
Chapter 1
1.1 Introduction to Vector Spaces (Linear Spaces)

Coordinates: 
We draw a horizontal line and a vertical line intersecting a point O at right angles. 
We then give the lines directions. (Arrow on the line indicates positive direction)
Further, we introduce scales. The two lines should use the same scale. 
A position P on the plane (or a point) can be identified by two real quantities: its scale 
numbers when we draw perpendicular lines from P to the horizontal and vertical lines 
(coordinate axis). The numbers are represented as a tuple P = (x, y) with      

The plane is the set of all positions on the plane, and can be identified with the set of all pairs 
of real numbers. 
                       

On   we define addition:
Algebraically:                                 
Geometrically:  Form a parallelogram between the two points
and the origin. The 4th point is the sum.

In the diagram: x = y

Vector addition using arrows:
To add the arrows x and y, start with the arrow x
from point A to point B. Then place y on the tip of 
x so it goes from point B to C. Then x+y is the arrow
going from A to C

Scalar multiplication for the plane   

Let          . Let     (a scalar)

Then             
The product   is called the scalar multiplication of the vector x by the scalar  
Vector addition and scalar multiplication on   satisfy 10 properties.

Properties of Vector Addition and Multiplication
(-1)                - Closed under addition
(0)                 

(1)                 - Commutativity of addition
(2)                       - Associativity of addition
(3)         so that            - Additive identity
(4)            such that      - Additive inverse
(5) 1x = x      

(6)                        

(7)                          

(8)                         

The Plane   
Vector in the plane
An entity with direction and 
magnitude. It is viewed as an arrow 
having a starting position and a 
terminating position. 

Equality
Two arrows are equal if they have 
the same magnitude and direction

Positions vs. Vectors in   

Every vector is identified with a 
point P so that the arrow pointing 
from O to P is equal to it. 

Vector Properties
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Vector Space
The abstract definition of a vector space over a field.

Let V be a set (of objects) and F a field
Let there be two operations +, scalar multiplication, 
satisfying the ten properties of vector addition and scalar 
multiplication.

Uniqueness of Zero Vector
Let V be a vector space over F
Then   one and only one    such that      
We call the unique 0 the zero vector of V.

Uniqueness of Additive Inverses
Let V be a vector space over F
Then for every x   V    one and only one y   V such that
      
This y is denoted -x, it is the additive inverse of x

Cancellation Law
If         then    

Properties of a Vector Space
(-1)              - Closed under addition
(0)               
(1)                - Commutativity of addition
(2)                      - Associativity of addition
(3)     so that           - Additive identity
(4)          such that      - Additive inverse
(5) 1x = x     
(6)                       
(7)                         
(8)                        

Once V (and F) are given two operations satisfying the ten properties, we call it a vector space 
over F

Examples:
Let S be any non-empty set. Let           
Define + and scalar multiplication on V by

       
                        

for       

       
(                 

for all    ,    

Then V is a vector space over F

Proof of Uniqueness of 0
One of the ten axioms calls for the existence of a special element     V satisfying        x   V
Let         be two such elements.
By the properties of   :         

By the properties of            

Since addition is commutative,                  ∎ 

Proof of Uniqueness of Additive Inverse
Let   and   be two y such that x + y  = 0
                       

Proof 0x = 0
                                   

Proof -x = (-1)x
                              
                                   ∎ 

Observations
For   , let                       

The arrow (vector), x, starting from P, pointing and ending at Q, is equal to:
      
Proof: By the parallelogram law,            

The midpoint between P and Q is 
 

 
      

The point along the line P, Q 1 unit away from P and 2 units away from Q is 
 

 
   

 

 
  

Proof of cancellation law
                                 

Vector Spaces
January-07-11 11:32 AM
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Let A and B be sets.

Union
Example: Let

   
 

 
          

Then

  
 

 
     

 

   

      

Need to show

  
 

 
     

 

   

                   
 

 
     

 

   

As for the first inclusion  we see that for each n       
 

 
          , therefore 

their union,   
 

 
     

   is contained in      

For the second inclusion: Let        be given.              Then   n     

so that 
 

 
   . In which case    

 

 
    so     

 

 
     

   

So

  
 

 
     

 

   

      

The Axiom of Choice
Let I be a non-empty (index) set. 
Let         be a family of non-empty sets. 
Consider the set

   

 

   

The there exists a mapping 

       

 

   

satisfying        

Every vector space has a basis
Accepting the axiom of choice leads to :

Union
Then their union    is defined by          
         
Let         be a family of sets where the index set    
Then the union 

   

 

   

              

Intersection
Similarly, we can define    and    

 
   

                    

   

 

   

              

Mapping

If       and       are in the relation, then      i)
  a   A    b   B so that  a  b  is in the relation ii)

Let A and B be sets. A mapping      (A is called the 
domain & B is the co-domain of f) is a relation of A × B 
satisfying:

The unique b for the given a is marked f(a)

* Set Theory
January-10-11 3:32 PM
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Subspace
Let V be a vector space over F  A subset W   V is called 
a subspace of V if when the operations (addition, 
scalar multiplication) on V are restricted to W, W is 
again a vector space (over F). 

Proposition

0 of V is in Wi.
               ii.
             iii.

A subset W   V is a subspace iff 

Note:  is sometimes replaced by    

Theorem
Let V be a vector space.
Let         be a family of subspaces of V, when   
 . Then

   

 

   

is again a subspace (of V)

Example
Let     and let              
Then all 10 axioms are satisfied by W, so W is a subspace of   

The subset
                  
is not a vector space under the operations of   because there is no 0 and no additive inverse for any 
element. 

Example

The set of all functions           

Let the space be            

0 :       i.
If f and g are continuous, then f+g is continuous.ii.
If f is continuous, then   is continuous for    iii.

Let W bet the subset of all the continuous functions.

i.e.               and        ,       
Let S be the set of all functions of            which vanish at         

          , if                 then                 and
              

Then S is a subspace

  i   I  because   is a subspace,     . So      
 
   i.

Suppose          
 
   are given.ii.

Consider                                        

So                         
 
   

Suppose      
 
   and    iii.

