?

$$\begin{split} \lambda I + J_{d} &= \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, v_{i,0} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, v_{i,j} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \end{split}$$

General Solution

 $x_k = \sum_i \lambda_i^k q_i(k)$

has n unknowns $q_i(x) = c_{i,0} + c_{i,1}\lambda + \dots + c_{i,(d_i-1)}\lambda^{d_i-1}$ Know x_0, \dots, x_{n-1} solve for c_i

Solution space is spanned by $(1, \lambda_i, \lambda_i^2, \lambda_i^3, \dots)$ $\begin{pmatrix} (0,\lambda_i,2\lambda_i^2,3\lambda_i^3,\dots) \\ (0,\lambda_i,2^{d_i-1}\lambda_i^2,3^{d_i-1}\lambda_i^3,\dots) \end{pmatrix}$

Markov Chains

October-24-11 11:25 AM

Discrete State Space

A discrete state space Σ is a finite set of possible states.

A **discrete** process provides probabilities for transition between states at discrete time intervals.

A process is **stationary** if the transition probabilities are time independent.

A discrete stationary process is called a Markov process.

Regular Markov Process

A Markov process is regular if there is an N so $(A^N)_{ij} > 0 \quad \forall i, j$

i.e. It is possible over time to move from any state to any other.

Lemma

 $A = (a_{ij}) \in \mathcal{L}(V)$ Let $\rho(A) = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \pmod{\max \text{ of row sum}}$ Then $\sigma(A) \le \{\lambda: |\lambda| \le \rho(A)\}$

Theorem

 $\begin{array}{l} A = (a_{i_j}) \text{ is a transition matrix.} \\ \text{Then } 1 \in \sigma(A) \subseteq \overline{\mathbb{D}} = \{\lambda: |\lambda| \leq 1\} \\ \text{Moreover, if } A \text{ is regular then } \sigma(A) \subseteq \{1\} \cup \mathbb{D} = \{1\} \cup \\ \{\lambda: |\lambda| < 1\} \text{ and } nul(A - I) = nul(A - I)^2 = 1 \end{array}$

Euclidean Norm

$$\|A\|_{2} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}}$$

Usual Euclidean norm on \mathbb{R}^{n^2}

Claim

 $\|AB\|_2 \le \|A\|_2 \|B\|_2$

Proof

$$\begin{split} \|AB\|_{2}^{2} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_{ik} b_{kj} \right)^{2} \leq_{CS} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_{ik}^{2} \right) \left(\sum_{l=1}^{n} b_{lj}^{2} \right)^{2} \\ \text{By Cauchy-Schwarz inequality} \\ &= \left(\sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^{2} \right) \left(\sum_{j=1}^{n} \sum_{l=1}^{n} b_{lj}^{2} \right) = \|A\|_{2}^{2} \|B\|_{2}^{2} \end{split}$$

Corollary

If A is a regular transition matrix, then A^m converges to $L = vu^t$ where Av = v, v has entries $\sum_i v_i = 1$ and $u^t = (1, 1, ..., 1)$

This is the idempotent in $\mathcal{A}(A)$ with range ker(A - I). Moreover, if w is any probability vector then $\lim_{n\to\infty} A^n w = v$ Label the states $\Sigma = \{1, 2, ..., n\}$. The probability of moving from state j to state I is $p_{ij} \ge 0$. So $\sum_{i=1}^{n} p_{ij} = 1 \forall j$

Let
$$A = [p_{ij}]_{n \times n} = \begin{bmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{bmatrix} \dots \begin{bmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{bmatrix}$$
 Column sums are 1
What is the limiting behaviour as time $\rightarrow \infty$?
Initial state $p_0 = \begin{pmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{pmatrix}$ At time 1 $p_1 = Ap_0, p_{n+1} = Ap_n \ \forall n \ge 1$
Interested in $\lim_{n \to \infty} A^n p_0$

Example

A microorganism has 3 possible reproductive states: Male, Female, and Neuter. Male one day \rightarrow M 2/3 time, N 1/3 time next day Female one day \rightarrow F 1/2 time, N 1/2 time next day Neuter one day \rightarrow M 1/6, F 1/2, N 1/3

$$A = \begin{bmatrix} \frac{2}{3} & 0 & \frac{1}{6} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{3} \end{bmatrix}. \text{ Initially } p_0 = \begin{bmatrix} m_0 \\ f_0 \\ n_0 \end{bmatrix}, p_n = A^n p_0$$
$$A^T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ In general } A^t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

so 1 is always an eigenvalue since
$$\sigma(A^T) = \sigma(A)$$

$$p_A(x) = (x-1)\left(x^2 - \frac{1}{2}x - \frac{1}{12}\right), \quad \sigma(A) = \begin{cases} 1, \frac{1 \pm \sqrt{3}}{4} \end{cases} \therefore \text{ Diagonalizable}$$
$$A = S^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1 + \sqrt{7}}{4} & 0 \\ 0 & 0 & \frac{1 - \sqrt{7}}{3} \end{bmatrix} S \text{ As } n \to \infty, \quad A^n = S^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} S = L$$

E.

 $L = L^2$ is the idempotent in $\mathcal{A}(A)$ with range span(v where Av = v and v is a probability vector.

$$\ker(A-I) \begin{bmatrix} -\frac{1}{3} & 0 & \frac{1}{6} \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -\frac{2}{3} \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = 0$$

$$\text{Normalize} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \text{ to get the probability vector } v = \begin{bmatrix} 0.2 \\ 0.4 \\ 0.4 \end{bmatrix}$$

$$\text{Have vectors } v, v_2, v_3 \text{ a basis s.t.}$$

$$Av = v, \quad Av_2 = \frac{1 + \sqrt{\frac{7}{3}}}{4}v_2, \qquad Av_3 = \frac{1 - \sqrt{\frac{7}{3}}}{4}v_3$$

$$\text{If } p_0 = a_1v + a_2v_2 + a_3v_3$$

$$p_n = A^n p_0 = a_1v + \left(\frac{1 + \sqrt{\frac{7}{3}}}{4}\right)^n v_2 + \left(\frac{1 - \sqrt{\frac{7}{3}}}{4}\right)^n v_3 \rightarrow a_1v$$

$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, A^T u = u \text{ and } u^T A = u^T$$

$$u^T p_0 = m_0 + f_0 + n_0 = 1$$

$$u^T p_n = u^T(A^n p_0) = (u^T A^n) p_0 = u^T p_0 = 1, \text{ and } p_n = \begin{bmatrix} m_n \ge 0 \\ f_n \ge 0 \\ n_n \ge 0 \end{bmatrix}$$

$$\text{ because } a_{ij} \ge 0$$

$$\text{ So } p_n \text{ is a probability vector.}$$

$$a_1v = p_n = \lim_{n \to \infty} A^n p_0, \qquad 1 = u^T(a_1v) = a_1 \Rightarrow a_1 = 1$$

$$\text{ Therefore in the limit as } n \to \infty \text{ is } 20\% \text{ M}, 40\% \text{ F}, 40\% \text{ N}$$

Suppose
$$\lambda \in \sigma(A), Av = \lambda v, v \neq 0$$

 $v = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$. Pick i_0 such that $|v_{i_0}| \ge |v_i| \forall 1 \le i \le n$
 $|\lambda v_{i_0}| = \left| \sum_{j=1}^n a_{i_0j} v_j \right| \le \sum_{j=1}^n |a_{i_0j}| |v_j| \le \left(\sum_{j=1}^n |a_{i_0j}| \right) |v_{i_0}| \le \rho(A) |v_{i_0}|$

 $\therefore |\lambda| \le \rho(A)$

Proof of Theorem

 $u^T = (1, 1, ..., 1)$ then $u^T A = u^T$ because column sums are all 1. So $A^T u = u$, or $1 \in \sigma(A^T) = \sigma(A)$ - Since $A \sim A^T$ so $\det(A) = \det(A^T)$ $\rho(A^T) = \max\{1, 1, ..., 1\} = 1 \therefore \sigma(A) = \sigma(A^T) \subseteq \overline{\mathbb{D}}$ by Lemma

Proved first part, now prove that $(1, ..., 1)^T$ is the only eigenvector for 1 or -1 A is regular so $\exists N$ such that $A^N = (c_{ij}), c_{ij} > 0$ Observe that A^{N+1} has strictly positive entries.

Suppose
$$|\lambda| = 1, A^T u = \lambda u, \ u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \neq 0$$

Repeat argument in Lemma for $(A^N)^T$ and $(A^{N+1})^T$

 $(A^N)^T = (c_{ij})^T$ has row sums = 1 Pick i_0 s.t. $|u_{i_0}| \ge |u_i| \forall i$

$$\begin{aligned} |u_{i_0}| &= |\lambda^N| |u_{i_0}| = 1 \left| \sum_{i=1}^n c_{ii_0} u_i \right| \le_2 \sum_{i=1}^n c_{ii_0} |u_i| \le_3 \left(\sum_{i=1}^n c_{ii_0} \right) |u_{i_0}| =_4 |u_{i_0}| \\ 1: \text{ Since } \lambda^N u &= (A^N)^T u \end{aligned}$$

2: Since $c_{ii_0} > 0$ do not need absolute values about them.

3: An equality iff $u_{i_0} = u_i \forall i$

4: $(A^N)^T$ has row sums 1

This is an equality therefore if $u_{i_0} > 0$ then $u_i \ge 0 \forall i$.

3 must be made equal so $u_i = u_{i_0} \forall i$ so 2 is also an equality.

 $l_1 J \quad l_1 J$ $\therefore \lambda u = A^T u = u \Rightarrow \lambda = 1$ So $\sigma(A) \subseteq \{1\} \cup \mathbb{D}$ $nul(A - I) = nul(A^T - I) = 1$ \therefore Single Jordan block for 1

$$\begin{split} A &\sim (I_k + J_k) \bigoplus \sum_{i=1}^{s} J(\lambda_i, k_i), |\lambda_i| < 1 \\ I_k + J_k &= S^{-1}AS \\ (S^{-1}AS)^m &= (I + J_k)^m \bigoplus \sum_{i=1}^{s} J(\lambda_i, k_i)^m, \end{split}$$

For $|\lambda| < 1$ $J(\lambda, k)^{m} = (\lambda I_{k} + J_{k})^{m} = \lambda^{m} I_{k} + {m \choose 1} \lambda^{m-1} J_{k} + {m \choose 2} \lambda^{m-2} J_{k}^{2} + \dots + {m \choose k-1} \lambda^{m+1-k} J_{k}^{k-1}$ $= \begin{pmatrix} \lambda^{m} & m \lambda^{m-1} & \dots & {m \choose k-1} \lambda^{m+1-k} \\ & \ddots & & \vdots \end{pmatrix} \rightarrow 0 \text{ as } m \rightarrow \infty$ $(I_{k} + J_{k})^{m} = \begin{pmatrix} 1 & m & \dots & {m \choose k-1} \end{pmatrix}$ $m = 1: (1) \rightarrow (1)$

$$m = 1: (1) \to (1)$$

$$m \ge 2: \binom{m}{1} ||(I+J_k)^2|| \ge m \to \infty$$

On the other hand $\|(S^{-1}AS)^m\|_2 = \|S^{-1}A^mS\|_2 \le \|S^{-1}\|_2 \|A^m\|_2 \|S\|_{A^m}$ is a transition matrix so

$$\sum_{i=1}^{n} b_{ij} = 1 \ge b_{ij} \ge 0$$

$$b_{ij}^{2} \le b_{i}$$

So $||A^{m}||_{2}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ij}^{2} \le \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ij} = n$

$$\left\| (I + J_{k})^{m} + \sum_{j=1}^{m} J(\lambda_{i}, k_{i})^{m} \right\| = ||S^{-1}AS|| \le \sqrt{n} ||S||_{2} ||S^{-1}||_{2}$$

 $\left\| (I+J_k)^m + \sum J(\lambda_i, k_i)^m \right\| \ge m \text{ If } nul(A-I)^2 \ge 2$ $\therefore nul(A-I)^2 = 1$

Proof of Corollary

The last argument shows that

 $(S^{-1}AS)^{m} = (1) \bigoplus \sum_{i=1}^{n} J(\lambda_{i}, k_{i})^{m} \to (1) \bigoplus 0$ This is the idempotent in A(T) with range ker(T - I) $A^{m} = ST^{m}S^{-1} \to S((1) \oplus 0)S^{-1} = L$ L is the idempotent in A(A) with range ker(A - I) So ker $L = span\{ ker(A - \lambda_i)^{d_i}, 1 \le i \le s \}$ Let $v \in ker(A - I)$

Know $u = \begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix}$ is an eigenvector for A^T , eigenvalue 1 So $u^T A = u^T$. Look at $A^m \left(\frac{1}{n}u\right)$ $u^T \left(A^m \frac{1}{n}u\right) = (u^T A^m) \frac{1}{n}u = u^T \frac{1}{n}u = \frac{n}{n} = 1$ $\frac{1}{n}u$ is a probability vector (w prob. vector $\Leftrightarrow w_i \ge 0, u^t w = \sum w_i = 1$) $u^{T}\left(A^{m}\frac{1}{n}u\right) = 1$ $(A^{m})_{ij} \ge 0 \Rightarrow \left(A^{m}\frac{1}{n}u\right)_{i} \ge 0 \forall i$ Eventually $(A^{m})_{ij} > 0 \Rightarrow \left(A^{m}\frac{1}{n}u\right) > 0$ $L\frac{1}{n}u = \lim_{m \to \infty} A^{m}\frac{1}{n}u = cv, \quad probability \ vector$ $ran L = \ker(A - I) = Iv$ Normalize v so that $u^{T}v = 1 \Rightarrow \therefore c = 1$ $A^m\left(\frac{1}{n}u\right)\to v$ $v = Av = A^{m}v = (b_{ij}) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ For m large $m_{ij} > 0, v_i \ge 0$ $\therefore v_i = \sum_{j=1}^{n} b_{ij}v_i > 0$ $L \in A(A)$ $L \in A(A)$ $LA = \lim_{m \to \infty} A^m A = \lim_{m \to \infty} A^{m+1} = L$ $AL = \lim_{m \to \infty} A^{m+1} L$ Write $L = [\alpha_1 \& \alpha_2 \& \dots \& \alpha_n]$, $\alpha_i \in \mathbb{R}^n$ $L = AL = [A\alpha_1 \& A\alpha_2 \& \dots \& A\alpha_n]$ $\therefore A\alpha_i = \alpha_i, so \alpha_i = c_i v$ Similarly, $[\beta_1^T]$ $L = \begin{bmatrix} \rho_1 \\ \beta_2^T \\ \vdots \\ \beta_n^T \end{bmatrix}, \beta \in \mathbb{R}^n$ $L = LA = \begin{bmatrix} \beta_1^T A \\ \beta_2^T A \\ \vdots \\ \beta_n^T A \end{bmatrix}$ $\therefore \beta_i^T A = \beta_i^T \text{ or } A^T \beta_i = \beta_i$ $\therefore \beta_i = d_i u, u = \begin{pmatrix} 1\\1\\\vdots \end{pmatrix}$ So each row of L has all entries the same. If $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \Rightarrow L = c \begin{bmatrix} v_1 & v_1 & \cdots & v_1 \\ v_2 & v_2 & \cdots & v_2 \\ \vdots & \vdots & \ddots & \vdots \\ v_n & v_n & \cdots & v_n \end{bmatrix}$ L is a transition matrix c = 1 $L = \begin{bmatrix} v_1 & v_1 & \dots & v_1 \\ v_2 & v_2 & \dots & v_2 \\ \vdots & \vdots & \ddots & \vdots \\ v_n & v_n & \dots & v_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$ $w = \begin{vmatrix} w_2 \\ \vdots \end{vmatrix}$ probability vector $\lim_{m \to \infty} A^m w = Lw = (vu^T)w = v(u^Tw) = v$

Markov Chain Example

October-28-11 9:30 AM

Example: Hardy-Weinberg Law

A certain gene has a dominant form G and a recessive form g. Each individual has either GG, Gg, or gg. At time 0, the probability distribution of these types is (p_0, q_0, r_0) . Assume:

- 1) The distribution is the same for both sexes
- 2) This gene does not affect reproductive capability

 p_0 of time, father is GG. Probabilities for offspring in terms of mother's type: GG Gg gg

$$p_{0} \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix} + q_{0} \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{4} & \frac{1}{2} \end{bmatrix} + r_{0} \begin{bmatrix} 0 & 0 & 0 \\ 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} = \begin{bmatrix} p_{0} + \frac{1}{2}q_{0} & \frac{1}{2}p_{0} + \frac{1}{4}q_{0} & 0 \\ \frac{1}{2}p_{0} + \frac{1}{2}q_{0} + \frac{1}{2}r_{0} & \frac{1}{2}q_{0} \end{bmatrix} = M$$
Let $\alpha_{0} = p_{0} + \frac{1}{2}q_{0}$, $\beta_{0} = \frac{1}{2}q_{0} + r_{0}$

$$M = \begin{bmatrix} \alpha_{0} & \frac{1}{2}\alpha_{0} & 0 \\ \beta_{0} & \frac{1}{2} & \alpha_{0} \\ 0 & \frac{1}{2}\beta_{0} & \beta_{0} \end{bmatrix}$$

To find the new probability distribution for the next generation, apply this to the probability distribution of females. 1 1 \

$$\begin{bmatrix} \alpha_{0} & \frac{1}{2}\alpha_{0} & 0\\ \beta_{0} & \frac{1}{2} & \alpha_{0}\\ 0 & \frac{1}{2}\beta_{0} & \beta_{0} \end{bmatrix} \begin{bmatrix} p_{0}\\ q_{0}\\ r_{0} \end{bmatrix} = \begin{bmatrix} \alpha_{0}\left(p_{0} + \frac{1}{2}q_{0}\right)\\ \beta_{0}p_{0} + \frac{1}{2}q_{0} + \alpha_{0}r_{0}\\ \beta_{0}\left(\frac{1}{2}q_{0} + r_{0}\right) \end{bmatrix} = \begin{bmatrix} \alpha_{0}^{2}\\ 2\alpha_{0}\beta_{0}\\ \beta_{0}^{2} \end{bmatrix}$$

Get a new transition matrix for a new generation (by applying the above with $\begin{bmatrix} \alpha_0^2 \\ 2\alpha_0\beta_0 \\ \beta_0^2 \end{bmatrix}$, substituted

for
$$\begin{bmatrix} p_0 \\ q_0 \\ r_0 \end{bmatrix}$$
.
 $\alpha_1 = p_1 + \frac{1}{2}q_1 = a_0^2 + \frac{1}{2}2\alpha_0\beta_0 = \alpha_0(\alpha_0 + \beta_0) = \alpha_0$
 $\beta_1 = r_1 + \frac{1}{2}q_1 = \beta_0^2 + \alpha\beta = \beta_0$

So the new transition matrix

$$\begin{bmatrix} \alpha_1 & \frac{1}{2}\alpha_1 & 0\\ \beta_1 & \frac{1}{2} & \alpha_1\\ 0 & \frac{1}{2}\beta_1 & \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 & \frac{1}{2}\alpha_0 & 0\\ \beta_0 & \frac{1}{2} & \alpha_0\\ 0 & \frac{1}{2}\beta_0 & \beta_0 \end{bmatrix}$$

 \therefore system is Markov.

In 2nd generation, new probabilities:

$$\begin{bmatrix} p_2 \\ q_2 \\ r_2 \end{bmatrix} = \begin{bmatrix} \alpha_0 & \frac{1}{2}\alpha_0 & 0 \\ \beta_0 & \frac{1}{2} & \alpha_0 \\ 0 & \frac{1}{2}\beta_0 & \beta_0 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ 2\alpha_0\beta_0 \\ \beta_0^2 \end{bmatrix} = \begin{bmatrix} \alpha_0^3 + \alpha_0^2\beta_0 \\ \alpha_0^2\beta_0 + \alpha_0\beta_0 \\ \alpha_0\beta_0^2 + \beta_0^3 \end{bmatrix} = \begin{bmatrix} \alpha_0^2(\alpha_0 + \beta_0) \\ \alpha_0\beta_0(\alpha_0 + 1 + \beta_0) \\ \beta_0^2 \end{bmatrix} = \begin{bmatrix} \alpha_0^2 \\ 2\alpha_0\beta_0 \\ \beta_0^2 \end{bmatrix} = \begin{bmatrix} p_1 \\ q_1 \\ r_1 \end{bmatrix}$$

Stabilizes after 1 generation.

Inner Product Space

October-28-11 9:55 AM

Inner Product

An inner product on a vector space V over $\mathbb{F}=\mathbb{C}$ or \mathbb{R} is a function $\langle *, * \rangle : V \times V \to \mathbb{F}$ s.t.

- 1. $\langle \alpha v + \beta w, u \rangle = \alpha \langle v, u \rangle + \beta \langle w, u \rangle$ Linear in first variable
- 2. $\langle v, w \rangle = \overline{\langle w, v \rangle}$
- 3. $\langle v, v \rangle > 0$ if $v \neq 0$ Positive Definite

2 ⇒

 $\langle u, \alpha v + \beta w \rangle = \bar{\alpha} \langle u, v \rangle + \bar{\beta} \langle u, w \rangle$

Norm

The norm on (V, \langle, \rangle) is $||v|| = \sqrt{\langle v, v \rangle}$

Theorem

 $v, u \in V, \alpha \in \mathbb{F}$

- 1) $\|\alpha v\| = |\alpha| \|v\|$
- 2) $||v|| \ge 0, ||v|| = 0 \Leftrightarrow v = 0$
- 3) Cauchy-Schwarz inequality $|\langle u, v \rangle| \le ||u|| \cdot ||v||$
- Equality $\Leftrightarrow u, v$ collinear

4) Triangle inequality $||u + v|| \le ||u|| + ||v||$

Equality $\Rightarrow u, v$ collinear

Conjugate in 2nd Variable

2 ⇒

 $< u, \alpha v + \beta w > = \overline{< \alpha v + \beta w, u >} = \overline{\alpha < v, u > + \beta < w, u >} = \overline{\alpha} \overline{< v, u >} + \overline{\beta} \overline{< w, u >}$ $= \bar{\alpha} < u, v > + \bar{\beta} < u, w >$ Conjugate linear in second variable.

Sesquilinear form (1/2 linear)

Examples

1)
$$V = \mathbb{C}^{n}, \langle (x_{i}), (y_{i}) \rangle = \sum_{i=1}^{n} x_{i} \overline{y_{i}}$$

2) $V = \mathbb{R}^{n}, \langle (x_{i}), (y_{i}) \rangle = \sum_{i=1}^{n} x_{i} y_{i}$ (dot product)
3) $V = \mathbb{C}^{2}, \langle \binom{x_{1}}{x_{2}}, \binom{y_{1}}{y_{2}} \rangle = x_{1} \overline{y_{1}} - x_{1} \overline{y_{2}} - x_{2} \overline{y_{1}} + 3x_{2} \overline{y_{2}}$
Check properties:
1. Linear in 1st variable
2. Symmetric
3. $\langle \binom{x_{1}}{x_{2}}, \binom{x_{1}}{x_{2}} \rangle \ge |x_{1}|^{2} - x_{1} \overline{x_{2}} - x_{2} \overline{x_{1}} + 3|x_{2}|^{2} = |x_{1} - x_{2}| \overline{|x_{1} - x_{2}|} + 2|x_{2}|^{2}$
 $= |x_{1} - x_{2}|^{2} + 2|x_{2}|^{2} \ge 0$
And equals 0 iff $x_{1}, x_{2} = 0$, So positive definite.
4) $V = C[0,1]$ (Continuous functions from [0,1] to [0,1])

$$\langle f,g \rangle = \int_0^1 f(x)\overline{g(x)}dx$$

1. Linear in 1st variable

2. Symmetric
3.
$$\langle f, f \rangle = \int_0^1 |f(x)|^2 dx$$

If $f \neq 0, f(x_0) \neq 0$ by continuity $|f(x)| \ge \delta > 0$ on $(x_0 - r, x_0 + r)$
 $\therefore \int |f(x)|^2 dx \ge \int_{x_0 - r}^{x_0 + r} \delta^2 dx > 0$

Proof of Theorem

1,2 easy
3. wlog
$$v \neq 0$$
.
 $0 \le ||u + \alpha v||^2 = \langle u + \alpha v, u + \alpha v \rangle = \langle u, u \rangle + \alpha \langle v, u \rangle + \overline{\alpha} \langle u, v \rangle + |\alpha|^2 \langle v, v \rangle$
Take $\alpha = t \langle u, v \rangle$, $t \in \mathbb{R}$
 $= \langle u, u \rangle + t |\langle u, v \rangle|^2 + t |\langle u, v \rangle|^2 + t^2 |\langle u, v \rangle|^2 ||v||$
Quadratic; minimized if $t = \frac{1}{m^{2^2}}$ setting $t = \frac{1}{||v||^2}$
 $0 \le ||u||^2 - \frac{2}{||v||^2} |\langle u, v \rangle|^2 + \frac{|\langle u, v \rangle|^2 ||v||^2}{||v||^4} = ||u||^2 - \frac{|\langle u, v \rangle|^2}{||v||^2}$
 $\therefore |\langle u, v \rangle|^2 \le ||u||^2 ||v||^2$
Equality $\Rightarrow 0 = \left\| u - \frac{\langle u, v \rangle}{||v||^2} v \right\|^2 \Rightarrow u$ is a multiple of v

4. $||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$ $= \|x\|^{2} + 2Re(\langle x, y \rangle) + \|y\|^{2} \le \|x\|^{2} + 2\|x\|\|y\| + \|y\|^{2} = (\|x\| + \|y\|)^{2}$ equality $\Leftrightarrow x, y$ collinear and $\langle x, y \rangle \ge 0$

Example

$$\left|\sum_{i=1}^{n} x_{i} \overline{y_{i}}\right| \leq \left(\sum |x_{i}|^{2}\right) \left(\sum |y_{i}|^{2}\right)$$

Example
$$\left|\int_{0}^{1} f(x)g(x)dx\right| \leq \left(\int_{0}^{1} |f(x)|^{2} dx\right) \left(\int_{0}^{1} |g(x)|^{2} dx\right)$$

Orthogonality

October-31-11 9:35 AM

Orthogonal

Say u is orthogonal to v $(u \perp v)$ if $\langle u, v \rangle = 0$

Orthonormal

A set $\{e_i\}_{i \in I}$ is orthonormal if $\langle e_i, e_j \rangle = \begin{cases} 0 \ i \neq j \\ 1 \ i = j \end{cases}$

If $M \subseteq V$, let $M^{\perp} = \{v \in V : \langle v, m \rangle = 0 \ \forall m \in M\}$

Remarks

- 1. If $u \perp v$, then $||u + v||^2 = \langle u + v, u + v \rangle =$ $||u||^2 + 2Re < u, v > + ||v||^2 = ||u||^2 + ||v||^2$ Pythagorean Law
- 2. M^{\perp} is a subspace If $u, v \in M^{\perp}, \alpha, \beta \in \mathbb{C}, m \in M$ $\langle \alpha u + \beta v, m \rangle = \alpha \langle u, m \rangle + \beta \langle v, m \rangle = 0$

Lemma

Let $\{e_1, ..., e_n\}$ be an orthonormal (o.n.) set, and $x \in$ span $\{e_1, \dots, e_n\}$ then

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i = \sum_{i=1}^{n} \alpha_i e_i$$

If $y \in \sum_{i=1}^{n} \beta_i e_i$, then $\langle x, y \rangle = \sum_{i=1}^{n} \alpha_i \overline{\beta_i}$
and $||x|| = \sqrt{\sum_{i=1}^{n} |a_i|^2}$

Note

If $\{e_1, \dots, e_n\}$ are orthonormal, and $v \in V$, then $v - \sum_{i=1}^{n} \langle v, e_i \rangle e_i \perp sp\{e_1, \dots, e_n\}$

Gram-Schmidt Process

Start with a set of vectors $\{v_1, v_2, \dots, v_m\}$ Build an o.n. set with the same span.

1. Throw out v_j if $v_j \in sp\{v_1, \dots, v_{j-1}\}$ So wlog $\{v_1, \dots, v_m\}$ is independent

2. Let
$$e_1 = \frac{1}{\|v_1\|}$$

Let $e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{\|v_2 - \langle v_2, e_2 \rangle e_1\|}$

3. If e_1, \dots, e_{k-1} are defined and o.n. Let $e_k = \frac{v_k - \sum_{i=1}^{k-1} \langle v, e_i \rangle e_i}{\|v_k - \sum_{i=1}^{k-1} \langle v, e_i \rangle e_i\|}$

 $span\{e_1, \ldots, e_k\} = span\{v_1, \ldots, v_k\}$

Lemma

If $\{e_i\}$ are orthonormal, then they are linearly independent.

Lemma

Every finite dimensional subspace $M \subseteq V$ has an orthonormal basis.

Proof of Lemma

Write
$$x = \sum_{i=1}^{n} \alpha_i e_i$$

 $\langle x, e_j \rangle = \left\langle \sum_{i=1}^{n} \alpha_i e_i, e_j \right\rangle = \sum_{i=1}^{n} \alpha_i \langle e_i, e_j \rangle = \alpha_j$
 $\langle x, y \rangle = \left\langle \sum_{i=1}^{n} \alpha_i e_i, \sum_{j=1}^{n} \beta_j e_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \overline{\beta}_j \langle e_i, e_j \rangle = \sum_{i=1}^{n} \alpha_i \overline{\beta}_i$

Example

$$H = C[0,1] \text{ with}$$

$$\langle f,g \rangle = \int_{0}^{1} f(x)\overline{g(x)}dx$$
Let $e_n(x) = e^{2\pi i n x}, n \in dZ$

$$\langle e_n, e_m \rangle = \int_{0}^{1} e^{2\pi i n x} \overline{e^{2\pi i m x}}dx = \int_{0}^{1} e^{2\pi i (n-m)x}dx$$

$$= \begin{cases} 1, & n = m \\ \frac{1}{2\pi i (n-m)} e^{2\pi i (n-m)x} \Big|_{0}^{1} = 1 - 1 = 0, \quad n \neq m \end{cases}$$
So $\{e_n, n \in \mathbb{Z}\}$ is orthonormal
If $c \in C[0,1]$ get a series

$$\sum_{n=-\infty}^{\infty} \langle f, e_n \rangle e_n = \sum_{-\infty}^{\infty} \hat{f}(n) e^{e\pi i n}$$

 $n = -\infty$ Fourier Series

Proof of Lemma

If
$$0 = \sum_{i=1}^{n} a_i e_i$$

then $0 = ||0|| = \left\|\sum_{i=1}^{n} a_i e_i\right\| = \sum_{i=1}^{n} |a_i|^2$
 $\therefore a_i = 0 \forall i$

Proof of Lemma

Take a basis $\{v_1, ..., v_k\}$ for M and apply the Gram-Schmidt Process to get an orthonormal basis.

Proof of Theorem(Projection)

1. $ran P = sp\{e_1, \dots, e_n\} = M$ $\ker P = \{v: \langle v, e_i \rangle = 0 \text{ for } 1 \le i \le n\} = \{e_1, \dots, e_n\}^{\perp}$ $=(sp\{e_1,\ldots,e_n\})^{\perp}=M^{\perp}$ If $w \in M$, $w = \sum_{i=1}^{n} a_i e_i$ $Pw = \sum \langle w, e_i \rangle e_i = \sum_{i=1}^n a_i e_i = w$ $P^2 v = P(Pv) = Pv$ ∴Projection onto M

2. $v \in V, Pv \in M$ $\langle v - Pv, e_i \rangle = 0$ for $1 \le i \le n$ $\because v - Pv \in M^\perp$ v = Pv + (v - Pv) $||v||^2 = ||Pv||^2 + ||v - Pv||^2$ (Pythagorean) Suppose $m \in M$ v - m = (Pv - m) + (v - Pv) $\therefore \|v - m\|^2 = \|Pv - m\|^2 + \|v - Pv\|^2 \ge \|v - Pv\|^2$ equality $\Leftrightarrow m = Pv$ \therefore *Pv* is the unique closest point \therefore *Pv* is the only projection onto M because *Pv* = the closest point on M∎

ьснина

Every finite dimensional subspace $M \subseteq V$ has an orthonormal basis.

Projection

V inner product space. $P \in \mathcal{L}(V)$ is a projection if $P = P^2$ (idempotent) s.t. ker $P \perp ran P$

Theorem (Projection)

Let *M* be a finite dimensional subspace of *V* with orthonormal basis $\{e_1, ..., e_n\}$. Define $P \in \mathcal{L}(V)$ by

$$Pv = \sum_{i=1}^{n} \langle v, e_i \rangle e_i$$

Then:

- 1) *P* is the projection of V onto M
- (i.e. ran P = M, ker $P = M^{\perp}$, $P = P^2$)
- 2) $v \in V$, $||v||^2 = ||Pv||^2 + ||v Pv||^2$
- 3) Pv is the unique closest point in M closest to v

Corollary - Bessel's Inequality

If V is an inner product space and $\{e_n : n \in S\}$ is orthonormal then

 $\sum_{n \in S} |\langle v, e_n \rangle|^2 \le ||v||^2 \ \forall v \in V$

Corollary

$$f \in C[0,1], \qquad \{e^{2\pi i n x} : n \in \mathbb{Z}\} \text{ orthonormal}$$

So if $a_n = \int_0^1 f(x) \overline{e^{2\pi i n x}} dx$
then $\sum_{h=-\infty}^{\infty} |a_n|^2 \le \int_0^1 |f(x)|^2 dx$

 \therefore *Pv* is the unique closest point

∴ Pv is the only projection onto M because Pv =the closest point on M ■

I - P is written P^{\perp} and P^{\perp} is the projection onto M^{\perp}

Proof of Corollary

If S is finite, not problem Let $M = sp\{e_n : n \in S\}$ $Pv = \sum_{n \in S} \langle v, e_n \rangle e_n$ and $||v||^2 \ge ||Pv||^2 = \sum_{n \in S} |\langle v, e_n \rangle|^2$

If S is infinite for each finite $F\subseteq S$ let $M_F=sp\{e_n,n\in F\}$ P_F , projction onto M_F

Then
$$||v||^2 \ge ||P_F v||^2 = \sum_{n \in F} |\langle v, e_n \rangle|^2$$

 $\therefore ||v||^2 \ge \sup_{F \subseteq S, finite} \sum_{n \in F} |\langle v, e_n \rangle|^2 = \sum_{n \in S} |\langle v, e_n \rangle|^2$
At most $||v||^2$ coefficients $\langle v, e_n \rangle$ have $|\langle v, e_n \rangle| \ge 1$
Otherwise \exists finite $N > ||v||^2$ and $|F| = N$ s.t. $|\langle v, e_n \rangle| \ge 1$, $n \in F$
 $\Rightarrow \sum_{n \in F} |\langle v, e_n \rangle|^2 = N > ||v||^2$
At most $4^k ||v||^2$ coefficients with $|\langle v, e_n \rangle| \ge \frac{1}{2^k}$
 $F_k = \left\{n: |\langle v, e_n \rangle| \ge \frac{1}{2^k}\right\}$
 $||v||^2 \ge \sum_{F_k} |\langle v, e_n \rangle|^2 \ge \frac{|F_k|}{4^k}$
 $\therefore |F_k| \le 4^k ||v||^2$
So $\{n: \langle v, e_n \rangle \ne 0\} = \bigcup_{k \ge 0} \{k: |\langle v, e_n \rangle| \ge 2^{-k}\}$
Is countable
List them $n_1, n_2, n_3, ...$
 $\sum_{i=1}^{\infty} |\langle v, e_n \rangle|^2 = \lim_{k \to \infty} \sum_{i=1}^k |\langle v, e_{n_i} \rangle|^2$
 $\therefore \sum_{n \in F} |\langle v, e_n \rangle|^2 \le ||v||^2$

Canonical Forms in Inner Product Spaces

November-02-11 9:33 AM

Theorem

If V is a complex inner product space, dim $V < \infty$, $T \in \mathcal{L}(V)$. Then there is an orthonormal basis $\beta = \{e_1, \dots, e_n\}$ such that $[T]_\beta$ is upper triangular.