Consider                      

                      

 

   

Proof of Theorem

Subspaces
January-12-11 11:30 AM
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If V is a vector space and    , then there exists a unique smallest subspace 
of V containing S, say 

      

 

   
Where          is the set of all subspaces of V containing S.
We call W the subspace generated by S. 

(Unique smallest because intersection of all subspaces containing S)

Example 

For         and     
  
  

   
  
  

   
  
  

  

Then  
  
  

         is not a linear combination of vectors in S because

   
  
  

     
  
  

     
  
  

   
    

    
   

  
  

 

as that would require     and     

Whereas  
   
   

 is a linear combination of vectors of S

e.g. to show that it is closed under addition:
Let              be given.
Consider      

                   

                                 

For some            and            

           

   

   

        

Show that Span(S) is truly a subspace of V1.

Proof  Let s   S be given  Then s    s
Observe that Span S  ⊇ S2.

Proof:
For that purpose, let          be given.
Then by definition, there exists vectors          so that   
           . Now because     ,          

Since   is closed under scalar multiplication and vector addition, 
                

Let   be any given subspace of V which contains S. We shall show 
  ⊇        

3.

Proof of Proposition (outline)

Example
Let the space be     - polynomials with complex coefficients, and let
                      

Then Span(S) = the space of all polynomials with even terms. 
               =      

Remark
Let V be a vector space. If S is a subspace of V, then Span(S) = S

Linear Combination
Let S   V  Suppose S     

A vector    is said to be a linear combination of S if 
there exist finitely many vectors of S, say              , 
and scalars             so that:
                  

Span
                                               
           by convention

Notation: Matrices 
       means an n by m matrix with elements in F

Proposition
Let V be a vector space  S   V and S     

       

 

   

                 

Let                                                

Then Span(S) is the subspace of V generated by S

Linear Combinations
January-14-11 11:28 AM
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Example
Is             Span                                  in   ? Yes

                                     
System of equations:
    
       
        
Solving the above, we first bring it to the reduced system
    
       
    
From that we read the solutions in reverse order
    
             
    
So there is a solution,           

Example
Is it true that Span{(1, 0, 0), (2, 1, 0), (3, 1, 0)} =   ?
Ans: Equivalently we are asking: Is every given           in                              ?
We solve:
                                     for all possible            

            
       
   
Clearly  when c      there is no solution

Example
Consider the space of differentiable functions from   to    Those satisfying the differentiable 
equation      are given by          where a, b, are constants. 
Using the language of span, the set of all solutions is Span{x, 1}

The solutions to       is      sin   cos   

Proof of Equivalence of Linear Dependence definition
Suppose that 2 holds true.
Then there are scalars        not all zero so that

     

 

   

  

Say that      Now have

            

 

   
    

          
  

       

 

   
    

     
  

   

      

 

   
    

So                  

Suppose statement 1 holds true. Show 2 as an exercise. 

Example

The list of vectors  
  
  

   
  
  

   
  
  

   
  
  

   
  
  

 in        is linearly dependent.

Because (using statement 1 with      

 
  
  

    
  
  

    
  
  

    
  
  

    
  
  

 

or 

  
  
  

    
  
  

    
  
  

    
  
  

       
  
  

   
  
  

   

Where      

Example
Let the space be     and let S be the set of all even polynomials. (even means           )
It is linearly dependent because              

Example
Let V be a vector space.
Let      
We see that 2 holds for     (e.g.      )
So S is linearly dependent.

      

 

   

   

 

    

  

by convention, so            

Linear Dependence
Let V be a vector space.
Let           be a finite list of vectors of V

There is a    which is in the span          1.

                  for some list of 
scalars           not all 0

2.

We say the list is linearly dependent if one of the 
following two equivalent statements is satisfied:

Linear Dependence on Subsets
A subset S of a vector space V is linearly 
dependent if for some distinct finite list of vectors 
extracted from S, the list is linearly dependent.

Corollary to Span({}) = {0}
In a vector space, any subset S which has 0 in it is 
linearly dependent.

Linear Dependence/Span
January-17-11 11:32 AM
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Linear Independence
A subset S of a vector space V is linearly 
independent if it is not linearly dependent.

Example
In   ,                            is linearly independent

Proof:
We need to show that the list                                 is not linearly dependent.
Suppose           and let                 
                                                                 . 
So S is linearly independent.

Example
In   

 , is                                     linearly dependent?
Ans: Let            and that
                                     

                    
                     
                 

 
    
    
    

                                                       

 
    
    
    

                                                  

 
    
    
    

                                                              

 
    
    
    

 

Solution:
     is arbitrary (a free parameter)
           

          

So there is a solution with     , so yes, S is linearly dependent. 

Example
Let v be a vector space over  
Suppose that        is linearly independent.
Show that the set                  is linearly independent.

Proof:
Let        and that                          
                         
Because      are linearly independent,
         
         

                    

  
 

 
           

                          . So                  is linearly independent.

Linear Independence
January-21-11 11:29 AM
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Example: Gaussian Elimination
Solve

 
             
           

        

 
 
 

 
              

 
 

 
          

 
 

 
           

 
 
 

 
              

 
 

 
          

     
  

 
   

End of Gaussian Elimination, write out the general solution:

    
  

  
   

   
     

 
 
   

        
      

  
  
    

  
              

  

  
   

   
         

 
              

     
  
          

  
      

 
                     

Jordan Elimination Steps

Multiply the lines to set the 1st non-zero coefficients equal to 11.
Eliminate the variables from the lines above each 12.

Used to reduce the system further

Continuing from the system above:

 
  
 

  
 
   

 

 
          

        
 

 
  

    
  

  
   

 
  
 

  
 

       
  

 
   

        
 

 
  

    
  

  
   

 
 
 

 
 

   
   

  
   

     

    
  

  
   

Why no work? :(

Augmented Matrix

 
 
 

 
                       

                      

 
                      

Represented by

 

          

          

    

          

  

  

  

 
  

  

Gaussian and Jordan Eliminations
January-24-11 11:31 AM
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Let X and Y be sets.

Injective
A function      is injective (one-to-one) if
                 or alternatively
                 

Smaller Cardinality
A set X is said to be of smaller cardinality than set Y if 
there is an injective map      

Surjective
A function      is surjective (or onto) if for all 
   there exists    so that       

Proposition
These statements are equivalent:

There is an injective function      1.
There is a surjective function      2.