Adjoint

V inner product space, $T \in \mathcal{L}(V)$ The adjoint of T is the linear map T^* such that $\langle T^*v, w \rangle = \langle v, Tw \rangle \forall v, w \in V$

Fix an orthonormal basis $\xi = \{e_1, \dots, e_n\}$ $[T]_{\xi} = [t_{ij}]_{n \times n}$ $t_{ij} = \langle Te_j, e_i \rangle$ Then $[T^*]_{\xi} = [\overline{t_{ji}}]_{n \times n}$

Proposition

If $S, T \in \mathcal{L}(V)$ then 1) $(S^*)^* = S$ 2) $(\alpha S + \beta T)^* = \overline{\alpha}S^* + \overline{\beta}T^*$ 3) $I^* = I$ 4) $(ST)^* = T^*S^*$

Hermitian (Self-Adjoint) $T \in \mathcal{L}(V)$ is Hermitian or self-adjoint if $T = T^*$

If $T = [t_{ij}] = T^* = [\overline{t_{ji}}]$ Then $\overline{t_{ji}} = t_{ij}$ and $t_{ii} = \overline{t_{ii}} \in \mathbb{R}$

If we check that $[T]_{\beta} = [T^*]_{\beta}$ then it has $[T]_{\xi} = [T^*]_{\xi}$ on every basis.

Reason:

 $T = T^* \Leftrightarrow \langle Tu, v \rangle = \langle u, Tv \rangle \; \forall u, v \in V$ This is basis independent.

Theorem

If $T \in \mathcal{L}(V)$, V finite and a \mathbb{C} inner product space, and $T = T^*$, then there is an orthonormal basis ξ such that

 $[T]_{\xi} = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & \cdot & 0 \\ 0 & 0 & d_n \end{bmatrix} \text{ is diagonal with } d_i \in \mathbb{R}$ So $\sigma(T) \subseteq \mathbb{R}$ and $\ker(T - \lambda_i I) \perp \ker(T - \lambda_i I) \text{ if } \lambda_i \neq \lambda_j \in \sigma(T)$

Corollary

If *V* is a finite \mathbb{R} –inner product space. $T \in \mathcal{L}(V)$ s.t. $T = T^*$ then there is an orthonormal basis ξ such that

 $[T]_{\xi} = \begin{bmatrix} d_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & d_n \end{bmatrix}$ is diagonal

Proof of Theorem

Since \mathbb{C} is algebraically closed, $p_T(x)$ splits into linear terms. Hence there is a basis $\{v_1, ..., v_n\}$ such that T is upper triangular with respect to $\{v_i\}$

Apply Gram-Schmidt process to $\{v_1, ..., v_n\}$ to an orthonormal basis $\{e_1, ..., e_n\}$ $Tv_1 = t_{11}v_1$ Since $e_1 = \frac{v_1}{||v_1||}$, $Te_1 = t_{11}e_1$ $T_2v_2 = t_{22}e_2 + t_{12}e_1$ $e_2 = \frac{v_2 - (v_2, e_1)e_1}{||v_2 - (v_2, e_1)e_1||} = a_1v_1 + a_2v_2$ $Te_2 = a_1Tv_1 + a_2Tv_2 \in sp\{v_1, v_2\}$

T upper Δ with respect to $\{v_1, \dots, v_n\}$ means $M_k = sp\{v_1, v_2, \dots, v_k\}$ is invariant for T But $span\{e_1, \dots, e_k\} = span\{v_1, \dots, v_k\}$

$$\therefore Te_k \in M_k \left(i.e.Te_k = \sum_{i=1}^n b_{ik}e_i \right)$$

So $[T]_{\beta}$ is upper triangular.

What is T*?

Fix an orthonormal basis $\xi = \{e_1, \dots, e_n\}$ $[T]_{\xi} = [t_{ij}]_{n \times n}$ $Te_j = \sum_{i=1}^n t_{ij}, e_i \Rightarrow \langle Te_j, e_i \rangle = t_{ij}$ $\langle T^*e_j, e_i \rangle = \langle e_j, Te_i \rangle = \overline{\langle Te_i, e_j \rangle} = \overline{t_{ji}}$ So $[T^*]_{\xi} = [\overline{t_{ji}}]$ Conjugate transpose of T

So we can define a linear transformation $T^* \in \mathcal{L}(V)$ with $[T^*]_{\xi} = [\overline{t_{j_i}}]$ Need to check that the identity holds for all vectors $v, w \in T$

Take
$$v = \sum_{i=1}^{n} \alpha_i e_i$$
, $w = \sum_{j=1}^{n} \beta_j e_j$

$$\langle T^* v, w \rangle = \left\langle T^* \sum_{i=1}^n \alpha_i e_i, \sum_{j=1}^n \beta_j e_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \overline{\beta_j} \langle T^* e_i, e_j \rangle = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_j \overline{\langle T e_j, e_i \rangle}$$
$$= \overline{\sum_{i=1}^n \sum_{j=1}^n \overline{\alpha_i} b_j \langle T e_j, e_i \rangle} = \overline{\left\langle T \sum_{j=1}^n \beta_j e_j, \sum_{i=1}^n \alpha_i e_i \right\rangle} = \overline{\langle T w, v \rangle} = \langle v, T w \rangle$$
So T^* is a well defined linear map.

Proof of Proposition

Fix an orthonormal basis ξ $[S]_{\xi} = [s_{ij}]$ $[S^*]_{\xi} = [\overline{s_{ji}}]$ $[S^*]_{\xi} = [\overline{s_{ij}}] = [S]_{\xi}$

$$\begin{aligned} &[\alpha S]_{\xi} = [\alpha S_{ij}] \\ &[(\alpha S)^*]_{\xi} = [\overline{\alpha} \overline{s_{ji}}] = \overline{\alpha} [\overline{s_{ji}}] = \alpha [S^*]_{\xi} \end{aligned}$$

$$\begin{split} [T]_{\xi} &= \begin{bmatrix} t_{ij} \end{bmatrix} \\ [\alpha S + \beta T]_{\xi} &= \begin{bmatrix} \alpha s_{ij} + \beta t_{ij} \end{bmatrix}_{\xi} \\ [(\alpha S + \beta T)^*]_{\xi} &= \begin{bmatrix} \alpha \overline{s_{ji}} + \beta t_{ji} \end{bmatrix} = \overline{\alpha} [\overline{s_{ji}}] + \overline{\beta} [\overline{t_{ji}}] = \overline{\alpha} [S^*]_{\xi} + \overline{\beta} [T^*]_{\xi} \end{split}$$

3.

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix} = I^*$$
4.

$$S = [s_{ij}]_{n \times n}, \quad T = [t_{ij}]_{n \times n}$$

$$S^* = [\overline{s_{ji}}], \quad T = [\overline{t_{ji}}]$$

$$ST = \left[\sum_{k=1}^n s_{ik} t_{kj}\right]_{n \times n}$$

$$\therefore (ST)^* = \left[\sum_{k=1}^n \overline{s_{jk} t_{ki}}\right]$$

$$T^*S^* = \left[\sum_{k=1}^n \overline{t_{ki}} \overline{s_{jk}}\right] = (ST)^* \blacksquare$$

Proof of Theorem

Since V is a C-vector space there is an orthonormal basis ξ such that $[T]_{\xi}$ is upper triangular.

$$\begin{split} [T]_{\xi} &= \begin{bmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{nn} \end{bmatrix} = [T^*]_{\xi} = \begin{bmatrix} t_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ t_{n1} & \cdots & t_{nn} \end{bmatrix} \\ & \text{If } i < j, t_{ij} = 0 \text{ If } i = j, t_{ii} = \overline{t_{ii}} \in \mathbb{R} \\ & \therefore [T]_{\xi} = \begin{bmatrix} t_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & t_{nn} \end{bmatrix}, t_{ii} \in \mathbb{R} \\ & \sigma(T) = \{t_{ii} : 1 \le i \le n\} \subseteq \mathbb{R} \\ & \text{ker}(T - \lambda_i I) = sp\{e_j : t_{jj} = \lambda_i\} \text{ are pairwise orthogonal.} \blacksquare$$

Proof of Corollary

Fix an orthonormal basis β , $T = [t_{ij}]_{\beta} = [t_{ji}]_{\beta}$ Think of T as acting on \mathbb{C}^n

$$T = T^*$$
 so by Theorem $p_T(x) = \prod_{i=1}^n (x - \lambda_i)$ and $\lambda_i \in \mathbb{R}$

So p_T splits in $\mathbb{R}[x]$ \therefore T is triangularizable over $\mathbb{R} \exists \zeta \ s. t. [T]_{\zeta}$ is upper triangular

Apply Gram-Schmidt to basis to get an orthonormal basis ξ and $[T]_{\xi}$ is upper Triangular and self adjoint, so the same argument shows $[T]_{\xi}$ is diagonal.

Unitary Maps

November-04-11

Unitary and Orthogonal Maps

V, W C- inner product spaces. $U \in \mathcal{L}(V, W)$ is called **unitary** iff it is invertible and preserves inner product: $\langle Uv_1, Uv_2 \rangle_W = \langle v_1, v_2 \rangle_V$

If *V*, *W* are \mathbb{R} -inner product spaces, call such a map **orthogonal**.

Theorem

If dim $V = \dim W < \infty$, $U \in \mathcal{L}(V, W)$, TFAE

1) U is unitary

2)

3)

- a. U preserves inner productb. U is isometric (preserves norm)
- b. U is isometric (preserves
- a. U sends every orthonormal basis of V to an orthonormal basis for W
- b. U sends some orthonormal basis of V to an orthonormal basis of W $% \left(V_{0}^{A}\right) =0$

Remark

If $V = \mathbb{C} = sp\{e_1\}, W = \mathbb{C}^2 = sp\{f_1, f_2\}$ $T(\alpha e_1) = \alpha f_1$ preserves inner product but not onto so not invertible.

Proposition

 $\begin{array}{l} U \in \mathcal{L}(V,W) \text{ is unitary} \Leftrightarrow \\ U^*U = I_V \text{ and } UU^* = I_W \Leftrightarrow \\ U^{-1} = U^* \end{array}$

Unitarily Equivalent

Say two transformations $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(W)$ are **unitarily** equivalent iff \exists unitary $U \in \mathcal{L}(V, W)$ s.t. $T = USU^{-1} = USU^*$

Corollary

If T is self-adjoint $(T = T^*)$ then $T \cong D$ (T unitarily equivalent to D) where D is diagonalizable with real entries.

Just a restatement of theorem that T is diagonalizable with respect to an orthonormal basis $\{f_1, ..., f_n\}$ say $Tf_i = d_i f_i, d_i \in \mathbb{R}$

Say $T = [t_{ij}]$ in $\{e_1, ..., e_n\}$ orthonormal basis. Let $Ue_i = f_i \ 1 \le i \le n$ Then U is unitary (takes one orthonormal basis to another) and $(U^*TU)e_i = U^*Tf_i = U^*d_if_i = d_ie_i$ $(U^* = U^{-1}, \text{ so } U^*f_i = e_i)$ $\therefore D = U^*TU = diag(d_1, d_2, ..., d_n)$

Proof of Theorem

 $1 \Rightarrow 2a$ By definition

 $\begin{aligned} &2a \Rightarrow 2b \\ &\|Uv\|^2 = \langle Uv, Uv\rangle = \langle v, v\rangle = \|v\|^2 \end{aligned}$

 $\begin{aligned} 2b &\Rightarrow 2a \\ \text{Assignment 5 \#5a} \\ \langle Uv_1, v_2 \rangle &= \frac{1}{4} (\|v_1 + v_2\|^2 - \|v_1 - v_2\|^2 + i\|v_1 + iv_2\|^2 - i\|v_1 - iv_2\|^2) \end{aligned}$

$2a \Rightarrow 3a$

If $\{e_1, ..., e_n\}$ is an orthonormal basis for V, Let $f_i = Ue_i$ $\langle f_i, f_j \rangle = \langle Ue_i, U_j \rangle = \langle e_i, e_j \rangle = \delta_{ij} \therefore \{f_i\}$ is orthonormal Since dim $W = \dim V, \{f_i\}$ is an orthonormal basis.

 $3a \Rightarrow 3b$ Obvious

 $3b \Rightarrow a$

Let $\{e_1, ..., e_n\}$ be an orthonormal basis such that $f_i = Ue_i$ is an orthonormal basis for W.

U takes a basis for V to a basis for W $\div U$ is invertible

Let
$$v_1 = \sum \alpha_i e_i$$
, $v_2 = \sum \beta_j e_j$
 $\langle v_1, v_2 \rangle = \sum_{i=1}^n \alpha_i \overline{\beta_i}$
 $Uv_1 = \sum \alpha_i f_i$, $Uv_2 = \sum \beta_j f_j$
 $\therefore \langle Uv_1, Uv_2 \rangle = \left(\sum \alpha_i f_i, \sum \beta_j f_j \right) = \sum \alpha_i \overline{\beta_i} = \langle v_1, v_2 \rangle$

So it preserves inner product. \div U is unitary \blacksquare

Proof of Proposition

3nd and 2rd statements are clearly equivalent.

Let $v_1, v_2 \in V, w_i = Uv_i$ $\langle v_1, U^*w_2 \rangle = \langle Uv_1, w_2 \rangle = \langle Uv_1, Uv_2 \rangle = \langle v, U^{-1}w_2 \rangle$ $\langle v_1, U^*w_2 - U^{-1}w_2 \rangle = 0 \forall v_1 \in V$ $\therefore U^*w_2 = U^{-1}w_2, \forall w_2 \in UV = V i.e. U^* = U^{-1}$ \leftarrow U is invertible and $\langle Uv_1, Uv_2 \rangle = \langle U^*Uv_1, v_2 \rangle = \langle v_1, v_2 \rangle$ preserves $\langle , \rangle \blacksquare$

Normal Maps

November-07-11 9:40 AM

Definition

 $N \in \mathcal{L}(V)$ is normal if $N^*N = NN^*$

Theorem

 $T \in \mathcal{L}(V)$ is normal \Leftrightarrow There is an orthonormal basis which diagonalizes T.

Corollary

If T is normal and

$$\sigma(T) = \{\lambda_1, \dots, \lambda_s\} \text{ then } m_T(x) = \prod_{i=1}^s (x - \lambda_i)$$

and $V_i = \ker(T - \lambda_i I)$ are pairwise orthogonal

Corollary

If U is unitary, then $\sigma(Y) \subseteq \mathbb{T} = \{\lambda: |\lambda| = 1\}$ and U is diagonalizable w.r.t. some o.n. basis.

Corollary

If N is normal $\sigma(N) = \{\lambda_1, ..., \lambda_s\}$ and $V_i = \ker(N - \lambda_i I)$ The idempotent $E_i \in \mathcal{A}(N)$ onto V_i is the orthonormal projection of V onto V_i . Moreover $N = \sum_{i=1}^{s} \lambda_i E_i$

Corollary

If *p* is a polynomial, *N* normal write $N = \sum_{i=1}^{s} \lambda_i E_i$, *E_i* as above

Then
$$p(N) = \sum_{i=1}^{3} p(\lambda_i) E_i$$

Rank 1 Matrices

Suppose $T \in \mathcal{L}(V, W)$ and rank(T) = 1Let $K = \ker T \subseteq V$ $n = \dim V = nul(T) + rank(T) = \dim K + 1$ $\therefore \dim K = n - 1$

Pick a unit vector $e \in V$, $e \perp K$. Let $w = Te \ (\neq 0 \ since \ e \neq K)$ $V = K \bigoplus K^{\perp} = K \bigoplus \mathbb{F}e$ If $v \in V$, $v = k + \lambda e$, $k \in K$, $\lambda \in \mathbb{F}$

$$Tv = T(k + \lambda e) = \lambda Te = \lambda w$$

Think of $e = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$ as a $n \times 1$ matrix
So $e \in \mathcal{L}(\mathbb{F}, V)$ by $e(\lambda) = \lambda e$
 $e^* = [\overline{\alpha_1}, \overline{\alpha_2}, \dots, \overline{\alpha_n}] \in \mathcal{L}(V, \mathbb{F})$ is a $1 \times n$ matrix
If $v \in V$, $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$

$$e^{*}v = [\overline{\alpha_{1}}, \overline{\alpha_{2}}, \dots, \overline{\alpha_{n}}] \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix} = \sum_{i=1}^{n} \overline{\alpha}_{i}v_{i} = \langle v, e \rangle$$

$$e^{*}(k + \lambda e) = 0 + \lambda ||e||^{2} = \lambda$$

$$we^{*} = \begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{bmatrix} [\overline{\alpha_{1}}, \overline{\alpha_{2}}, \dots, \overline{\alpha_{n}}] = \begin{bmatrix} w_{1}\overline{\alpha_{1}} & w_{1}\overline{\alpha_{2}} & \dots & w_{1}\overline{\alpha_{n}} \\ w_{2}\overline{\alpha_{1}} & w_{2}\overline{\alpha_{2}} & \dots & w_{2}\overline{\alpha_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n}\overline{\alpha_{1}} & w_{n}\overline{\alpha_{2}} & \dots & w_{n}\overline{\alpha_{n}} \end{bmatrix}$$

$$we^{*} \in \mathcal{L}(\mathbb{F}, W) \cdot \mathcal{L}(V, \mathbb{F}) = \mathcal{L}(V, W)$$

$$(we^{*})(k + \lambda e) = \lambda w = T(k + \lambda e)$$

$$T = we^{*} = Tee^{*}$$

Example of Normal Maps

- 1. $T = T^*$ are normal (TT = TT)
- 2. Unitaries are normal $(U^*U = I = UU^*)$
- 3. If D is diagonal w.r.t an orthonormal basis $D = diag(d_1, d_2, ...,), D^* = (\overline{d_1}, \overline{d_2}, ..., \overline{d_n})$ $D^*D = DD^* = diag(|d_1|^2, |d_2|^2, ..., |d_n|^2)$

Proof of Theorem

 $\begin{array}{l} \leftarrow \text{Example 3} \\ \Rightarrow \text{ If T is normal then } \|Tx\| = \|T^*x\| \ \forall x \in V \text{ because:} \\ \|Tx\|^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle = \langle x, TT^*x \rangle = \langle T^*x, T^*x \rangle = \|T^*x\|^2 \end{array}$

Choose an orthonormal basis
$$\{e_1, \dots, e_n\}$$
 so that $[T]_\beta$ is upper Δ

$$T = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ 0 & t_{22} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & t_{nn} \end{bmatrix}, T^* = \begin{bmatrix} t_{11} & 0 & \dots & 0 \\ \overline{t_{12}} & \overline{t_{22}} & \dots & 0 \\ \vdots \\ \overline{t_{1n}} & \overline{t_{1n}} & \dots & \overline{t_{nn}} \end{bmatrix}$$
$$\|Te_1\|^2 = \|t_{11}e_i\|^2 = |t_{11}|^2$$
$$\|Te_1\|^2 = \|T^*e_1\|^2 = \|\overline{t_{11}}e_1 + \overline{t_{12}}e_2 + \dots + \overline{t_{1n}}e_n\|^2 = \sum_{j=1}^n |t_{1j}|^2 = |t_{11}|^2 + \sum_{j=2}^n |t_{ij}|^2$$
$$\therefore t_{1j} = 0 \text{ for } 2 \le j \le n$$

Repeat $||Te_2|| = |t_{22}| = ||T^*e_2|| = \sqrt{\sum_{j=2}^n |t_{2j}|^2}$ ∴ $t_{2j} = 0$ 3 ≤ $j \le n$ ∴ T is diagonal

Proof of Corollary

Since T is diagonalizable wrt some basis, $m_T(x) = \prod (x - \lambda_i)$ has only simple roots. Say $\{e_i\}_{i=1}^n$ orthonormal, $Te_i = d_i e_i$ $V_j = \ker(T - \lambda_j I) = sp\{e_i: d_i = \lambda_j\}$ $\therefore V_j$ are pairwise \bot

Proof of Corollary

U normal \therefore diagonalizable Say $Ue_i = d_ie_i$, $\{e_i\}$ orthonormal $||Ue_i|| = ||e_i|| = 1$ $||Ue_i|| = |d_i||e_i|| = |d_i|$ $\therefore |d_i| = 1$

Proof of Corollary

 E_i is the projection onto V_i

The range of
$$E_i$$
 is V_i and
 $ker(E_i) = \sum_{j \neq i} V_j = V_i^{\perp}$
 $V_i = sp\{e_k: d_k = \lambda_i\}$
 $\sum_{j \neq i} V_j = sp\{e_k: d_k \neq \lambda_i\} = V_i^{\perp}$
 $NE_i = E_i N = \lambda_i E_i$
So $N = N\left(\sum_{i=1}^{s} E_i\right) = \sum_{i=1}^{s} \lambda_i E_i$

Example

Orthogonal projection on to $\mathbb{F}e$ Te = e so $T = ee^* = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} [\overline{\alpha_1} \quad \dots \quad \overline{\alpha_n}] = [\alpha_i \overline{\alpha_j}]$

Polar Decomposition

November-09-11 9:30 AM

Complex

 $z \in \mathbb{C}, z = re^{i\theta}, \quad r = |z|, |e^{i\theta}| = 1$

Positive

 $T\in\mathcal{L}(V),V\ \mathbb{C}$ –vector space is **positive** if $T=T^*$ and $\sigma(T)\subseteq[0,\infty)$ Write $T\geq 0$

Proposition

If $T \in \mathcal{L}(V)$ then $T^*T \ge 0$

Square Root

 T^*T can be diagonalized with orthonormal basis $\xi = \{e_1, e_2, \dots, e_n\}$ $[T^*T]_{\xi} = diag(d_1, d_2, \dots, d_n), \qquad d_i \ge 0$ $\sqrt{d_i}$ the square root of d_i $[A]_{\xi} = diag(\sqrt{d_1}, \sqrt{d_2}, \dots, \sqrt{d_n})$ and $A^2 = T^*T$ i.e. A is the square root of T^*T call this |T| (absolute value of T)

Fact (Homework)

The square root of T^*T is unique

Want to write T = U|T|

Partial Isometry

A partial isometry is a map $U \in \mathcal{L}(V, W)$ such that $U|_{\ker U^{\perp}}$ is isometric (preserves norm)

Examples

 $U: \mathbb{C}^2 \to \mathbb{C}^3$ by U(x, y) = (x, y, 0) $U^*: \mathbb{C}^3 \to \mathbb{C}^2$ by U(x, y, z) = (x, y) -not unitary U unitary is a partial isometry

Proposition

 $U \in \mathcal{L}(V, W)$ TFAE

- 1. *U* is a partial isometry
- 2. U^*U is a projection (onto $(\ker U)^{\perp}$)
- 3. UU^* is a projection (onto *ran* U)
- 4. $U = UU^*U$

Theorem (Polar Decomposition)

If $T \in \mathcal{L}(V, W)$ then there is a unique partial isometry U with ker $U = \ker T$ such that $T = U|T| (|T| = \sqrt{T^*T})$

S-Numbers

The s-numbers of $T \in \mathcal{L}(V, W)$ are the eigenvalues of |T| (including multiplicity) in decreasing order.

Geometry of how T acts

 $|T| = diag(s_1, s_2, ..., s_n)$ wrt $\{e_1, e_n\}$ If considering the action on a unit sphere, T stretches it onto an ellipsoid (axis length defined by s-numbers). U is a partial rotation in space.

Proof of Proposition

 $(T^*T)^* = T^*T^{**} = T^*T$

If $T^*Tx = \lambda x$, ||x|| = 1 $\lambda = \langle \lambda x, x \rangle = \langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2 \ge 0$ $\therefore T^*T \ge 0$

Proof of Proposition

 $1 \Rightarrow 2$ ker $U \supseteq \ker U^*U$ $x \in \ker U^*U \Rightarrow 0 = \langle U^*Ux, x \rangle = \langle Ux, Ux \rangle = ||Ux||^2$ $\therefore x \in \ker U$, ker $U \subseteq \ker U^*U$ $\therefore \ker U = \ker U^*U$

If $x \perp \ker U$ then ||Ux|| = ||x|| $\langle x, x \rangle = ||x||^2 = ||Ux||^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle$

 $ran (U^*U) \perp \ker U \text{ since } y \in \ker U:$ $\langle U^*Ux, y \rangle = \langle Ux, Uy \rangle = \langle Ux, 0 \rangle = 0$

 $x, y \in (\ker U)^{\perp}$ $\langle U^*Ux, y \rangle = \langle Ux, Uy \rangle = \langle x, y \rangle$ (because of isomorphic) $U^*Ux \in (\ker U)^{\perp}$

Take orthonormal basis $\{e_1, \dots, e_k\}$ for $(\ker U)^{\perp}$ $\langle U^*Ue_i, e_j \rangle = \langle e_i, e_j \rangle = \delta_{ij}$ $\therefore U^*Ue_i = \sum_i \langle U^*Ue_i, e_j \rangle e_i = e_i$

∴ $U^*Ux = x$ for $x \in (\ker U)^{\perp}$ ∴ U^*U is the projection onto $(\ker U)^{\perp}$

 $\begin{array}{l} 2 \Rightarrow 1, \text{ if } x \in (\ker U)^{\perp} \\ \|Ux\|^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle = \langle x, x \rangle = \|x\|^2 \end{array}$

 $1 \Rightarrow 3$ Claim: If U is a partial isometry so is U^*

Claim $\ker U^* = (ran \ U)^{\perp}$

Proof of Claim

If $y \perp ran U$, then $0 = \langle y, Ux \rangle \quad \forall x \in V$ $0 = \langle U^*y, x \rangle$, Take $x = U^*y$ $0 = \langle U^*y, U^*y \rangle = ||U^*y||^2$

If $y \in ker U^*, x \in V$ $\langle y, Ux \rangle = \langle U^*y, x \rangle = 0$ $\therefore y \perp ran U$ $\therefore ker U^* \perp ran U \blacksquare$

On the ran U $U^*(Ux) = P_{\ker U}^{\perp} x$ $y \in ran U$ replace x by U^*Ux becomes $x - U^*Ux \in \ker U$ $0 = Ux - UU^*Ux \Rightarrow Ux = UU^*Ux (2\Rightarrow 4)$ $y = Ux, x = U^*Ux, U^*y = U^*Ux = x$

 $y = Ux, \quad x = U^*Ux$ $U^*y = x$ $||U^*y|| = ||x|| = ||Ux|| = ||y||$ $U^* \text{ is a partial isometry}$ \Leftrightarrow $UU^* = U^{**}U^* \text{ is a projection}$

 $4\Rightarrow 2$ $U = UU^*U$ ∴ $U^*U = U^*UU^*U = (U^*U)^2$ Self adjoint, idempotent ∴ projection

Proof of Polar Decomposition Theorem

Diagonalize $|T| = diag(s_1, s_2, \dots, s_n), \qquad s_1 \ge s_2 \ge \dots \ge s_n \ge 0$

Claim $||Tx|| = |||T|x|| \forall x \in V$ Proof $||T|x||^2 = \langle |T|x, |T|x \rangle = \langle |T|^2 x, x \rangle = \langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2$

 $\begin{aligned} &\ker |T| = \ker T = sp\{e_i: s_i = 0\}\\ &ran |T| = sp\{e_i: s_i > 0\} = (\ker T)^{\perp}\\ &\text{Define U on } ran |T| \text{ by } U(|T|x) = Tx\end{aligned}$

U is isometric on ran |T| by Claim (above) Since ran $|T| = (\ker T)^{\perp}$ have that $U_{(\ker T)^{\perp}}$ is isometric. Hence U is a partial isometry.

Define
$$U|_{\ker T} = 0$$

 $U\left(\sum_{i=1}^{k} a_i e_i\right) = U\left(\sum_{i=1}^{k} a_i e_i\right), \sum_{i=1}^{k} a_i e_i \in ran T$
U is a partial isometry $T = U|T|$

Remark

 $\{e_1, ..., e_k\}$ orthonormal basis for $(\ker T)^{\perp}$. Let $f_i = Ue_i, 1 \le i \le k$ f_i are orthonormal in W

$$|T| = \sum_{i=1}^{k} s_i e_i e_i^* , e_i e_i^* \text{ is projection to } \mathbb{C}e_i$$
$$T = U|T| = \sum_{i=1}^{k} s_i (f_i e_i^*) \text{ , rank 1 projection sends } e_i \mapsto f_i$$
$$U = \sum_{i=1}^{k} f_i e_i^*$$

Least Square Approximation

November-11-11 9:30 AM

An experiment is run to test whether the output, y is a linear function of the input variables: x_1, \dots, x_n

Run the experiment m times $(m \gg n)$ to get a bunch of data.

<i>x</i> ₁	<i>x</i> ₂		x_n	<i>y</i> _n
<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1n}	<i>y</i> ₁
:	:	:	:	:
<i>x</i> _{<i>m</i>1}				<i>y</i> _m

Looking for $a_1, \dots, a_n \in \mathbb{R}$ or \mathbb{C} so that

$$\sum_{j=1}^{n} a_j x_{ij} \approx y_i \text{ for } 1 \le i \le m$$

minimize $a_{1,\dots,a_n} \left(\sqrt{\sum_{i=1}^{m} \left| y_i - \sum_{y=1}^{n} a_j x_{ij} \right|} \right)$

Let
$$X_1 = \begin{bmatrix} x_{11} \\ x_{12} \\ \vdots \\ x_{1m} \end{bmatrix}$$
, ..., $X_j = \begin{bmatrix} x_{j1} \\ x_{j2} \\ \vdots \\ x_{jm} \end{bmatrix}$, $1 \le j \le n$, $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$

Problem becomes

We must choose a_1, \dots, a_n so that $\sum_{j=1}^n a_j X_j = P_{sp\{X_j\}} Y$ These are the scalars such that $\left\langle Y - \sum_{j=1}^n a_j X_j, X_i \right\rangle = 0, \quad 1 \le i \le n$ $\left\langle Y - \sum_{j=1}^n a_j X_j, X_i \right\rangle = \langle Y, X_i \rangle - \sum_{j=1}^n a_i \langle X_j, X_i \rangle = X_i^* Y - \sum_{j=1}^n a_i X_j^* X_i$ Let $X = [X_1, \dots, X_n]$, then $X^* Y = \begin{bmatrix} X_1^* \\ X_2^* \\ \vdots \\ X_n^* \end{bmatrix} Y = \begin{bmatrix} X_1^* Y \\ X_2^* Y \\ \vdots \\ X_n^* Y \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n a_j X_2^* X_j \\ \vdots \\ \sum_{j=1}^n a_j X_n^* X_j \end{bmatrix}$ $X^* X = \begin{bmatrix} X_1^* \\ X_2^* \\ \vdots \\ X_n^* \end{bmatrix} [X_1 \quad X_2 \quad \dots \quad X_n] = \begin{bmatrix} X_1^* X_1 \quad \dots \quad X_1^* X_n \\ \vdots \quad \ddots \quad \vdots \\ X_n^* X_1 \quad \dots \quad X_n^* X_n \end{bmatrix}$ $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ n \\ a_j X_n^* X_j \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n a_j X_2^* X_j \\ \vdots \\ \sum_{j=1}^n a_j X_n^* X_j \end{bmatrix} = X^* X a = X^* Y$

If X_1, \ldots, X_n are linearly independent then X has rank n.

Claim $rank(X^*X) = rank X$ Proof $rank(X) = \dim(domain) - nul(X) = n - nul(X)$

Example

<i>x</i> ₁	<i>x</i> ₂	у	ax
7	3	1.6	1.86
9	2	2.1	1.94
5	5	2.0	2.02
4	6	2.2	2.10
3	1	0.8	0.73
3	2	1.1	0.98

$$X^*X = \begin{bmatrix} 189 & 97\\ 97 & 79 \end{bmatrix}, X^*Y = \begin{bmatrix} 54.6\\ 35.2 \end{bmatrix}$$
$$(X^*X)^{-1} = \begin{pmatrix} 0.0143 & -0.0176\\ -0.0176 & 0.0324 \end{pmatrix}$$
$$a = \begin{bmatrix} 0.161\\ 0.243 \end{bmatrix}$$

MATH 245 Page 47

 $\begin{aligned} rank(X^*X) &= n - nul X^*X \\ \text{If } x \in \ker X \text{ then } X^*Xx = X^*0 = 0, so \ x \in \ker X^*X \\ \text{If } x \in \ker X^*X, \ 0 &= \langle X^*Xx, x \rangle = \langle Xx, Xx \rangle = \|Xx\|^2, \ so \ x \in \ker X \end{aligned}$

: If $X_1, ..., X_n$ is linearly independent then X^*X is invertible. d $X^*Xa = X^*Y$: $a = (X^*X)^{-1}X^*Y$

Sesquilinear Forms

November-11-11 10:09 AM

Sesquilinear Form

V ℂ vector space. A function $F: V \times V \to \mathbb{C}$ is a sesquilinear form if it is linear in the first variable and conjugate linear in the second variable. $F(a_1v_1 + a_2v_2, w) = a_1F(v_1w) + a_2F(v_2, w)$ $F(v, a_1w_1 + a_2w_2) = \overline{a_1}F(v, w_1) + \overline{a_2}F(v, w_2)$

Definitions

Say F is **Hermitian** if $F(w, v) = \overline{F(v, w)}$ F is **non-negative** if F is Hermitian and $F(v, v) \ge 0$ F is **positive** if $F \ge 0$ and F(v, v) > 0 for $v \ne 0$

Theorem

If $F: V \times V \to \mathbb{C}$ is sesquilinear form, then there is a unique $T_F \in \mathcal{L}(V)$ such that $F(v, w) = \langle T_F v, w \rangle$ for $v, w \in V$

Moreover, the map $F \mapsto T_F$ is a linear isomorphism from the vector space of sesquilinear forms onto $\mathcal{L}(V)$

Principal Axis Theorem

If F(x, y) is a Hermitian sesquilinear form then \exists an orthonormal basis $\{e_1, ..., e_n\}$ and $d_i \in \mathbb{R} \ s. t$.

$$F\left(\sum \alpha_i e_i, \sum \beta_i e_i\right) = \sum_{i=1}^n d_i \alpha_i \overline{\beta}$$

*e*_i are principal axes.

Symmetric Quadratic Form

A symmetric quadratic form on \mathbb{R}^n is

 $q(x_1, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \quad \text{where } a_{ij} = a_{ji} \in \mathbb{R}$ Any quadratic form in \mathbb{R}^n

$$q(x) = \sum \sum b_{ij} x_i x_j$$

Replace b_{ij} by $a_{ij} = \frac{b_{ij} + b_{ji}}{2}$ now it is symmetric.