For two sets X, Y

Equal Cardinality
Two set X, Y are of equal cardinality if there exists 
     which is injective and surjective (bijective)

Theorem (Bernstein)
Let X and Y be sets. If there exists an injective     
 and an injective      there exists a bijective 
     
Rephrase: If                             

Immediate clear is that if X is finite with n distinct and Y has fewer elements than X then no 
     can be injective. 

Example of cardinality differences:
[0, 4] has a smaller cardinality than [0, 1]

                
 

 
   

Similarly, [0, 1] has smaller cardinality than [0, 4]

Proof of Proposition
Suppose we have a surjective      

For each    , consider                  
As g is surjective, each   is non-empty. Moreover,      implies    

and    
are disjoint.

The family         form a partition of Y
By the axiom of choice, there is a function (choice)

       

 

   

                  

Obviously, f is injective

Set Theory Cont.*
January-24-11 3:34 PM
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Basis

B is linearly independent1.

Let V be a vector space over F. A subset    is called 
a basis for V if it satisfies:

B spans V, i.e.          2.

Intuitively, B is "small", that no element of B is a linear 
combination of the others. 

Finite Dimensional
If V has a finite set B which forms a basis, then we say V 
is finite dimensional.

Theorem
Suppose that V has a finite basis B with n elements. 
Then all other bases must have n elements. We call n 
the dimension of V.

Example
Consider   . Subsets satisfying the 1st properties are, e.g.
                                                       

Of these examples
                 
                                
                                            
                                           

So the last is a basis.

Example
       
                                        by convention
is a basis.

Proof:

Let a finite number of terms be extracted from  (all terms are distinct)
To check for linear independence: 

WLOT that the list is           

Will show that the list is not linearly dependent. Let           be scalars and that
           

          
By definition of equality between polynomials,             

Hence, every finite list of distinct terms from B is linearly independent. So B is linearly independent.

Next check if        ⊇     

Let                
        for some         

Therefore, clearly                       ⊇         
Hence             . Equality follows. So B is a basis.  

Example
                                       

     
    
    

         
 

The dimensionality is the number of free scalars. In this case
dim   

Basis
January-26-11 11:33 AM
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Theorem 1.8
Let S be a linearly independent subset of a vector space V 
and let x be an element of V that is not in S. Then      is 
linearly dependent iff          

Theorem 1.9
If a vector space V is generated by a finite set   then a 
subset of   is a basis for V. Hence V has a finite basis.

Replacement Theorem 1.10
Let V be a vector space having a basis  containing exactly 
n elements. Let            be a linearly independent 
subset of V containing exactly m elements  where m   n  
Then there exists a subset   of  containing exactly n-m 
elements such that     generates V.

Corollary 1
Let V be a vector space having a basis  containing exactly 
n elements. Then any linearly independent subset of V 
containing exactly n elements is a basis for V.

Corollary 2
Let V be a vector space having a basis  containing exactly 
n elements. Then any subset of V containing more than n 
elements is linearly dependent. Consequently, any linearly 
independent subset of V contains at most n elements.

Corollary 3
Let V be a vector space having a basis  containing exactly 
n elements. Then every basis for V contains exactly n 
elements. 

Definition
A vector space V is called finite-dimensional if it has a basis 
consisting of a finite number of elements; the unique 
number of elements in each basis for V is called the 
dimension of V and is denoted dim   . If a vector space is 
not finite dimensional, then it is called infinite-dimensional. 

Corollary 4
Let V be a vector space having dimension n and let S be a 
subset of V that generates V and contains at most n 
elements. Then S is a basis for V and hence contains exactly 
contains exactly n elements. 

Corollary 5
Let  be a basis for a finite-dimensional vector space V and 
let S be a linearly independent subset of V. There exists a 
subset   of  such that     is a basis for V. Thus every 
linearly independent subset of V can be extended to a basis 
for V.

Proof of Theorem 1.8
Suppose      is linearly dependent.
Then 

           

 

   

With not all     and since S is linearly independent,     so 

    
  

  
     

 

   

So          
Suppose          , then 

       

 

   
so      is linearly dependent  ∎ 

Proof of Theorem 1.9
If     or       then    and  is a basis for V.
Otherwise pick      .     is linearly independent. 
Now with a linearly independent set of    vectors      if                      then 
done since the set is linearly independent and generates V so it is a basis. Otherwise find    
                       By theorem 1.8          is linearly independent. Continue until 
terminating after finitely many   since   is finite.

Proof of Theorem 1.10
Proof by induction on m. 

If m = 0, then    and n - m = n so take     ,           is a basis for V

Now suppose the statement holds true for     .
Let               .      with             such that
             by induction supposition. 
So 

        

 

     

      

 

     

But S is linearly independent so at least one     , say   

Then 

   
  

  
      

  

  
    

 

     

   
  

  
    

 

     

   

So                              
Clearly                                                  
           
So                 
             so             
So there is a subset of  such that              m  by the induction principle  ∎ 

Corollary 1
Let S be a linearly independent subset of V with exactly n elements.
Then    such that              and                
so                     so S is a basis for V.

Corollary 2
Let S be a subset of V with more than n elements. Suppose that S is linearly independent, then 
there is an     with n elements. By Corollary 1,   is a basis so           . Let       
  , then       is linearly dependent, contradicting the supposition that S is linearly 
independent  Therefore  S is linearly dependent  ∎ 

Corollary 3
Let  be a basis for V. We know      since      . Suppose      , then by Corollary 2  
would not be linearly independent, a contradiction, so        ∎ 

Corollary 4
By Theorem 1.9,      such that   is a basis for V.                  so      so     
and S is a basis for V  ∎ 

Corollary 5
             so by Theorem 1.10,               such that     generates V. 
Since         , by Corollary 4     generates V.

Replacement
February-05-11 10:14 PM
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Proposition

       and      is linearly independent. 1.
         2.

Let V be a vector space. Let    be linearly independent. 
Then the following two statements are equivalent.

Proposition
Let  be a vector space. Let    be linearly independent, 
   be generating,    . Suppose that  is such that   
       is still linearly independent. 

Then there exists a    so that    and      is (still) 
independent.  