Diagonalization

Again, this quadratic form can be diagonalized $A = [a_{ij}] = A^*$ \exists o.n. basis $\{e_1, \dots, e_n\}$ of \mathbb{R}^n consisting of eigenvalues $Ae_i = d_i e_i, \quad 1 \le i \le n, \quad d_i \in \mathbb{R}$

$$e_{i} = \begin{bmatrix} c_{1i} \\ c_{2i} \\ \vdots \\ c_{ni} \end{bmatrix}, \qquad U = \begin{bmatrix} e_{1} & e_{2} & \dots & e_{n} \end{bmatrix} = \begin{bmatrix} c_{ij} \end{bmatrix}_{n \times n}, \qquad U \text{ orthogonal}$$
$$U^{*}AU = diag(d_{1}, \dots, d_{n}) = D$$

$$\begin{split} q(x_1, \dots, x_n) &= \left\langle A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right\rangle = \left\langle UDU^* \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right) \\ &= \left\langle DU^* \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, U^* \begin{bmatrix} x_1 \\ \vdots \\ e_n^* \end{bmatrix}, U^* \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \langle x, e_1 \rangle \\ \vdots \\ \langle x, e_n \rangle \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n c_{i1} x_i \\ \vdots \\ \sum_{i=1}^n c_{in} x_i \end{bmatrix}, c_{ij} \in \mathbb{R} \\ q(x_1, \dots, x_n) = \sum_{j=1}^n d_j \left(\sum_{i=1}^n c_{ij} x_i \right)^2 \end{split}$$

Proof

Fix an orthonormal basis $\xi = \{e_1, \dots, e_n\}$ for *V*. F sesquilinear form. Need $\langle Te_j, e_i \rangle = F(e_j, e_i), \ 1 \le i, j \le n$ Let $[T]_{\xi} = [t_{ij}]_{n \times n}$ where $t_{ij} = \langle Te_j, e_i \rangle$ T is the unique map on $\mathcal{L}(V)$ such that $\langle Te_i, e_i \rangle = F(e_i, e_i), \ 1 \le i, j \le n$

Let
$$v = \sum_{i=1}^{n} a_i e_i$$
, $w = \sum_{i=1}^{n} b_i e_i$
 $\langle Tv, w \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_j \overline{b}_i \langle Te_j, e_i \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_j \overline{b}_i F(e_j, e_i) = \sum_{i=1}^{n} \overline{b}_i F\left(\sum_{j=1}^{n} a_j e_j, e_i\right)$
 $= F\left(\sum a_j e_j, \sum b_i e_i\right) = F(v, w)$

Show T_F is uniquely determined by $F, F \mapsto T_F$ is linear. $T_F = 0 \Leftrightarrow F = 0 \therefore 1 \text{ to } 1$ Onto if $T \in \mathcal{L}(V)$, define $F(v, w) = \langle Tv, w \rangle$ is sesquilinear So $F \mapsto T$, onto

Proof of Principal Axis Theorem

 $F(x,y) = \langle Ax, y \rangle = \langle x, A^*y \rangle$ $F(x,y) = \overline{F(y,x)} = \langle Ay, x \rangle = \langle x, Ay \rangle$ $\therefore A = A^* \text{ is Hermitian}$ A is diagonalizable w.r.t orthonormal basis $\xi = \{e_1, \dots, e_n\}$ $[A]_{\xi} = diag (d_1, \dots, d_n), \quad d_i \in \mathbb{R}$ $F\left(\sum \alpha_i e_i, \sum \beta_i e_i\right) = \left\langle A \sum \alpha_i e_i, \sum \beta_i e_i \right\rangle = \left\langle \sum d_i \alpha_i e_i, \sum \beta_i e_i \right\rangle = \sum d_i \alpha_i \overline{b_i}$

Conics

November-14-11 10:07 AM

Ellipse

Take two points F_1 , F_2 , with separation 2*c*. Pick a > cEllipse is $\{P = (x, y) : |P - F_1| + |P - F_2| = 2a\}$

$$\frac{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}{b^2 = a^2 - c^2}$$

 $b^2 = a^2 - c^2$, $c^2 = a^2 + b^2$

Hyperbola

Take two points F_1 , F_2 with separation 2cHyperbola is { $(x, y) : |PF_1| - |PF_2| = 2a$ }

$$F_{1} = (-c, 0), \qquad F_{2} = (c, 0)$$
$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$
$$c^{2} = a^{2} + b^{2}$$

Parabola

Focus and line. The set of points equidistant to focus and line.

Formula of an Ellipse

Translate so $F_1 = (-c, 0), F_2 = (c, 0)$ $\{(x, y): |(x + c, y)| + |(x - c, y)| = 2a\} = \{(x, y): \sqrt{(x + c)^2 + y^2} + \sqrt{(x - c)^2 + y^2} = 2a\}$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2} (x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2 4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx x^2 - 2cx + c^2(x-c)^2 + y^2 = a^2 - 2cx + \frac{c^2x^2}{a^2} \frac{a^2 - c^2}{a^2}x^2 + y^2 = a^2 - c^2 \frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

General Conic

 $ax^2 + bxy + cy^2 + dx + ey + f = 0$

 $ax^2 + bxy + cy^2$ is the quadratic form

$$A = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}$$
$$\left\langle A \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle = ax^2 + bxy + cy^2$$

Diagonalize w.r.t. orthonormal basis: Eigenvectors $v_1 = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}$, $v_2 = \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$ $Av_1 = \lambda_1 v_1$ $Av_2 = \lambda_2 v_2$

$$U = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix} \text{ orthogonal matrix}$$
$$U^* = \begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_1 & \beta_2 \end{pmatrix}$$

 $U^*AU = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix} = D, \qquad A = UDU^*$

$$\begin{aligned} & x^{2} + bxy + cy^{2} = \left\langle A \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle = \left\langle UDU^{*} \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle = \left\langle DU^{*} \begin{pmatrix} x \\ y \end{pmatrix}, U^{*} \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle \\ &= \left\langle D \begin{pmatrix} \alpha_{1}x + \beta_{1}y \\ \alpha_{2}x + \beta_{2}y \end{pmatrix}, \begin{pmatrix} \alpha_{1}x + \beta_{1}y \\ \alpha_{2}x + \beta_{1}y \end{pmatrix} \right\rangle = \lambda_{1}(\alpha_{1}x + \beta_{1}y)^{2} + \lambda_{2}(\alpha_{2}x + \beta_{2}y)^{2} \end{aligned}$$

 $\begin{array}{l} \lambda_1\lambda_2 = \det D = \det A\\ \lambda_1\lambda_2 > 0 \text{ ellipse}\\ \lambda_1\lambda_2 = 0 \text{ parabola}\\ \lambda_1\lambda_2 < 0 \text{ hyperbola} \end{array}$

Write
$$\binom{d}{e} = d' \binom{\alpha_1}{\beta_1} + e' \binom{\alpha_2}{\beta_2}$$

 $dx + ey = d'(\alpha_1 x + \beta_1 y) + e'(\alpha_2 x + \beta_2 y)$

....

The equation $\begin{aligned} ax^2 + bxy + cy^2 + dx + dy + f &= 0 \\ \text{becomes} \\ \lambda_1(\alpha_1 x + \beta_1 y)^2 + \lambda_2(\alpha_2 x + \beta_2 y)^2 + d'(\alpha_1 x + \beta_1 y) + e'(\alpha_2 x + \beta_2 y)i + f &= 0 \\ \lambda_1\left(\alpha_1 x + \beta_1 y + \frac{d'}{2\lambda_1}\right)^2 + \lambda_2\left(\alpha_2 x + \beta_2 y + \frac{e'}{e\lambda_2}\right)^2 &= \left(\frac{d'^2}{2\lambda_1} + \frac{e'^2}{2\lambda_2} - f\right) = f' \\ \lambda_1(\alpha_1 x + \beta_1 y)^2 + \lambda_1\frac{2d'}{2\lambda_1}(\alpha_1 x + \beta_1 y) + \frac{d'^2}{4\lambda_1} + \lambda_2(\alpha_2 x + \beta_2 y)^2 + \alpha_2\frac{2e'}{2\lambda_2}(\alpha_2 x + \beta_2 y) + \frac{e'^2}{4\lambda_2} \end{aligned}$

Translate to eliminate constants $\frac{d'}{2\lambda_1}, \frac{e'}{2\lambda_2}$ Betate by II to get

Rotate by 0 to get

$$\lambda_1 x^2 + \lambda_2 y^2 = f'$$

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta_2^2} = 1$$

Duality

November-16-11 10:00 AM

Dual Space

If V is a vector space over \mathbb{F} then the dual space of V is $V^* = \mathcal{L}(V, \mathbb{F})$. Elements of V^* are called **linear functionals.**

Fix a basis
$$\beta = \{v_1, \dots, v_i, \dots, v_n\}$$
 for V
Define $\delta_j \in V^*$ by $\delta_j \left(\sum_{i=1}^n \alpha_i v_i \right) = \alpha_j$
 $\delta_j(v_i) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} = \delta_{ij}$

Kronecker Delta

Proposition

dim V^* = dim V and { $\delta_1, ..., \delta_n$ } is a basis for V^* (Called the **dual basis** of { $v_1, ..., v_n$ })

Note

 $V^{**} = \mathcal{L}(V^*, \mathbb{F})$ If $v \in V$ define $\hat{v} \in V^{**}$ by $\hat{v}(\varphi) \coloneqq \varphi(v), \ \varphi \in V^*$

 $\hat{v}(a\varphi+b\psi)=(a\varphi+b\psi)(v)=a\varphi(v)+b\psi(v)=a\hat{v}(\varphi)+b\hat{v}(\psi)$

Thus there is a natural linear map $i: V \to V^{**}$ by $i(v) = \hat{v}$ This is linear.

Theorem

The natural map $i: V \to V^{**}$ is an isomorphism.

Remark

This fails dramatically for infinite dimensional vectors spaces.

Example

Let $c_{00} = \{\text{sequences } (x_1, x_2, x_3, \dots) \ x_i = 0 \text{ except for finitely often} \}$ $e_i = (0, \dots, 0, 1, 0, \dots) \text{ is a basis for } c_{00}$

$$\varphi \in C_{00}^*, \quad \varphi(e_i) = \alpha_i, \quad \varphi = \sum \alpha_i \delta_i$$

 $c_{00}^* = s = \{all \ sequences (\alpha_1, \alpha_2, ...)\}$ dim $S = 2^{\aleph_0}$ S^* is humongous.

Isomorphism

Since we have an isomorphism $i: V \to V^{**}$ we say $V^{**} = V$ and identify i(v) with v.

V is **reflexive**

Dual Space Basis

Suppose $\varphi \in V^*$ Let $\varphi(v_i) = \beta_i, \ 1 \le i \le n$ $\psi = \sum_{j=1}^n \beta_j \delta_j \in V^*$ $\psi(v_i) \sum_{i=1}^n \beta_j \delta_i(v_i) = \beta_i$

A linear map is determined by what it does to a basis, so $\varphi = \psi$

Proof of Proposition

I expressed every $\varphi \in V^*$ as a linear combination of $\delta_1, ..., \delta_n$ which are linearly independent.

$$0 = \sum_{i=1}^{n} a_i \delta_i$$

$$0 = \left(\sum_{i=1}^{n} a_i f_i\right) (v_j) = a_j$$

$$\Rightarrow a_1 = a_2 = \dots = a_n =$$

 $\begin{array}{l} \Rightarrow a_1 = a_2 = \cdots = a_n = 0\\ \text{So } \delta_1, \dots, \delta_n \text{ are linearly independent } span \, V^* \therefore \text{ is a basis.}\\ \dim V^* = n = \dim V \blacksquare \end{array}$

Proof of Theorem

Fix a basis v_1, \ldots, v_n for VConstruct the dual basis $\delta_1, \ldots, \delta_n$ for V^* Construct the dual dual basis $\varepsilon_1, \ldots, \varepsilon_n$ for V^{**}

$$\begin{aligned} \widehat{v}_i(\delta_j) &= \delta_j(v_i) = \delta_{ij} \\ \varepsilon_i(\delta_j) &= \delta_{ij} \\ \text{So } \widehat{v}_i \text{ and } e_i \text{ agree on a basis } \therefore \widehat{v}_i = e_i \\ \text{So } i\left(\sum_{j=1}^n a_j v_j\right) &= \sum_{j=1}^n a_j \varepsilon_j \text{ is } 1\text{-}1 \text{ and onto } \blacksquare \end{aligned}$$

Duality on Inner Product Spaces

November-18-11 9:31 AM

Theorem

Let V be an inner product space. Then for each $\varphi \in V^*$ there is a unique $w \in V$ s.t. $\varphi(v) = \langle v, w \rangle \forall v \in V$

The map which sends $\varphi \mapsto w$ is a conjugate linear map of V^* onto V.

Corollary

V inner product space, we convert V^* to an inner product space by

$$\left\langle \sum \alpha_i \delta_i , \sum \beta_i \delta_i \right\rangle = \sum_{i=1}^n \alpha_i \overline{\beta_i}$$

If $\varphi \in V^*$ then $\|\varphi\|_{V^*} = \sup |\varphi(v)|$ $\|v\| \le 1$ $v \in V$

Notation

$$\left(\sum \alpha_i e_i, \sum \beta_j \delta_j\right) = \sum_{j=1}^n \beta_i \delta_j \left(\sum_{i=1}^n \alpha_i e_i\right)$$

Definition

Let V be a finite dimensional vector space. If $S \subseteq V$ let $S^{\perp} = \{ \varphi \in V^* : \varphi(s) = 0 \forall s \in S \}$ This is the annihilator of S

Proposition

 $S \subseteq V$ then

1. S^{\perp} is a subspace of V^*

2. $S^{\perp\perp} = span(S)$

3. dim S^{\perp} + dim $S^{\perp\perp}$ = dim V

Relationship between perps.

H inner product space H^{\ast} conjugate linear isometric v... to H $\varphi \in H^*$, $\exists ! y \in H \ s.t. \varphi(x) = \langle x, y \rangle, \ \varphi \to y \text{ conjugate}$ linear $M \subset H, M^{\perp} = H(-)M = \{y : \langle x, y \rangle = 0 \ \forall x \in M\}$ $M^{\perp} = M^0 = \{\varphi; \varphi(x) = 0 \; \forall x \in M\}$

Proof

Let $\xi = \{e_1, \dots, e_n\}$ be an orthonormal basis for V. Let $\delta_1, \dots, \delta_n$ be the dual basis for V^* If $\varphi \in V^*$, let $\varphi(e_i) = \beta_i, 1 \le i \le n$

So
$$\varphi = \sum_{i=1}^{n} \beta_i \delta_i$$
 because $\left(\sum_{j=1}^{n} \beta_j \delta_j\right) (e_i) = \beta_i$
Want $w \in V$ s.t. $\langle e_i, w \rangle = \beta_i, \ 1 \le i \le n$
 $\left\langle e_i, \sum_{j=1}^{n} \overline{\beta_j} e_j \right\rangle = \beta_i$

So define $T: V^* \to V$ by

$$T\left(\sum_{i=1}^{n} \beta_{i} \delta_{i}\right) = \sum_{i=1}^{n} \overline{\beta}_{i} e_{i}$$
$$T\varphi = w = \sum_{i=1}^{n} \overline{\beta}_{i} e_{i}$$
$$\langle v, w \rangle = \left(\sum \alpha_{i} e_{i}, \sum \overline{\beta}_{i} e_{i}\right) = \sum \alpha_{i} \beta_{i} = \varphi(v)$$

T is not linear-it is conjugate linear. T is 1-1 and onto

Proof of Corollary

Clearly this makes V* an inner product space

Let
$$\varphi = \sum_{j=1}^{n} \beta_j \delta_j \in V^*$$

 $\|\varphi\|_{V^*} = \sqrt{\sum_{j=1}^{n} |\beta_j|^2}$
If $v \in V$, $v = \sum_{i=1}^{n} \alpha_i e_i$
 $|\varphi(v)| = \left| \left(\sum \alpha_i e_i, \sum \beta_j \delta_j \right) \right| = \left| \sum_{i=1}^{n} \alpha_i \beta_i \right| \le \sqrt{\sum |\alpha_i|^2} \sqrt{\sum |\beta_i|^2} = \|v\|_V \|\varphi\|_{V^*}$
So get:

 $\sup_{\substack{v \in V \\ \|v\| \le 1}} |\varphi(v)| \le \sup_{\|v\| \le 1} \|v\| \|\varphi\|_{V^*} = \|\varphi\|_{V^*}$ To get equality, take

$$v = \frac{\sum_{i=1}^{n} \overline{\beta_i} e_i}{\sqrt{\sum |\beta_i|^2}}, \qquad \varphi(v) = \frac{\sum_{i=1}^{n} \overline{\beta_i} \beta_i}{\sqrt{\sum |\beta_i|^2}} = \sqrt{\sum |b_i|^2} = \|\varphi\|_{v^*}$$

Proof of Proposition

1. $0\in S^{\perp}$ If $\varphi, \psi \in S^{\perp}$, $s \in S$, $\alpha, \beta \in F$ $(\alpha \varphi + \beta \psi)(s) = \alpha \varphi(s) + \beta \psi(s) = 0$

2.

 $S^{\perp\perp}$ is a subspace of $V^{**} = V$ which contains S because $s \in S$, $\varphi \in S^{\perp}$ $i(s) \sim s(\varphi) = \varphi(s) = 0$ So $S^{\perp\perp} \supseteq span(S)$

Suppose $v \notin span(S)$ Take a basis for S, say v_1, \dots, v_k (dim S = k) and extend too a basis $v_1, \dots, v_k, v, v_{k+2}, \dots, v_n$ Note, used *v* in the basis.

Let $\delta_1, \ldots, \delta_n$ be the dual basis of V^*
$$\begin{split} \delta_{k+1}(v_i) &= 0, \quad 1 \leq i \leq k \Rightarrow \delta_{k+1} \in S^{\perp} \\ \delta_{k+1}(v) &= 1 \neq 0, \quad \therefore v \notin S^{\perp \perp} \end{split}$$
So $S^{\perp\perp} \subseteq span S \therefore$ equal

3.

Claim: $j \ge k + 1$: $\delta_j(v_i) = 0 \text{ for } 1 \le i \le k \Rightarrow \delta_i \in S^{\perp}$ $S^{\perp} = span\{\delta_{k+1}, \dots, \delta_n\},$ So $span\{\delta_{k+1}, \dots, \delta_n\} \subseteq S^{\perp}$

$$\begin{split} & \text{Let } \varphi = \sum_{j=1} \beta_i \delta_i \in S^{\perp} \\ & 0 = \varphi(v_i) = \beta_i \Rightarrow \varphi \in sp\{\delta_{k+1}, \dots, \delta_n\}, \quad i \leq i \leq k \\ & \dim S = k, \dim S^{\perp} = n-k, n+n-k = n \end{split}$$

Transpose

9:39 AM November-21-11

Transpose Map

If $T \in \mathcal{L}(V, W)$ define the **transpose** of T to be the map $T^t \in \mathcal{L}(W^*, V^*)$ by $(T^t \varphi)(v) = \varphi(Tv)$ $T^t \varphi = \varphi \circ T \in \mathcal{L}(V, \mathbb{F})$

Claim

 T^t is a linear map

Claim

"transpose" is a linear map $(\alpha S + \beta T)^t = \alpha S^t + \beta T^t$

Theorem

 $T \in \mathcal{L}(V, W), T^t \in \mathcal{L}(W^*, V^*)$

1. If $\beta = \{v_1, \dots, v_m\}$ basis for $V, \beta' = \{\delta_1, \dots, \delta_m\}$ for V^* $C = \{w_1, \dots, w_n\}$ basis for $W, C' = \{\varepsilon_1, \dots, \varepsilon_n\}$ for W^*

If $[T]_{\beta}^{\mathcal{C}} = [t_{ij}]_{m \times n}$, then $[T]_{\mathcal{C}'}^{\beta'} = [t_{ii}]_{n \times m}$

2.
$$T \mapsto T^t$$
 is a linear isomorphism of $\mathcal{L}(V, W)$ onto $\mathcal{L}(W^*, V^*)$

- 3. ran $T^t = (\ker T)^{\perp}$ and $\ker T^t = (\operatorname{ran} T)^{\perp}$ 4. rank $T^t = \operatorname{rank} T$

Proof of Claim

 $T^{t}(\alpha \varphi + \beta \psi)(v) = (\alpha \varphi + \beta \psi)(Tv) = \alpha \varphi(Tv) + \beta \psi(Tv) = (\alpha T^{t} \varphi + \beta T^{t} \psi)(v)$

Proof of Claim

 $\varphi \in W^*, v \in V$ $(\alpha S + \beta T)^{t}(\varphi)(v) = \psi((\alpha S + \beta T)(v)) = \psi(\alpha S v + \beta T v) = \alpha \varphi(S v) + \beta \psi(T v)$ $= \alpha(S^t \varphi)(v) + \beta(T^t \psi)(v) = (\alpha S^t + \beta T^t)(\varphi)(\psi)$

Proof of Theorem

$$\left(\begin{bmatrix} T^t \end{bmatrix}_{\mathcal{C}}^{\beta'} \right)_{ij} = a_{ij} \text{ where } \left(T^t \varepsilon_j \right) (v_i) = \left(\sum_{k=1}^m a_{kj} \delta_k \right) (v_i) = a_{ij}$$

$$\left(T^t \varepsilon_j \right) (v_i) = \varepsilon_j (Tv_i) = \varepsilon_j \left(\sum_{k=1}^n t_{ki} w_k \right) = t_{ji}$$

 $\therefore [T^t]^{\beta'}_{\mathcal{C}'} = [t_{ji}] = ([T]^{\mathcal{C}}_{\beta})^t$ The matrix of the transpose is the transpose of the matrix.

2 $E_{ij} = [b_{kl}]$ where b = 1 if k = i, j = l and b = 0 otherwise E_{ij} is a basis for $\mathcal{L}(V, W)$. $E_i = w_i \delta_j$ $E_{ij}^{t} = E_{ji}$ sends a basis for $\mathcal{L}(W^*, V^*)$ to a basis for $\mathcal{L}(V, W)$. \therefore 1-1 and onto.

3

 $\varphi \in \ker T^t \in W^* \Longleftrightarrow 0 = T^t \varphi \in V^*$ $\Leftrightarrow 0 = T^t \varphi(v) \forall v \in V = \varphi(Tv) \Leftrightarrow \varphi \in (ran T)^{\perp}$

 $\therefore v \in \ker T = \ker T^{tt} = (ran T^t)^{\perp}$ $\therefore (\ker T)^{\perp} = (ran T^t)^{\perp \perp} = ran T^t$

4

 $rank T^{t} = \dim ran T^{t} = \dim(\ker T)^{\perp} = \dim V - \dim \ker T = ran T$

Since

 $M \subseteq V$, basis for M, extend for V. Dual space $\delta_1, \dots, \delta_n$ $M^{\perp} = sp(\delta_{k+1}, \dots, \delta_n) \Rightarrow \dim M^{\perp} = n - \dim M$

Quotient Spaces

November-21-11 10:02 AM

Quotient Space

V vector space, M subspace of V Say $v_1 \equiv v_2$ iff $v_1 - v_2 \in M$ $\frac{v}{M}$ is the set of equivalence classes $\dot{v} = v + M$ Make $\frac{v}{M}$ into a vector space by $t\dot{v} = t(v + M) = tv + M$ $\dot{v} + \dot{w} = (v + w)$

 $\frac{V}{M}$ is called the **quotient space** of V by M.

The map $\Pi: V \to \frac{V}{M}$ by $\Pi(v) = \dot{v}$ is called the **quotient map**.

Proposition

 $\Pi \in \mathcal{L}\left(V, \frac{V}{M}\right) \text{ is surjective and } \ker \Pi = M.$

Theorem

If *M* is a subspace of *V* then $M^* \cong \frac{V^*}{M^{\perp}}$ (isomorphic to) and $\left(\frac{V}{M}\right)^* \cong M^{\perp}$

Relations

 $V^* \to_R M^*$ $V^* \to_q \left(\frac{V^*}{M^{\perp}}\right) \to_{\tilde{R}} M^*$ $\tilde{R}(\varphi + M^{\perp}) = R\varphi \text{ well defined because of } \varphi_1, \varphi_2 \in \dot{\varphi}, \quad \varphi_1 - \varphi_2 = \psi \in M^{\perp}$ $\varphi_2 \Big|_M = \varphi_1 \Big|_M + \psi \Big|_M = \varphi_1 \Big|_M$ $\therefore \bar{R} \ 1 - 1$

Proof of Well Definition

If $v_1 \equiv v_2$ then $v_1 - v_2 = m \in M$ $\therefore tv_1 - tv_2 = tm \in M$ $\therefore tv_1 \equiv tv_2$ So $t\dot{v}$ is independent of choice of representative. If $v_1 \equiv v_2, w_1 \equiv w_2$ say $w_1 - w_2 = n \in M$ $v_2 + w_2 = v_1 + m + w_1 + n = (v_1 + w_1) + (m + n), \quad (m + n) \in M$ $\therefore v_2 + w_2 \equiv v_1 + w_1$ So $\dot{v} + \dot{w} = (v + w)$ is well defined.

Proof of Proposition

Π is linear, surjective by definition. ker $Π = {v : v ≠ 0} = {v : v ∈ M} = M$

Proof of Theorem

Let $\Pi: V \to \frac{V}{M}$ be the quotient map, then $\Pi^t: \left(\frac{V}{M}\right)^* \to V^*$ ker $\Pi^t = (ran \Pi)^{\perp} = \{0\}$ $\therefore \Pi^t$ is injective

 $ran \Pi^{t} = (\ker \Pi)^{\perp} = M^{\perp}$ So $\Pi^{t} \operatorname{maps} \left(\frac{v}{M}\right)^{*}$ 1-1 and onto M^{\perp} . \therefore Linear isomorphism The connection is given by : Take $\varphi \in \left(\frac{v}{M}\right)^{*}$, $\Pi^{t}\varphi = \varphi \circ \Pi \in V^{*}$ $(\varphi \circ \Pi)(m) = \varphi(\dot{0}) = 0 \forall m \in M$

So
$$\left(\frac{V^*}{M^{\perp}}\right)^* \cong M^{\perp\perp} = M$$

 $\therefore \frac{V^*}{M^{\perp}} = \left(\frac{V^*}{M^{\perp}}\right)^{**} \cong M^*$

If $\varphi \in V^*$ the restriction map $R\varphi = \varphi|_M$ is a linear map of V^* onto M^* ker $R = \{\varphi; \varphi|_M = 0\} = M^{\perp}$

Convex Sets

November-23-11 9:33 AM

Convexity

A subset C of \mathbb{R} or \mathbb{C} is convex if $\forall c_1, c_2 \in C \ \forall 0 \leq t \leq 1, (1-t)c_1 + tc_2 \in C$

Hyperplane

H is a hyperplane if $\exists \varphi \in V^*, \varphi \neq 0$ such that $H = \{v : Re \ \varphi(v) = a\}$ A half space is a set of form $H^+ = \{v : Re \ \varphi(v) \ge a\}$ Note: H and H^+ are convex.

Proposition

1. The intersection of convex sets is convex. 2

$$f_{i} = f_{i} = f_{i} = f_{i} = 1$$

$$f_{i} = f_{i} = 1$$

Theorem (Carathéodory)

If V is a real vector space of dimension n, $S \subseteq V$ then every point in conv(S) is a convex combination of n + 1 points in S

Remark

- 1. If V is a complex vector space of dimensions n, then it is a real vector space of dimension 2n. So 2n + 1 points are needed.
- 2. In \mathbb{R}^n take $S = \{0, e_1, e_2, \dots, e_n\}$ the point $1 \sum_{n=1}^{n} 1$

$$\frac{1}{n+1}0 + \sum_{i=1}^{n} \frac{1}{n+1}e_i \in S \text{ requires } n+1 \text{ points.}$$

Corollary

If $S \subseteq V$ is compact, dim $V = n < \infty$ then conv(S) is compact.

Remark: From Calculus

A set $C \subseteq \mathbb{R}^n$ is sequentially compact if every sequence $\{c_n : n \ge 1\}$ of points in C has a convergent subsequence $\lim_{k\to\infty} c_{n_k} = c, c \in C$

Heine-Bore Theorem

 $C \subseteq \mathbb{R}^n$ is compact \Leftrightarrow C is closed and bounded

Extreme Value theorem

If C compact, $f: C \to \mathbb{R}$ is continuous then f attains its maximum and minimum values.

Proof of Proposition

1.

$$C_i, i \in I \text{ are convex sets in V}$$

$$C = \bigcap_{i \in I} C_i, \quad c_1, c_2 \in C, \quad 0 \le t \le 1$$

$$c_1, c_2 \in C_i \Rightarrow (1 - t)c_1 + tc_2 \in C_i \quad \forall i$$

$$\therefore c_1, c_2, \in C$$

2.

conv(S) exists - it is the intersection of all convex sets containing S Claim

$$\sum_{i=1}^{k} t_i s_i \in conv(S), \quad s_1 \in conv(S)$$

Suppose
$$v_k = \sum_{i=1}^{k} \left(\frac{t_i}{\sum_{i=1}^{k} t_i}\right) s_i \in conv(S)$$

True for $k = 1$
If true for k then
$$v_{k+1} = \left(\frac{\sum_{i=1}^{k} t_i}{\sum_{i=1}^{k+1} t_i}\right) v_k + \left(\frac{t_{k+1}}{\sum_{i=1}^{k+1} t_i}\right) s_{k+1} \in conv(S)$$

By induction
$$v_r = \sum_{l=1}^r t_l s_l \in conv(S)$$

If $\sum_{l=1}^r t_l s_l$, $\sum_{j=1}^{r'} t'_j s'_j$, $t_l t'_j \ge 0$, $\sum_{l=1}^r t_l = 1 = \sum_{j=1}^{r'} t'_j$
For $0 \le u \le 1$, $(1-u) \sum_{l=1}^r t_l s_l + u \sum_{l=1}^{r'} t'_l s'_l = 1$

i=1 $\overline{i=1}$ So the convex combination of two convex combination of two convex combinations of points in S is a convex combinations of points in S

$$\therefore \left\{ \sum_{i=1}^{r} t_i s_i : r \ge 1, t_i \ge 0, \sum t_i = 1, s_i \in S \right\} \text{ is the smallest convext set } \supseteq S$$

Proof of Theorem

Take a point $v \in conv(S)$. Can write $v = \sum_{i=1}^{r} t_i s_i$, $s_i \in S$, $t_i \ge 0$, $\sum t_i = 1$

Claim

If $r \ge n + 2$, we can find another convex combination equal to v using fewer of the $\{s_i\}$'s.

wlog, $t_i > 0$ (if $t_{i_0} = 0$ throw s_{i_0} out of the set) The set $\{s_1 - s_r, s_2 - s_r, \dots, s_{r-1} - s_r\}$ has $r - 1 \ge n + 1$ elements \Rightarrow linearly dependent.

$$\begin{array}{l} \therefore \exists a_i \in \mathbb{R} \text{, not all zero such that} \\ 0 = \sum_{i=1}^{r-1} a_i(s_i - s_r) = \sum_{i=1}^{r-1} a_i s_i + a_r s_r \text{ where } a_r = -\sum_{i=1}^{r-1} a_i \\ \text{So } \sum_{i=1}^r a_i = 0 \text{ and } \vec{0} = \sum_{i=1}^r a_i s_i \\ \text{Let } J = \{i : a_i < 0\}, \quad \text{Let } \delta = \min_{i \in J} \left\{ \frac{t_i}{|a_i|} \right\} = \frac{t_{i_0}}{|a_{i_0}|}, \text{ for some } i_0 \in J \\ v = \sum_{i=1}^r t_i s_i + \delta \sum_{i=1}^r a_i s_i = \sum_{i=1}^r (t_i + \delta_i a_i) s_i \\ i \in J: t_i + \delta a_i \ge t_i + \frac{t_i}{|a_i|} a_i = t_i - t_i = 0 \\ i_i: t_{i_0} + \delta a_{i_0} = t_{i_0} - t_{i_0} = 0 \\ i \notin J: t_i + \delta a_i \ge t_i \ge 0 \\ \sum_{i=1}^r (t_i + \delta a_i) = \sum_{i=1}^r t_i + \delta \sum_{i=1}^r a_i = 1 + \delta 0 = 1 \end{array}$$

This new combination does not need s_{i_0} because the coefficient is 0. So we have reduced r to r - 1.

Proof of Corollary

Every $v \in conv(S)$ is the convex combination of n + 1 points in S

$$S^{n+1} = \{(s_1, s_2, \dots, s_{n+1}) : s_i \in S\}, \qquad \Delta_{n+1} = \{(t_1, \dots, t_{n+1}) : t_i \ge 0, \sum_{i=1}^{n+1} t_i = 1\}$$

$$S^{n+1} \times \Delta_{n+1} \subseteq V^{n+1} \times \mathbb{R}^{n+1}, S^{n+1} \text{ compact}$$

$$f: S^{n+1} \times \Delta_{n+1} \to V_{n+1}, \qquad f((s_1, s_2, \dots, s_{n+1}, t_1, t_2, \dots, t_{n+1})) = \sum_{i=1}^{n+1} t_i s_i$$

f is continuous

The continuous image of a compact set is compact (by EVT) $conv(S) = f(S^{n+1} \times \Delta_{n+1})$ is compact

Convexity

November-25-11 9:32 AM

Theorem

Let V be a finite dimensional inner produce space ($\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$). $C \subseteq V$ closed convex set, $p \in V, p \notin C$ Then there is a unique point $c_0 \in C$ closet to p. Let $\varphi(x) = \langle x, p - c_0 \rangle$ Then $Re \varphi(p) > Re \varphi(c_0) \ge Re \varphi(c) \forall c \in C$ *i.e.* $C \subseteq \{x: Re \ \varphi(x) \le Re \ \varphi(c_0)\}$, this is called a **half space**

Separation Theorem

V finite dimensional vector space over ${\mathbb R}$ or ${\mathbb C}$ $C \subseteq V$ closed convex set, $p \in V, p \notin C$

Then $\exists \varphi \in V^*$ such that $Re \varphi(p) > \sup_{c \in C} Re \varphi(c)$

Corollary

If C is a closed subset of V then C is the intersection of all closed half spaces which contain it.

. P

Proof

Define $f: C \to \mathbb{R}$ by $f(c) = ||p - c||^2$ f is continuous, f(c) > 0Pick $c_1 \in C$ the closest point lies in $C \cap \overline{B_{\|p-c_1\|}(p)}$, which is closed and bounded. So f achieves its minimum value by the extreme value theorem. So there is at least one closest point c_0

Uniqueness

Suppose $c_0, c_1 \in C$ are both closest $\begin{aligned} \|p - c_0\| &= \|p - c_1\| = \delta \le \|p - c\| \forall c \in C \\ \text{But then } \frac{c_0 + c_1}{2} \in C \text{ and if } c_0 \ne c_1 \text{ then } \left\| p - \frac{c_0 + c_1}{2} \right\| < \delta, \text{ by geometry} \end{aligned}$ Alternatively $\begin{aligned} \left\| p - \frac{c_0 + c_1}{2} \right\|^2 &= \left(\frac{p - c_0}{2} + \frac{p - c_1}{2}, \frac{p - c_0}{2} + \frac{p - c_1}{2} \right) \\ &= \left\| \frac{p - c_0}{2} \right\|^2 + 2 \operatorname{Re} \left(\frac{p - c_1}{2}, \frac{p - c_0}{2} \right) + \left\| \frac{p - c_1}{2} \right\|^2 \leq \frac{1}{4} \delta^2 + 2 \left\| \frac{p - c_1}{2} \right\| \left\| \frac{p - c_0}{2} \right\| + \frac{1}{4} \delta^2 = \delta^2 \end{aligned}$ Inequality is Cauchy-Schwartz and must hold with equality $\therefore \frac{p - c_1}{2} = t \frac{p - c_0}{2}, t > 0, but t = 1 \therefore c_1 = c_0$

So the closest point is unique.,

 $\varphi(x)=\langle x,p-c_0\rangle$ $\varphi(p - c_0) = ||p - c_0||^2 > 0$ $\varphi(p - c_0) = \varphi(p) - \varphi(c_0)$ $\therefore \operatorname{Re} \varphi(p) = \operatorname{Re} \varphi(c_0) + ||p - c_0||^2 > \operatorname{Re} \varphi(c_0)$

Claim

 $\operatorname{Re} \varphi(c) \leq \operatorname{Re} \varphi(c_0) \, \forall c \in C$ If not, $\exists c_2 \in C$ s.t. $Re \varphi(c_2) = Re \varphi(c_0) + \varepsilon,$ $\varepsilon > 0$ $\operatorname{Re} \varphi(p-c_2) = \operatorname{Re} \varphi(p) - \operatorname{Re} \varphi(c_2) = \operatorname{Re} \varphi(p) - \operatorname{Re} \varphi(c_0) + \varepsilon = \operatorname{Re} \varphi(p-c_0) - \varepsilon$ $= \|p - c_0\|^2 - \varepsilon$

Look at $f(t) = \|p - ((1 - t)c_0 + tc_2)\|^2$ $= \langle (1-t)(p-c_0+t(p-c_2,(1-t)((p-c_0)+t(p-c_2))) \rangle$ $= (1-t)^2 \|p-c_0\|^2 + 2 \operatorname{Re}(t(1-t)\langle p-c_2, p-c_0\rangle) + t^2 \|p-c_2\|^2$ = $(1-2t-t^2)\|p-c_0\|^2 + 2(t-t^2)\operatorname{Re}\varphi(p-c_2) + t^2 \|p-c_2\|^2$ = $(1-t)^2 \|p-c_0\|^2 - 2(t-t^2)\varepsilon + t^2 \|p-c_2\|^2$

 $f'(t) = -2t \|p - c_0\|^2 - (2 - 4t)\varepsilon + 2t \|p - c_2\|^2$ $f'(0) = -2\varepsilon$, decreasing So for t > 0, small, f(t) < f(0) so c_0 is not the smallest point.