Remark
If V is a finite vector space.
If F is infinite, like  , then      

If F is finite, then         for some     

Proof of Proposition 1
Suppose v satisfied    To argue for    assume to the contrary that v   Span L   Then

       

 

   

for some distinct   's in L and     
As                                 we have a set of distinct vectors such that one is a linear 
combination of the rest, so the set      is linearly dependent, a contradiction.

Conversely, suppose that 2 holds, we need to show 1
As            it is clear that    . To show that      is linearly independent, suppose 
that

     

 

     

  

where        are distinct elements from     }

Suppose that none of the   are  . Then by linear independence of L, all     
Case 1:

One of        is equal to v. WLOG say that     
Suppose that     Then

     

   

   

  

By the linear independence of L, we set               
Thus       are 0

Suppose that     Then from

     

 

   

  

       
  

  
     

   

   

So          

Case 2:

Proof of Proposition 2
         
It is a linear combination of things in G
So , (WLOG,  is the least number which satisfies the linear combination)

       

 

   

       

 

   

      

 

     

where        are distinct vectors in G
WLOG,                     
At least one             is present with    . Take       

This means          since the above is the smallest representation and if          

then  could be written as part of      
 
   

Suppose      were linearly dependent. Then 

          

 

   

                     

L is linearly independent so    so 

    
  

 
    

 

   

So          , a contradiction. So      is linearly independent  ∎ 

Example
Basis of any size.
Let S be any set     . We now construct a vector space  over  having a basis B with     
   

 is the characteristic function.

Consider the subspace   of       consisting of functions      with       for all but 

finitely many s. For each fixed element    , let       be        
         
         

Clearly      

Let               

Let     be given  Then   finitely many             with                      1.
Let         for          
Then        

      
        

Therefore          

      

 

   

  

Let    
    

      
be a finite list of distinct vectors in B and that           are scalars 

from F with 

2.

Since    
are distinct, clearly   are distinct. Fix any            

     

 

   

           

Be is a basis for   because

General Bases
January-31-11 11:31 AM
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So        
So  is linearly independent. 

     
       

is clearly bijective  So B is of the same cardinality as S  ∎ 
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Maximal Principle
Let X be a set. Let  be a collection of subsets of X. A sub-
collection of  , say    is called a tower (or chain) if for any 
two elements        , either      or      .

Suppose that  has the property that every tower  , there exists 
   such that  ⊇  for all    . (C is called an upper bound 
for  )

Then  has a maximal element M     i.e. no    contains M 
strictly.

Application
Let V be any vector space over F. Let  be the set of all linearly 
independent subsets of V.
If  is a tower in  it is not difficult to check that 

  

 

   

is also linearly independent. So it is in  and it is an upper bound 
for  . So by the maximal principle, there is a maximal    .
M will be a basis for V.

Example
Let  be the set of all finite open intervals of  
             is a tower/chain
This tower has no upper bound in  

No member of  is maximal because for every            finite a, b the element 
       is strictly larger. 

Example
Let X be any non-empty set.
Let          
Then                     is a maximal element for  

Examples
           is M maximal, yes.
       is also maximal
         is not maximal
Look at               is a tower with no upper bound

So every tower having an upper bound ⇒ there is a maximal element
There being a maximal element ⇏ every tower has an upper bound

* Maximal Principle
February-04-11 11:31 AM
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Linear Mapping

L preserves summation1.
                    
L preserves scalar multiplication2.
                   

Let U and V be vector spaces over F. A mapping 
(function)      is linear if:

Proposition

      1.
           2.

       

 

   

          

 

   

3.

L preserves linear combinations

For any linear      

Kernel (Nullspace)
Let      be linear
                                

Range (Image)
Let      be linear
                         

Proposition
      is a subspace of U
        is a subspace of V

Example
                                      
Then L is linear.

Let                         1.
Then                                                              

                                                           

Let               2.
                                                    

Proof:

Example

                       

   
    
     

 

This is a linear mapping

Example

                           L is linear

Example of a non-linear map
                      
Then f is not linear

                                                     

                                                 

So f does not preserve summation. Similarly, it does not preserve multiplication.

Because L preserves addition,                                so      
   

1.

                             2.

Follows directly from preservation of addition and scalar multiplication3.

Proof of Proposition

Linear Mappings
February-07-11 11:32 AM
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Nullity and Rank
Let       be linear. Suppose that U is finite dimensional. 
The nullspace (kernel) of L,                     , is a 
subspace of U. 
Then N(L) is finite dimensional.             dim    

The dimension of the range space,                is called 
the Rank of L, denoted        

Dimension Theorem (Rank and Nullity Theorem)
For linear       finite dimensional U,
dim                       

Example
       is given by                       has range
                       and          

               
     
     

 

It has                                            

 ullity  L   dim      

Proof of Rank and Nullity Theorem
Pick a basis for N(L), say             
Now,             
Extend the linearly independent set             to a basis for U
say that                       is a basis for U
So dim     

Claim:                             is a basis for Range(L). Thus             

Show that β spans         1.
Let           be given. Then                

       

 

   

Since          spans U, there exist scalars        so that 

Now, 

              

 

   

          

 

   

 since L is linear

                          

          

 

     

So         
So                
Show that  is linearly independent. 2.
Suppose                                             
So                     
As                   
                           for some scalars   

So                              
So                    
So  is linearly independent. 

Example
Let             be 

         

 
 
 
 
 
      
      
      
      
      
      

 
 
 
 
 

Rank(L) = 3, N(L) = 0

Dimension Theorem
February-09-11 11:32 AM
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Simple consequences of the dimension (rank/nullity) theorem.

Observations.

Proof: Suppose that            for given        
Now              . As L is linear,           so              Since Ker(L) = {0}, 
we set              

For the converse: Suppose L is injective 
Because L is linear, L(0) = 0, so 0 in Ker(L)
To get Ker(L) = {0}, we need to show that for any given u in Ker(L), we have u = 0
Let u in Ker(L) be given. Then L(u) =0. Since L is linear, L(0) = 0. So L(u) = L(0)
As L in injective, u = 0 follows.

If      is linear, then L is injective iff Ker(L) = {0}1.

Restate: Linear L is injective iff dim Ker(L) = 0 iff nullity(L) = 0

Linear      is surjective iff L(U) = V. If V is finite dimensional, then L is surjective iff dim L(U) = dim V, 
iff rank(L) = dim V

2.