Proof of Separation Theorem

Pick a basis $\{v_1, \dots, v_n\}$ for *V*. Impose an inner product:

$$\left(\sum \alpha_i v_i, \sum \beta_i v_i\right) = \sum_{i=1}^{n} \alpha_i \overline{\beta_i}$$

Use previous Theorem to get $\varphi \in V^*$ such that $Re \ \varphi(p) > Re \ \varphi(c_0) = \sup_{c \in C} Re \ \varphi(c)$

Proof of Corollary

Let $\{A_{\alpha}\}$ be the set of all closed half spaces such that $H \supseteq C$ Clearly $C \subseteq \bigcap H_{\alpha}$ But if $p \notin C, \exists \varphi \in V^* s. t$. $Re \ \varphi(p) > \sup Re \ \varphi(c) = C$ $H = \{x: Re \ \varphi \leq L\} \text{ half space}$ $C \subseteq H, p \notin H, \therefore p \notin \bigcap H_{\alpha} \blacksquare$

Normed Vector Spaces

November-28-11 9:30 AM

 $F = \mathbb{R}, \mathbb{C}$

Norm

A norm on a vector space *V* over \mathbb{F} is a function $\|\cdot\|: V \to [0, \infty)$ such that 1) $\|v\| \ge 0$, $\|v\| = 0 \iff v = 0$ (positive definite)

2) $||tv|| = |t|||v|| \forall t \in \mathbb{F}$, (homogeneous)

3) $||v + w|| \le ||v|| + ||w||$, (triangle inequality)

Unit Ball

 $B_v \text{ or } \overline{B_1(0)} = \{v : \|v\| \le 1\}$

Proposition

 $(V, \|\cdot\|)$ normed vector space then B_v is convex, $0 \in B_V$, **balanced** (*if* $v \in B_v$, $tv \in B_v \forall |t| = 1$). Hence $|t| \le 1$ by convexity.

Example

If *V*, *W* are normed vector spaces, then $\mathcal{L}(V, W)$ can be normed by $||T|| = \sup_{\|v\|_V \le 1} ||Tv||_W$

1) $||Tv|| \ge 0 \Rightarrow ||T|| \ge 0$ $||T|| = 0 \Rightarrow ||Tv|| = 0 \ \forall v \Rightarrow Tv = 0 \ \forall v \Rightarrow T = 0$ 2) $||tT|| = \sup_{\|v\|_{V} \le 1} ||tTv||_{W} = \sup_{\|v\|_{V} \le 1} |t|||Tv||_{W} = |t||T||$ 3) S, T \in \mathcal{L}(V, W) $||S + T|| = \sup_{\|v\|_{V} \le 1} ||Sv||_{W} \le \sup_{\|v\|_{W} \le 1} ||Sv||_{W} + ||$

$$\begin{split} \|S + T\| &= \sup_{\substack{\|v\|_{V} \leq 1 \\ \|v\|_{V} \leq 1}} \|(S + T)v\|_{W} \leq \sup_{\substack{\|v\|_{V} \leq 1 \\ \|v\|_{V} \leq 1}} \|Sv\|_{W} + \|Tv\|_{W} \\ &\leq \sup_{\|v\| \leq 1} \|Sv\| + \sup_{\substack{\|v\| \leq 1 \\ \|v\| \leq 1}} \|Tv\| = \|S\| + \|T\| \end{split}$$

Special Cases

1) $W = \mathbb{F}$, $\mathcal{L}(V, \mathbb{F}) = V^*$ dual norm on V^* $\|\varphi\| = \sup_{\|v\| \le 1} |\varphi(v)|$ 2) W = V, $\mathcal{L}(V)$ algebra

 $||ST|| \le \sup_{\|v\| \le 1} ||S(Tv)|| \le \sup_{\|w\| \le \|T\|} ||Sw|| = ||T|| \sup_{\|w\| \le 1} ||Sw||$ = $||T|| \cdot ||S||$

3)
$$T \in L(V, W), v \in V$$

 $||Tv|| = ||T||v|| \left(\frac{v}{||v||}\right)|| = ||v|| \left||T\left(\frac{v}{||v||}\right)\right|| \le ||T|| \cdot ||v||$

Lemma

V finite dimensional normal space. Let $T: (F^n, \|\cdot\|_2) \to V$ be a linear isomorphism Then T is uniformly continuous

Theorem

V finite dimensional normal vector space $T: \mathbb{F}^n \to V$ linear isomorphism Then \exists constants $0 < c < C < \infty$ such that $c ||v|| \le ||Tv|| \le C ||v|| \forall v \in V$

Equivalent

Say two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ are **equivalent** if $\exists 0 < c_1, c_2$ such that $c_1 \|v\|_a \le \|v\|_b \le c_2 \|v\|_a$ $\frac{1}{c_2} \|v\|_b \le \|v\|_a \le \frac{1}{c_1} \|v\|_b$ $\forall v \in V$

Corollary

If V is a finite dimensional normed vector space then any two norms on V are equivalent.

Convergence

Say a sequence $v_n \in V$ converges to v_0 if $\lim_{n \to \infty} ||v_n - v_0|| = 0$

Corollary says that convergence in a finite dimensional normal space is independent of choice of the norm.

So $(V, \|\cdot\|_a)$ and $(V, \|\cdot\|_b)$ have the same closed sets, hence the same open sets.

 B_v is a closed balanced convex set containing 0 on the interior. If $||v_n|| \leq 1, v_n \rightarrow v_0 \Rightarrow ||v_0|| \leq 1$ $(\varepsilon > 0, \exists n ||v_n - v_0|| < t \therefore ||v_0|| \leq ||v_n|| + ||v_0 - v_n|| \leq 1 + \varepsilon \text{ Let } \varepsilon \rightarrow 0$ $||\cdot|| \text{ is continuous in the norm}$

Examples

 $\|v\| = \sqrt{\langle v, v \rangle}$ $V = \mathbb{C}^n$ usual inner product B_V is unit ball in Euclidean norm

2

1

$$\begin{split} & V = \mathbb{C}^n, v = (a_1, \dots, a_n) \\ & \|v\|_{\infty} = \max\{|a_i|, i \le i \le n\} \\ & \text{Satisfies 1, 2} \\ & \|v+w\| = \|a_1 + b_1, \dots, a_n + b_n\|_{\infty} = \max(|a_i + b_i|\} \le \max(|a_i| + |b_i|) \\ & \le \max(|a_i|) + \max(|b_i|) = \|v\|_{\infty} + \|w\|_{\infty} \end{split}$$

 $B_{l_n^{\infty}(\mathbb{R})} = [-1,1]^n = \{(a_i): |a_i| \le 1\}$ $B_{l_n^{\infty}(\mathbb{C})} = \mathbb{D}^n = \{(a_i): |a_i| \le 1\}$

 $\begin{aligned} & 3 \\ l_n^1, \quad V = \mathbb{C}^n \text{ or } \mathbb{R}^n \\ & \|v\|_1 = \sum_{i=1}^n |a_i| \\ & \text{Satisfies 1, 2} \\ & \|v+w\|_1 = \sum_{i=1}^n |a_i+b_i| \le \sum_{i=1}^n |a_i| + |b_i| = \|v\|_1 + \|w\|_1 \end{aligned}$

$$\begin{aligned} & \mathbf{4} \\ & \mathbf{1}^{p}, \qquad 1$$

Satisfies 1, 2 Satisfies 3 but hard to prove

Proof of Proposition

Balanced follows from 2 Convex follows from 3, 2 $||v|| \le 1, ||w|| \le 1, 0 \le t \le 1$ $||tv + (1 - t)w|| \le ||tv|| + ||(q - t)w|| \le |t| \times 1 + |1 - t| \times 1 = 1$

Proof of Lemma

Let $e_1, ..., e_n$ be the standard basis of \mathbb{F}^n . Let $v_1 = Te_i$ this is a basis for V

$$\begin{split} w &= (a_1, \dots, a_n) = \sum_{i=1}^n e_i \\ \|Tw\| &= \left\| \sum_{i=1}^n a_i v_i \right\| \le \sum_{i=1}^n \|a_i v_i\| = \sum_{i=1}^n |a_i| \|v_i\| \le \sqrt{\sum_{i=1}^n |a_i|^2} \sqrt{\sum_{i=1}^n \|v_i\|^2} \\ \|T\| &= \sup_{\|w\| \le 1} \|Tw\| \le \sqrt{\sum_{i=1}^n \|v_i\|^2} = L \\ \therefore \|Tw_1 - Tw_2\| &= \|T(w_1 - w_2)\| \le \|T\| \|w_1 - w_2\| \le L \|w_1 - w_2\| \\ \text{This is a Lipschitz function.} \end{split}$$

If $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{L}$, $||w_1 - w_2|| < \delta \Rightarrow ||Tw_1 - Tw_2|| < L\delta = \varepsilon$ $\therefore T$ is uniformly continuous

Proof of Theorem

Lemma shows $C = ||T|| < \infty$ Let $S = \{w \in \mathbb{F}^n : ||w||_2 = 1\}$, unit space T is 1-1, s $Ts \neq 0 \forall x \in S$ T is continuous, S is compact so by Extreme Value Theorem the minimum values is attained: $\inf_{x \in S} ||T \cdot w|| = ||Tw_0|| = c \neq 0$ B_v is a closed balanced convex set containing 0 on the interior. If $\|v_n\| \leq 1, v_n \to v_0 \Rightarrow \|v_0\| \leq 1$ $(\varepsilon > 0, \exists n \|v_n - v_0\| < t \therefore \|v_0\| \leq \|v_n\| + \|v_0 - v_n\| \leq 1 + \varepsilon$ Let $\varepsilon \to 0$ $\|\cdot\|$ is continuous in the norm

 $\{v: ||v|| \ge 1\}$ is closed so $\{v: ||v|| < 1\} = B_1(0)$ is open.

 $\begin{array}{l} I \ \text{is } I^{-1}, \text{s } I \ \text{s } \neq 0 \ \text{vx} \in S \\ \text{T is continuous, S is compact so by Extreme Value Theorem the minimum values is attained:} \\ \inf_{w \in S} \|T \cdot w\| = \|Tw_0\| = c \neq 0 \\ \text{By Homogeniety } c\|w\|_2 \leq \|Tw\| \leq C\|w\|_2 \end{array}$

Proof of Corollary

Let $T: \mathbb{F}^n \to V$ isometric Use Theorem, get $0 < c_1, C_1, c_2, C_2$ $c_1 \|w\|_2 \le \|Tw\|_a \le C_1 \|w\|_2$ $c_2 \|w\|_2 \le \|Tw\|_b \le C_2 \|w\|_2$ $\frac{c_2}{C_1} \|Tw\|_a \le c_2 \|w\|_2 \le \|Tw\|_b \le C_2 \|w\|_2 \le \frac{C_2}{c_1} \|Tv\|_a$ November-30-11 9:30 AM

V normed vector space

$$\begin{split} V^* &= \mathcal{L}(V, \mathbb{F}) \text{ has the dual norm} \\ \|\varphi\| &= \sup_{\|v\| \le 1} |\varphi(v)| \\ V^{**} \text{ has a norm,} \quad i: V \to V^*, \quad \hat{v}(\varphi) = i(v)(\varphi) = \varphi(v) \\ \|\hat{v}\|_{V^{**}} &= \sup_{\substack{\varphi \in V^* \\ \|\varphi\| \le 1}} |\hat{v}(\varphi)| = \sup_{\substack{\|\varphi\| \le 1 \\ \|\varphi\| \le 1}} |\varphi(v)| \le \sup_{\substack{\|\varphi\| \le 1 \\ \|\varphi\| \le 1}} \|\varphi\|_{V^*} \|v\|_{V^*} = \|v\|_{V^*} \end{split}$$

Theorem

The natural injection $i\colon V\to V^{**}$ is isometric. i.e. $\|i(v)\|_{V^{**}}=\|v\|_V$

Corollary

If $v \in V$, then $\exists \varphi \in V^*$ with $\|\varphi\| \le 1$ and $\varphi(v) = \|v\|$

Quotient Norm

If M is a subspace of a finite dimensional subspace V, put the **quotient norm** on $\frac{V}{M}$ by

 $\dot{v} = [v]_M = v + M = \{w : w \equiv v \bmod M\} = \{w : w - v \in M\}$

 $\|\dot{v}\|_{\frac{V}{M}} = \inf_{m \in M} \|v + m\| = \inf\{\|w\| : w \in [v]\} = dist(v, M)$

Proposition

The quotient norm is a norm.

Question

If $M \subseteq V$ showed $M^* \cong \frac{V^*}{M^{\perp}}$, $M^{\perp} = \{\varphi \in V^* : \varphi|_M = 0\}, \left(\frac{V}{M}\right)^* \cong M^{\perp}$ These are linear isomorphisms. Are they isometric when V is normed?

Lemma

If $T \in \mathcal{L}(V, W)$ is an isometric isomorphism, then $T^t \in \mathcal{L}(W^*, V^*)$ is also in isometric isomorphism.

Theorem

V finite dimensional normed space, $M \subseteq V$ subspace. Then the linear isomorphisms

 $M^* \cong \left(\frac{V^*}{M^{\perp}}\right)$ and $\left(\frac{V}{M}\right)^* \cong M^{\perp}$ are isometric.

Corollary

If $M \subseteq V$, $f \in M^*$ then $\exists \varphi \in V^*$ s.t. $\varphi|_M = f$ and $\|\varphi\| = \|f\|$

Proof of Theorem

$$\begin{split} & \text{Have } \|\hat{v}\|_{V^{**}} \leq \|v\|_{V} \Rightarrow \sup B_{V} \subseteq B_{V^{**}} \\ & \text{Suppose } v \in V, \|v\| > 1. \text{ By the separation theorem } \exists \varphi \in V^{*} \text{ such that} \\ & Re \ \varphi(v) > \sup_{x \in B_{v}} Re \ \varphi(x) = \sup_{\substack{x \in B_{v} \\ |\lambda| = 1}} Re \ \varphi(\lambda x) = \sup_{x \in B_{v} |\lambda| = 1} Re \ \lambda \varphi(x) = \sup_{x \in B_{v}} |\varphi(x)| = \|\varphi\| \\ & \text{Let } \psi = \frac{\varphi}{\|\varphi\|}, \quad \|\psi\| = 1, \quad |\psi(v)| \geq Re \ \psi(v) > \frac{\|\varphi\|}{\|\varphi\|} = 1 \\ & \text{So } \|\hat{v}\| = \sup_{\|\varphi\|_{V^{*} \leq 1}} |\hat{v}(\varphi)| \geq |\hat{v}(\psi)| > 1 \end{split}$$

Thus $||v|| > 1 \Rightarrow ||\hat{v}|| > 1$

 $\therefore B_V \supseteq B_{V^{**}} \Rightarrow B_V = B_{V^{**}} \Rightarrow \|\hat{v}\|_{V^{**}} = \|v\|_V$ because $\|v\| = \inf\{t \ge 0 : v \in tB_V\} = \inf\{t \ge 0 : \hat{v} \in tB_{V^{**}}\}$

Proof of Corollary

 $\begin{aligned} \|v\| &= \|\hat{v}\| = \sup_{|\varphi| \leq 1} |\hat{v}(\varphi)| = \sup_{|\varphi| \leq 1} |\varphi(v)| = |\varphi_0(v)|, \quad \text{ attained by EVT} \\ \text{Choose } |\lambda| &= 1 \text{ such that } \lambda \varphi_0(v) = |\varphi_0(v)| = \|v\| \\ \text{Take } \varphi &= \lambda \varphi_0 \end{aligned}$

Proof of Quotient Norm

- 1) $\|\dot{v}\| \ge 0, \|\dot{v}\| = 0 \Leftrightarrow dist (v, M) = 0 \Leftrightarrow v \in M \Leftrightarrow \dot{v} = \dot{0}$
- 2) ||(tv)|| = ||tv|| = dist(tv, M) = |t|dist(v, M) = |t|||v||
- 3) $\|(v + w)\| = \inf_{m \in M} \|v + w + m\| = \inf_{m_1 m_2 \in M} \|(v + m_1) + (w + m_2)\|$ $\leq \inf_{m_1 \in M} \|v + m_1\| + \|w + m_2\| = \|\dot{v}\| + \|\dot{w}\|$