By the dimensional theorem, we get the Corollary:

L is injective1.
L is surjective 2.

If      is linear and both U and V are of the same dimension, then the following two statements are 
equivalent:

Basic idea: dim U = rank(L) + nullity(L) = dim V
Injective <=> nullity(L) = 0 <=> rank(L) = dim V <=> surjective

In particular, if U is finite dimensional and L is a linear operator on U, then L is injective iff it is surjective.

Example of Proposition:
Suppose that          is linear, and that B = {(1, 0), (0, 1)}
If we know L(1, 0) and L(0, 1) (that is, we know     ), we should be able to tell L(x, y) for general       
  

Reason:                                                                          

Proof of Proposition:
Let              be a basis for U.
Given any vector u ∈  U, we can write         

 
     for finitely many       

Now, 

              

 

     

Example
WE could define a linear map        by specifying L(1, 0) and L(0, 1), say L(1, 0) = (1, 1) and L(0, 1) = 
(-1, -1), Implicitly, we know L fully
Explicitly :                                                    
Rank(L) = 1, Nullity(L) = 1
Range(L) = span(L(1, 0), L(0, 1)) = span{(1, 1), (-1, -1)} = span{(1, 1)}, a basis is (1, 1)
N(L) is                     , a basis is (1, 1)

Example
                                 
                                     

Note                is a basis for    

          
                  
                                       

Proposition
Every Linear      is completely 
determined by the restriction,     , to a 
basis B for U

Rank/Nullity
February-11-11 11:28 AM
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Coordinatizing a Space
Let U be a finite dimensional space. 
Fix a basis               and order it as presented. 
Every vector    can be uniquely written:

       

 

   

     

                         

 

   

      

 

   

Coordinates
We call             the coordinates of u with respect to (relative to) 
 . Notation: 

      

  

  

 
  

              

Proposition
Let U be a space with ordered basis β 
The correspondence 
           

is a bijective linear map. Thus U is isomorphic to   

It is easy to check that                     
           

Representation of Linear Maps
A linear map      can by represented by a matrix.

Let    be finite dimensional. Let    be ordered bases for U and V, 
respectively. 
                       
Now      , linear, is determined by knowing 
                   . Each      is determined by knowing         -

(column formation) 

The matrix 
                            

Size    is called the matrix representation of L with respect to    

Proposition
Let          be linear.    
Let  for U and  for V be fixed finite ordered bases.
Then                                 

                         are linear (exercise)

        
 

      
 

      
 
        

 
       

 

Thus     
 
 all linear maps from U to V          

is linear.

Example
Let        . Let            (ordered) 
Let                           
So 

   
 
 
 

            

  is isomorphic to   

Example
Let        over          

Let           for the domain and           
for the codomain

    
 

                                             
   
   
   

 

Coordinatization
February-14-11 11:33 AM
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Countable
A set X is countable iff        
A set X is at most countable if        

                       1.
If        and                 2.
 X    Y  iff  Y    X 3.
 X    Y  and  Y   X     X     Y 4.
         5.
                           6.
                             7.
                   8.
For any infinite set X, removing a finite subset 
will not change the cardinality

9.

               10.
                           11.
         12.
         13.
        14.

Facts

Proof of Fact 5
 efine the mapping        
          
          
          
          
          
 
This function is bijective, so          

Proof of Fact 6
 bijection             
Consider                             

Then  is bijective 

Example
           

Proof of Fact 7
Consider the map
                                    
                                    
In the event that  can be written in two ways, use the representation which is not terminated by 
repeating 9's.

This is injective. And surjective
                                                 
                                              
So                      

* Cardinality 
February-14-11 3:30 PM
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Matrix Representation
Let      be linear.
Let            and            be ordered bases for U and V respectively. 
Each vector    has the representation

      

  

  

 
  

            

 

   

 

         in the codomain   has

         
  

 
  

           

 

   

    
 

                                     

Hence

            

 

   

How should                      
 

relate?

            

 

   

          

 

   

           

 

   

 

 

   

  comes from the vector     
   comes from the matrix     

 

Note change of scope:

              

 

   

 

   

         

 

   

         

 

   

 

   

  comes from the vector        

          

 

   

          

Get:

 

  

  

 
  

        

  

  

 
  

              
     

Example
Let        . Let                            be the standard ordered basis for   

and                , the standard ordered basis for   

Let le be having

    
 

  
   
   

 
   

Find         
Step 1:

             
   
   

             
   
   

  
 
 
 
   

       
        

 

                                                           

Example
If         is given by                          
Using the standard bases    

    
 

  
  
  
  

 

     

Example
Let        over  
Let             

       
 

  
   
   
   

 

Find             
  

Solution:

             
      

   
   
   

  

  

  

  

   
         

        

   

 

             
                               

 

Matrix Representation
Let      be linear
Let                         be 
ordered bases for U and V, respectively

    
 

                               

           

Matrix - Tuple Multiplication

Let            

  

 
  

 

   

 
 
 
 
 
 
 
       

 

   

      

 

   

 

      

 

   

 
 
 
 
 
 
 
 

With that, we have the formula:

            
     

Matrices
February-16-11 11:32 AM
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Linearity of Composition
If       and       are linear.
Then there are compositions
         is linear.

     
      

 
         

 

Matrix Multiplication
Let       ,       be matrices. 

           

 

     

 

     

Note
For A times B to make sense, the number of columns in 
A must equal the number of rows in B.

Proof of Linearity of Composition
                                                 

                                                

Finite Bases
Let α  β  γ be ordered bases for U  V  W  respectively  assuming that U  V  W are finite 
dimensional.

Then as      
 

determines   ,      
 

determines   . They also determine      and 

subsequently         
 

This motivates the definition of matrix multiplication.

     
      

 
         

 

Example
Let     

                              
    

                            
                   for the domain of   

                            for the domain of   

                for the range of   

     
 

  
  
  
  

        
 

  
   
    

 

     
      

 
  

   
    

  
  
  
  

   
                      
                      

 

  
  
   

 

                                              

                
 

  
  
   

 

Which agree. Excellent.

Composition of Linear Maps
February-18-11 11:37 AM
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Under addition and scalar multiplication        is a vector space. 
There is a third operation, "matrix multiplication."