So $\frac{V}{M}$ has a norm

Proof of Lemma

$$\begin{split} T: V &\to W \text{ is 1-1, onto and } \|Tv\| = \|v\| \ \forall v \in V \\ \therefore \ T(B_V) &= B_W. \text{ Now let } \varphi \in W^* \\ \|T^t \varphi\|_{V^*} &= \sup_{v \in B_V} |(T^t \varphi)(v)| = \sup_{v \in B_V} |\varphi(Tv)| = \sup_{w \in B_W} |\varphi(w)| = \|\varphi\|_{W^*} \\ \text{So } T^t \text{ is isometric} \\ \text{ker } T^t &= (ran \ T)^\perp = W^\perp = \{0\} \therefore 1 - 1 \\ ran \ T^t &= (\text{ker } T)^\perp = \{0_V\}^\perp = V^* \therefore \text{ onto } \blacksquare \end{split}$$

Proof of Theorem

Recall the quotient map $\Pi: V \to \frac{V}{M}$, $\pi(v) = \dot{v}$, Π is onto, ker $\Pi = M$ $\Pi^t: \left(\frac{V}{M}\right)^* \to V^*$, ker $\Pi^t = (ran \Pi)^{\perp} = \left(\frac{V}{M}\right)^{\perp} = \{0\}$, $ran \Pi^t = (ker \Pi)^{\perp} = M^{\perp}$ So Π^t maps $\left(\frac{V}{M}\right)^*$ 1 - 1 and onto M^{\perp} : linear isomorphism

$$\begin{aligned} & \operatorname{Take} f \in \left(\frac{V}{M}\right)^*, \quad \Pi^t f = \varphi = f \circ \Pi \in M^{\perp} \\ & \|f\|_{\left(\frac{V}{M}\right)^*} = \sup_{\substack{v \in V \\ w \in V \\ \|v\| \le 1}} |f(v)| = \sup_{\substack{v \in V \\ dist(v,M) \le 1}} |f(\Pi(v))| = \sup_{\substack{v \in V \\ dist(v,M) \le 1}} |\varphi(v)| = \sup_{\substack{v \in V \\ m \in M \\ dist(v,M) \le 1}} |\varphi(v+M)| \\ & \operatorname{If } dist(v,M) \le 1 \text{ then } \exists m \in M \text{ so } \|v+m\| \le 1 \text{ so } v \in B_V + M \\ & \operatorname{Conversely, if } v \in B_V + M \text{ then } dist(v,M) \le 1 \\ & \|f\|_{\left(\frac{V}{M}\right)^*} = \sup_{\substack{v \in V \\ m \in M \\ m \in M \\ dist(v,M) \le 1}} |\varphi(v+M)| = \sup_{\substack{\|v\| \le 1 \\ m \in M \\ dist(v,M) \le 1}} |\varphi(v)| = \|\varphi\| \\ & \|v\|_{\leq 1} \end{aligned}$$

So Π^t is an isometric isomorphism of $\left(\frac{V}{M}\right)^*$ onto M^{\perp} Apply that to $M^{\perp} \subseteq V^*$ $\left(\frac{V^*}{M^{\perp}}\right) \cong (M^{\perp})^{\perp} \subseteq V^{**}$ which is isomorphic to $M \subseteq V$

So we have an isometric isomorphism

$$J: \left(\frac{V^*}{M^{\perp}}\right)^* \to M \text{ by new lemma } J^t: M^* \to \left(\frac{V^*}{M^{\perp}}\right)^{**} = \frac{V^*}{M^{\perp}} \blacksquare$$

Proof of Corollary

 $\begin{aligned} f \in M^* &\cong \frac{V^*}{M^{\perp}} \text{ is isometric isomorphism} \\ \exists \varphi \in V^* \text{ s. } t. f \leftrightarrow \dot{\varphi} = \varphi + M^{\perp} \\ \text{So } \varphi \Big|_M &= f, \|f\| = \|\dot{\varphi}\| = \inf_{\psi \in M^{\perp}} \|\varphi + \psi\| \\ \text{Since dim } V &\leq \infty, \text{ this in f is attainable from EVT} \\ \|f\| &= \|\varphi + \psi_0\|, \ \varphi + \psi_0 \text{ is the desired extensions} \bullet \\ (\varphi + \psi_0) \Big|_M &= \varphi \Big|_M + \varphi_0 \Big|_M = f + 0 = f \end{aligned}$

Norms in Matrices

December-02-11 9:53 AM

Matrix Norm

V normed finite dimensional.

A norm on $\mathcal{L}(V)$ usually should have an additional property 4) $||ST|| \le ||S|| ||T||$

Trace Norm

 $T \in \mathcal{L}(V)$. V finite dimensional inner product space. Polar decomposition

T = UD

 $D=\sqrt{T^*T}\cong diag(s_1,s_2,\ldots,s_n), \qquad s_1\geq s_2\geq \cdots \geq s_n\geq 0$ S-numbers of T, $s_i = s_i(T)$ $\|T\|_1 = \sum s_i(T)$

1) $||T||_1 \ge 0$, if $||T|| = 0 \Rightarrow s_i = 0 \forall i \Rightarrow D = 0 \Rightarrow T = 0$ 2) $s_i(tT) = ts_i(T)$ since tT = U(tD)

Lemma 1

If $\{e_i\}_1^n$, $\{f_i\}_1^n$ are orthonormal bases for V, then \sum_{n}^{n}

$$\sum_{i=1} |\langle Te_i, f_i \rangle| \le ||T||_1$$

Corollary

 $\|S + T\|_1 \le \|S\|_1 + \|T\|_1$ Hence $\|\cdot\|_1$ is a norm

Lemma 2

 $T \in \mathcal{L}(V), \qquad 1 \le j \le n$ $s_j(T) = \inf_{rank(F) \le j-1} ||T - F||_{\infty} = dist(T, \mathcal{F}_{j-1})$ matrix of rank $\leq i - 1$

Corollary

If $A, T \in \mathcal{L}(V)$, then $s_j(AT) \le \|A\|_{\infty} s_j(T),$ $s_i(TA) \le \|A\|_{\infty} s_i(T)$

Corollarv²

 $A, T \in \mathcal{L}(V)$ then $\|AT\|_1 \leq \|A\|_{\infty} \|T\|_1 \leq \|A\|_1 \|T\|_1$ $||TA||_1 \le ||T||_1 ||A||_{\infty}$

Therefore $\|\cdot\|_1$ is a matrix norm

Remark

Same argument shows that $\|AT\|_2 \le \|A_{\infty}\| \|T\|_2,$ $||TA||_2 \le ||T_2|| ||A||_{\infty}$

Theorem

The dual of $(\mathcal{L}(V), \|\cdot\|_{\infty})$ is $(\mathcal{L}(V), \|\cdot\|_1)$ via a paring $\varphi_T(A) = Tr(AT)$

Remark 1

 $\|\cdot\|_1$ is unitarily invariant If $T \in \mathcal{L}(V)$, U, V unitary then $||UTV||_1 = ||T||_1$

Remark 2

Ky Fan Norms $\|T\|_{KF_K} = \sum s_i(T)$

is a unitarily invariant matrix norm

Theorem (Ky Fan)

Every unitarily invariant matrix norm on \mathcal{M}_n is a convex combination of the Ky Fan norms.

Examples

1) $||T|| = \sup_{\|v\| \le 1} ||Tv|| < \infty$ by EVT Restrict to an inner product space (V, \langle, \rangle) $||T|| = ||T||_{\infty} = \sup ||Tv||$ 2) ||v|| = 1Polar decomposition *T*, $\sqrt{T^*T} = D$ unique positive square root D is diagonalizable. \exists orthonormal basis $\{u_1, ..., u_n\}$ $Du_i = s_i u_i \ 1 \le i \le n, \qquad s_1 \ge s_2 \ge \dots \ge s_n \ge 0$ U partial isometry, $U: ran D \rightarrow ran T$ isometrically, T = UDLet $v_i = Uu_i \{v_i | s_i > 0\}$ is orthonormal

$$T = \sum_{i=1}^{n} s_i v_i u_i^*$$

$$\|T\|_{\infty} = \sup_{\|v\|=1} \|Tv\| = \sup_{\|v\|=1} \|UDv\| = \sup_{\|v\|=1} \|Dv\| = \sup_{\substack{v = \sum a_i u_i \\ \sum |a_i|^2 = 1}} \left\| \sum s_i a_i u_i \right\|$$
$$= \sup_{\sum |a_i|^2 = 1} \sqrt{\sum_{i=1}^n s_i^2 |a_i|^2} = s_1 \sup_{\sum |a_i|^2 = 1} \sqrt{\sum |a_i|^2} = s_1$$

3)
$$||T||_2$$
 fix an orthonormal basis $\{e_1, \dots, e_n\} = \xi$
 $T = [T]_{\xi} = [t_{ij}]$

Define
$$||T||_2 = \sqrt{\sum_{i,j=1}^n |t_{ij}|^2}$$

Makes \mathcal{M}_n into an inner product space

$$\begin{split} [S] &= [s_{ij}], \qquad \langle [S], [T] \rangle = \sum_{i,j=1}^{n} s_{ij} \overline{t}_{ij} \\ [T^*]_{\xi} &= [\overline{t_{ji}}], \qquad [ST^*]_{\xi} = \left[\sum_{k=1}^{n} s_{ik} \overline{t_{jk}}\right] \text{ has } \sum_{k=1}^{n} s_{ik} \overline{t_{ik}} \text{ on diagonal } (i,i) \\ \therefore \langle [S], [T] \rangle &= tr(ST^*) \end{split}$$

$$\begin{split} \|ST\|_{2}^{2} &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} s_{ik} t_{kj} \right|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |s_{ik}|^{2} \right) \left(\sum_{l=1}^{n} |t_{lj}|^{2} \right) \\ &= \left(\sum_{i=1}^{n} \sum_{k=1}^{n} |s_{ik}|^{2} \right) \left(\sum_{j=1}^{n} \sum_{l=1}^{n} |t_{lj}|^{2} \right) = \|S\|_{2}^{2} \|T\|_{2}^{2} \end{split}$$

If U, V are unitary $||UTV||_{2}^{2} = \langle UTV, UTV \rangle = tr((UTV)(UTV)^{*}) = tr(UTVV^{*}T^{*}U^{*}) = tr(UTT^{*}U^{*})$ $= tr(U^*UTT^*) = tr(TT^*) = ||T||_2^2$

So $||UTV||_2 = ||T||$ (unitarily invariant norm) (so is $||T||_{\infty}$) In particular, this definition does not depend on choice of o.n. basis.

If
$$f_1, ..., f_n$$
 o.n. basis ζ . Let $Ue_i = f_i$,
 $[a_{ij}] = [T]_{\zeta} = U[T]_{\xi}U^* = U[t_{ij}]U^*$
 $\sqrt{\sum_{i,j=1}^n |a_{ij}|^2} = ||UTU^*|| = ||T||^2 = \sqrt{\sum_{i,j=1}^n |t_{ij}|^2}$

T = UD polar decomposition, $Uu_i = v_i$, $1 \le i \le k$, $s_k > 0$, $s_{k+1} = 0$ extend $v_1, ..., v_k$ to orthonormal basis. Define $Vu_i = v_i, 1 \le i \le n$ Unitary T = UD = VD

$$\|T\|_{2} = \|UD\|_{2} = \|D\|_{2} = \sqrt{\sum_{i=1}^{n} s_{i}^{2}}, \quad \text{where } [D]_{U} = diag(s_{1}, s_{2}, \dots, s_{n})$$
Proof of Lemma 1

Proof of Lemma
$$T = UD$$

k

Choose an orthonormal basis $\{u_i\}_1^n$ which diagonalizes D. $Du_i = s_i u_i, 1 \le i \le n$ $1 \le i \le \frac{k \text{ if } s_{k+1}}{n \text{ if } s_n > 0}$ Let $v_i = Uu_i$,

$$T = \sum_{j=1}^{n} s_j(v_j u_j^*)$$

$$\sum_{i=1}^{n} |\langle Te_i, f_i \rangle| = \sum_{i=1}^{n} \left| \sum_{j=1}^{k} s_j \langle e_i, u_j \rangle \langle v_j, f_i \rangle \right|$$

$$\leq \sum_{j=1}^{k} s_j \sum_{i=1}^{n} |\langle e_i, u_j \rangle| |\langle v, f_i \rangle| \leq_{C.S.} \sum_{j=1}^{n} s_j \sqrt{\sum_{i=1}^{n} |\langle u_j, e_i \rangle|^2} \sqrt{\sum_{i=1}^{n} |\langle v_j, f_i \rangle|^2} = \sum_{j=1}^{n} s_j ||u_j|| ||v_j|| = \sum_{j=1}^{k} s_j$$

$$= ||T||_1$$

Proof of Corollary S + T = UE, $E = |S + T| = \sqrt{(S + T)^*(S + T)}$ $S + T = \sum_{i=1}^{n} s_i (S+T) v_i u_i^*, \qquad \{u_i\}_1^n, \{v_i\}_1^n \text{ orthonormal} \\ \|S + T\|_1 = \sum_{i=1}^{n} s_i = \sum_{i=1}^{n} \langle (S+T) u_i, v_i \rangle \le \left| \sum_{i=1}^{n} \langle S u_i, v_i \rangle \right| + \left| \sum_{i=1}^{n} \langle T u_i, v_i \rangle \right| \le_{Lemma \ 1} \|S\|_1 + \|T\|_1 \\ \text{So } \Delta \le \text{ holds hence } \|\cdot\|_1 \text{ is a norm } \blacksquare$

Proof of Lemma 2

Write
$$T = \sum_{i=1}^{n} s_i(v_i u_i^*)$$
, Let $F_j = \sum_{i=1}^{j-1} s_i(v_i u_i^*) \in \mathcal{F}_{j-1}$
Let $T - F_j = \sum_{i=j}^{n} s_i(v_i u_i^*) = U \operatorname{diag}\{0, 0, \dots, 0, s_j, \dots, s_n\}$
 $||T - F_j|| = ||T - F_j||_{\infty} = \max s_i(T - F_j) = s_j, \therefore \operatorname{dist}(T, \mathcal{F}_{j-1}) \le s_j$

 $\begin{aligned} & \text{Suppose } rank(F) \leq j-1, nul(F) \geq n-(j-1) = n+1-j \\ & \dim(sp\{u_1,\ldots,e_n\}) + nul(F) \geq j+n-(j-1) = n+1 \\ & \therefore \dim(sp\{u_1,\ldots,u_j\} \cap \ker F) \geq 1 \end{aligned}$

Pick $x \in sp\{u_1, \dots, u_j\} \cap \ker F$, ||x|| = 1, $x = \sum_{i=1}^{j} au_i \in \ker F$

$$\therefore ||T - F|| \ge ||(T - F)x|| = ||Tx|| = \left\| \sum_{i=1}^{j} (s_j a_i) v_i \right\| = \sqrt{\sum_{i=1}^{n} s_i^2 |a_i|^2} \ge s_j \sqrt{\sum_{i=1}^{n} |x_i|^2} = s_j ||x||$$

= Sj

Proof of Corollary

 $s_j(AT) = dist(AT, \mathcal{F}_{j-1}) \le \|At - Af_j\|_{\infty} = \|A(T - F_j)\| \le \|A\|_{\infty} \|T - F_j\|_{\infty} = \|A\|_{\infty} s_j(T)$ Other side is similar.

Proof of Corollary²

$$\|AT\|_{1} = \sum_{i=1}^{n} s_{i}(AT) \le \sum_{i=1}^{n} \|A\|_{\infty} s_{i}(T) = \|A\|_{\infty} \|T\|_{1}$$

Other side is similar

Proof of Theorem

Choose orthonormal basis $\xi = \{e_1, \dots, e_n\}$ matrix units E_{ij} basis for $\mathcal{L}(V)$, $1 \le i, j \le n$ $\varphi \in \mathcal{L}(V)^*$, Let $t_{ij} = \varphi(E_{ij})$, Let $T = [t_{ji}]_{\xi}$

So if $[A]_{\xi} = [a_{ij}], A \in \mathcal{L}(V)$ $tr(AT) = \sum_{i=1}^{n} [AT]_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} [A]_{ij} [T]_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} t_{ij}$

$$A = \sum a_{ij} E_{ij}, \qquad \varphi(A) = \sum a_{ij} \varphi(E_{ij}) = \sum a_{ij} t_{ij}$$

So $\varphi(A) = Tr(AT) = \varphi_T(A)$

So $\varphi(A) = Tr(AT) = \varphi_T(A)$ $\|\varphi\| = \sup_{\|A\|_{\infty} \le 1} |\varphi(A)| = \sup_{\|A\|_{\infty} \le 1} |Tr(AT)|$ $= \sup_{\|A\|_{\infty} \le 1} \left| \sum_{i=1}^{n} \langle ATe_i, e_i \rangle \right| \le_{\text{Lemma 1}} \sup_{\|A\|_{\infty} \le 1} \|AT\|_1 \le_{\text{Corollary}^2} \sup_{\|A\|_{\infty} \le 1} \|A\|_{\infty} \|T\|_1 = \|T\|_1$

$$\begin{split} T &= UD, \quad \text{Let } A = U^*, \quad \|A\|_{\infty} = 1 \\ \varphi_T(T) &= Tr(U^*UD) = Tr(D) = Tr\left(diag(s_1, s_2, \dots, s_n)\right) = \|T\|_1 \\ &\therefore \|\varphi_T\| \geq \|T\|_1 \quad \therefore \|\varphi_T\| = \|T\|_1 \end{split}$$

Proof of Remark 1

$$\begin{split} \|UTV\|_1 &\leq \|U\|_{\infty} \|T\|_1 \|V\|_{\infty} = \|T\|_1 \\ \|T\|_1 &= \|U^*(UTV)V^*\|_1 \leq \|U^*\|_{\infty} \|UTV\|_1 = \|UTV\|_1 \end{split}$$