The following additional properties hold:

The identity matrix served as the identity element

         

    
    
    
    

 

                      

Multiplicative Identity•

                           
Note:      in general

Associativity of Multiplication•

            
            
                   
                  

Distributivity:•

Properties of Matrix Multiplication:

Linear Algebra
A vector space (or a linear space) under a binary operation called 
multiplication which satisfies the listed properties above is called a 
linear algebra. 

       is a linear algebra

Support for            

There is a bijective map from         , or all linear maps from   to   (a subspace of 
        )
           , where  is a fixed, ordered basis for         

                    
           
                           

It preserves the linear algebra operations:

In short, the matrix representation    from         to          is a linear algebra 

isomorphism. 

Composition is an associative operation on          
                                                           

                                                          

The latter is obviously true so due to the isomorphism matrix multiplication must be associative.

Example
Let

   cos   sin  
sin  cos 

 

Then

     
cos     sin    
sin    cos    

 

Example
Let              be the differentiation operator. 
Let the domain and codomain be given the (ordered basis)           

Then       
   
   
   

 

             
 
 
 
                

 
 
 
                   

 
 
 
 

because:

Find             

Solution 1:
                                               
                      

             
   
   
   

 

Solution 2:
   is a linear algebra isomorphism

                              
    

   
   
   

    
   
   
   

    
   
   
   

 

  
   
   
   

   
   
   
   

   
   
   
   

   
   
   
   

 

Example
Give an example of a    real matrix satisfying     but     
Is there a linear operator         so that     ,     
                                                 
So

 
   
   
   

 satisfies the statement. 

Properties of Matrix Operations
March-02-11 1:38 AM
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Sum of Vector Spaces

                           

Let V be a vector space. Let   and   be two subspaces of V. 
The sum of   and   is defined by:

Fact:      is a subspace.

Direct Sum
The sum      is direct if          . In that case, we 
write      

Theorem
Suppose that        

If  is a basis for   and  is a basis for   , then    is a basis 
for V.
Conversely, if      are subspaces of V and     (disjoint 
union, XOR) is a basis for      , then     is a basis for V

Example
                              
Then         

Example
             
   Subspace of all even functions
   Subspace of all odd functions
       

Proof of Theorem
First,        are disjoint. Will show that    spans V.
Let    be given. Then        for some            , because        

Now, 

        

 

      

         

 

      

              

                         

       

 

    

      

 

    

          

To show that    is linearly independent, let        be a finite list of distinct vectors from    and 
that                   
Each   is in either  or  in exactly one way. Re-label those in  as   and those in  as   ;

We set

     

 

 

      

 

 

        

 

 

       

 

 

And since the left side is in   and the right side is in   , the only element common to both subspaces 
is 0. And since   and   are linearly independent,        so         

Sum of Vector Spaces *
March-02-11 2:05 AM
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Row Reduced Echelon Form

If there are zero rows, these are at the bottom1.
For each non-zero row, the first (leading, scanned left to 
right) non-zero entry is 1. We call such positions the 
leading 1's positions.

2.

Leading 1s with higher row numbers should have higher 
column numbers. 

3.

All entries above and below the leading 1s are zero4.

Let A be a    matrix over F. It is in Row Reduced Echelon 
Form if it has the following features:

Proposition

Interchange two rows1.
Multiply a row by a non-zero scalar2.
Adding a multiple of a row to a different row3.

Every A can be changed to a Row Reduced Echelon Form using 
three kinds of row operations in a finite number of steps:

Interpretations of RREF
Could consider the matrix, A, short hand for a system of linear 
equations.  Hence the RREF of A records a system of equations 
equivalent to that of A.

Could be interpreted as a linear equation of column vectors.

Statement
Every    matrix A has a unique RREF.

The Matrix A and its RREF, in general, do not represent the 
same linear map.

E.g.

 
    
    
    

 

Not in RREF, second 1 has higher row number but lower column number.

 
    
    
    

 

Satisfies 1,2,3

 
    
    
    

 

Is in Row-Reduced Echelon Form

Example
Use row operations to reduce

   
   

    
   

 

to reduced row echelon form:

        
 

 
                 

   
    
   

 

                          
   
    
   

 

       
 

  
                  

   
   
   

 

       
           

            
        

   
   
   

 

Example
The matrix

   

        
       
     
      

 

has reduced row echelon form

 
 
 
 
      

  

 
   

     

    
  

 
   

     
 
 
 
 
 

Maple Command:
[> linalg[rref] (A);

If this is interpreted as a linear system of equations, the general solution of

 
 
 

 
                             

                           
                     
                      

is:
Let   and   be free (non-pivot variables)

 
 
 

 
         

  

 
     

           

    
  

 
     

Alternate interpretation:

   

 
 
 
 

     

  
  
 
 

     

   
  
 
  

     

 
 
 
 

     

 
 
 
 

   

 
 
 
 

 

It concerns the linear dependence or independence of the five column vectors of A in   

We wee that the five columns form a dependent set (there are free variables in giving the scalars)
In REF, 3rd column = 2*first column + 3 * second column
That is, a particular solution                 is             which are not all zero.

A basis for span

  

 
 
 
 

   

  
  
 
 

     

 
 
 
 

  

is 
 
 
 
 

 

  
  
 
 

 

 
 
 
 

Row Reducing
March-02-11 12:06 PM
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Rationale for RREF Uniqueness
Different RREF will lead to different solutions to the system of equations     
Example
Clearly all possible RREF must be the same size.

 
   
   
   

   
   
   
   

 

In first case, dimension of solution space is 1, in second space dimension of solution space is 2
So the number of zero rows at the bottom must be the same in all solutions. 

 
   
   
   

   
   
   
   

   
   
   
   

 

               

So the solutions to the first two matrices are not the same.
  arbitrary in first case, 0 in last case. So different solutions.

The Matrix A and its RREF, in general, do not represent the same linear map.
Example

   
  
  

 represents      
 
      

 
    

  
 

 

its RREF is  
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Elementary Matrices
There are three types of elementary row operations. When 
we apply a single elementary row operation to   , the 
resulting matrix is called an elementary matrix. 

Proposition
Let A be any     matrix. 
When we apply an elementary row operation on A, the 
outcome is equivalent to multiplying A on the left side by an 
elementary matrix. 

Corollary
Every    matrix A can be changed to its RREF by 
repeatedly multiplying on the left by a finite sequence of 
elementary matrices. 

Examples of Elementary Matrices

 
  
  

   
   
   
    

   

    
    

     
    

 

Not elementary:

 
  
  

 

Example

       
         

         
 

    
  
  

 

and that the operation is          

   
                        

         
 

    
  
  

 

 
  
  

  
         

         
   

                        

         
 

Example

       
   
   

       

Then          
   
   

         
   
   

          
   
   

 

 
   
  

   
  
  

   
  
  

      
   
   

 

  
   
  

  
  
  

    
   
  

  

Elementary Matrices
March-07-11 11:31 AM
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Let       be a bijective linear map. If  is a subspace of  , then     is a 
subspace of V. If  is a basis for W, then     is a basis for     
In particular, if dim = k, then dim      

If L is bijective and linear:    
then         is also linear.
                       
                       

If    are bases for    respectively, then

    
       

             

      
     

 
            

Invertible Map / Matrix
A map which is called bijective is called invertible.

An    matrix is invertible if there exists    B so that         . If such 
B exists, it is unique and is denoted by    

In particular, if       (bijective operator L), then A is invertible and     
      

Proposition
The three elementary row operations are invertible linear maps. 

Statement:
Composition of linear maps is invertible. 

Rank of a Matrix
Let           The rank of A,        , is the rank of         

Proposition
 ange of                                 where          is the 

standard basis for   .                            where   is the    

column of A.

                              
                                                            

Nullity of a Matrix
Nullity of A =             dim      dim           

Let            
dim             dim                               
                           

Example

   
   
   

  

      
   

  
 

 
  
 

                      

Matrices & Maps
March-09-11 11:36 AM
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Matrix Multiplication in Blocks
              

 
 
 
 

    
  
 
  

 

 
     

   
     

  
     

   
     

   
                   

   
                   

 

Matrix Inversion
In general, for    A, to find    if it exists we row reduce
                      to RREF on the A side only. 
Case 1
If RREF of A is     then we have         

Case 2
If RREF of A is not   , then A is not invertible. 

Solving Equations
To solve the equation     where

   

  

  

 
  

     

  

  

 
  

 

we could find the RREF of      

and then determine the solutions,

Suppose we want to solve two parallel equations.
           (separately, parallel means not related, different X)

It can be done by finding     of       and of       
The job can be done in one round: Find RREF of          and then read 
the solutions. 

Example

Let    
  
  

 . Find    if A has an inverse.

Solution:
We seek        such that     

Let            The equation is           
 
 
 
 
 
 

     
 
 
       

 
 
 

Consider

 
     
     

    and use row ops. to bring it to RREF (on A partition)

 

     

    
 

 
  
   

 

 
        

 
     

 

 
  

    
 

 
  

              

    
 
 
      

 
 

 
  

 

 
  

     
  

 

 
  

 
 

 
  

 

Example

Solve  
  
  

       
   

 

 
  
  

 
   
   

   

      

   
 

 
   

 

 
  
   

   
 

 
   

 

 
  

   
 

 
   

 

 
  

 

   

 

 
   

 

 
  

 

 
   

 

 
  

 

Example

Express  
  
  

 as a product of elementary matrices.

Solution:

 
   
  

  
  

 
 

 
  
  

  
  

    

                             

    
    

      
  
  

  
  
  

 

Matrix Multiplication
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Proposition
If       and       are linear and   is an isomorphism on finite 
dimensional spaces U, V, and W.

          

              

                     by definition of range

When   is an isomorphism, the subspace          of V is mapped to a 
subspace of W of the same dimension.

Therefore,                    

Converting that statement to    matrices A and B, we get          
                when  is invertible (i.e. equivalently rank(A) = n)
In parallel, we get                 if B is invertible. 

Corollary
For any matrix A, an elementary row operation performed on A does not 
change the rank. 
                
Since E is invertible. 

In particular,                      

Theorem
Elementary column operations does not change the rank of a matrix. 
                since E is invertible. 

Theorem
By using both elementary row and column operations, we can reduce a 
matrix to the form 

 
    
   
   

 

where r is the rank of the original matrix.

Corollary
Let A be any matrix      . Then there exist invertible      such that

     
    
   
   

 

Observations
Observe that rows of A are the same as the columns of   . Therefore, action on rows of A 
becomes action on the columns of   .
Every theorem on row operations has a corresponding theorem on column operations.

Example
Every matrix can be reduced to a unique RREF using elementary row operations. 

Every matrix can be reduced to a unique reduced column echelon form using elementary 
column operations.

In parallel, we have:

Notice that transpose has the property
          

The statement : an elementary row operation performed on A has the effect of multiplying A on 
the left by an elementary matrix translates into multiplying A on the right by an elementary matrix. 

Demonstration

 
         

         
           

         

         
 

 
         

         
  

   
   
   

   
         

         
 

Example
Let  be    and that under the use of row operations we bring it to 

 
   
   

        

Using further column operations, we can bring it down to CREF

          
   
   

             
   
   

 

Column Operations
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Dot Product on   

Let                             

                               

 

   

It is seen within matrix multiplication, and also in 
equations like                   
                     

Norm of a Vector in   

In           
    

      
                 

If      then  x     
If                
                   

 
  

   
      

 

   
         

 

   
         

Normal Vector
A vector whose norm is 1

Normalisation
We call the division of      by       the 
normalisation of   

Distance
Distance between       
                        

Theorem
        

     is a linear map

Geometric Interpretation in   

                 means the vectors      are perpendicular. 
Same story for   

Dot Product
Interpretation of non-zero dot product:

Orthogonal projection of a vector      on a normal vector   is
                    

                      
                                                                       
                                  

Let              

Projection
           

Then for            

Define       
       and       

      

Abstract Definition of Projection
A linear operator L such that     

* Dot product on   

March-14-11 3:33 PM
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The Determinant Function
Let A be a    matrix. The determinant of A, det    is 
equal to the entry of A.

Let A be a    matrix  
      

      
 . Then 

                        det         det     

Let        be    . We define 

det  

    det  
      

      
      det  

      

      
 

    det  
      

      
 

Recursively, we define for    matrix A

det              det     

 

   

Where    is the sub matrix of A obtained when we 

remove row 1 and column j

Area Magnitude
Area is considered positive when the points are defined in 
a widdershins fashion about the shape. When the points 
are described clockwise, the area can be considered 
negative.

Multiplying the area by -1 means a change in orientation. 

Fact
A    matrix A is invertible iff det    . In general, for 
any     A, A is invertible iff det    

Theorem
For any    A over F, A is invertible iff det    .

Proposition
Let A be    . Holding all rows but the    row fixed, 
det  is a linear map of the first row    It is a function 
from   to F

Interpretation of Determinant
Interpretation for    matrix A and det  

e.g. Let    
  
  

 . Then det                 

Consider         . The map is          
  
  

  
 
    

  
 

        

The figure:

The area under the region is doubled by the transform.

Let    
  
  

 . Then det    .                 

So the Area was multiplied by a factor of 4.

Determinant
March-16-11 11:31 AM
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Properties of Determinants
In the textbook, properties of determinant are built up in this sequence:
Theorems

Corollary: If A has a zero row, then det A = 0 
(4.3) det A is linear as a function of each row when other rows are fixed.

(Co-Factor expansion along row i)
A lead to (4.4) is the Lemma: If B is        has row I equal to 

  (standard basis for   )  then

det          det    

Corollary: If A has two identical rows, then det    

                     det    

 

   

for any fixed  

(4.5) IF B is obtained from A by interchanging two rows, then det    det  

Corollary: If         ,      , is below n, then det    

(4.6) If B is obtained from A by               action, then det  det  

Corollary
If a matrix is upper triangular A              then 

det       

 

   

 product of all diagonal entries

Illustration of Theorem 4.3

   

         

                  

         

 

Claim:

det   det  

         

      

         

   det  

         

      

         

 

       det  
            

      
     det       det  

            

      
 

By induction
   

    det   
    

      
    

    

      
      det   

    det   
    

      
    

    

      
      

Illustration of Lemma for Theorem 4.4

   

         

   
         

 

det      det  
  

      
     det  

  
      

     det  
  

      
 

The new determinants are either 0 or same form but smaller so use induction.

Proof of Corollary
Use brute force to check it is true for    matrices.
For larger n, pick a row which is not part of the 2 identical rows. The determinant 
calculated using that row will be 0 because there are 2 identical rows in every sub-matrix, 
by induction. 

Illustration of Theorem 4.6
Let B be obtained from A using          

det   det

 
 
 
 
 
 
 

  

 
    

      

    

 
  

 
 
 
 
 
 
 

  det

 
 
 
 
 
 

  

 
    

  

    

 
  

 
 
 
 
 
 

 det

 
 
 
 
 
 
 

  

 
    

  

    

 
  

 
 
 
 
 
 
 

 det

 
 
 
 
 
 
 

  

 
    

  

    

 
  

 
 
 
 
 
 
 

Since the first matrix has two identical rows and thus has determinant 0.

Example

 valuate det  
   
   
   

 

  det  
  
  

   det  
  
  

   det  
  
  

                    

or

           det  
  
  

           

Example

Find det  
   
   
   

 over   

Lin comb of rows, then multiply a row by   
 

 
 

 det  
   
   
   

    det  
   
   
   

    det  
   
   
   

 

             det  
  
  

         

Example

 valuate det  
   
    

    
 

It is some multinomial involving x and y of degree at most 3.
By inspection, factors should be
               

det  
   
    

    
                   for some constant a

If over  , pick        

                       det  
  
  

         

    

Determinant Properties
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Theorem
det     det  det  

Similar Matrices
Two     matrices      are similar if 
there exists invertible P so that   
     

Result
If A and B are similar then det   det  

Example
Let       be linear, dim   . Let  
be a basis, and led  be another. Then 
    and     are similar. 

Determinant of Operator
Let      be a linear operation on n-
dimensional V. Then det   det      

for any ordered basis  

Theorem
det        det   det   

Determinant Properties Cont.
det    det    

Proof of Theorem
First see that it is true for elementary matrix    

E is from         

det     det      
det      det    det   det   

Case 1:

Suppose E is from   by the action      

Then det  =  det       
det      det    det   det   

Case 2:

Suppose E is from   by the action          

Then det    det      
det     det    det   det   

Case 3:

Next, if A is equal to          then det     det    det   

det     det    det            det    det     det     det     
 det           det     det  A det  B 

Finally, if A is not invertible then   is not invertible. Since A is not invertible, the RREF has a 0 row at 
the bottom so det  is 0, as for   so det     so det    det   det      det     
■

Proof of Result
           det    det        det     det   det    det     det   det   

 det      det    det    det    det   

Proof of Example

Recall the rule          

         

        

  

  
 
    

 
    
    

           

  
 
    

 
    
    

So:
       

                  
         

 

Testing:     
     

 
        

Example
         
                             

            
  

 

What is       

Ans: Given  
             

             

Hence                      

                     

So

      
  
  

 

Corollary

 
  
  

 and  
  
  

 are similar. 

Proof of Theorem
det        det         det     det       

Proof of               
For       and      ,     

For          

Each     are upper or lower triangular so det    det      
Since this is true for elementary matrices, it should be true for all invertible matrices. 

det    det           det   
    

   
   det   

   det   
  det   

  

 det     det    det     det    det     det     det          det A  

Suppose                         so   not invertible   not invertible
And for non-invertible A,   is non-invertible so det   det     

More Det. Properties
March-23-11 11:34 AM
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Proposition
If A and B are similar, then     is similar to     . 
Where  is a polynomial expression 

      
 

 

   

Similar Maps
Let   and       be linear operators. we say that   is 
similar to   if there exists an isomorphism      so that 
           

Proposition
If V is finite dimensional, then operators          are 
similar iff      and      are similar.

Characteristic Polynomial
det       is the characteristic polynomial of      A

Characteristic roots (Eigenvalues) 
The roots of the characteristic polynomial of A are called the 
characteristic roots of A.

Proof of Proposition

             
 

 

   

           
        

Let         Then                             
i)   is similar to   .

ii) Similarly,   is similar to   for each    

         
 

 

   

     
     

 

   

iii)              

Example
Let     

    by the rotation        . Let        be the reflection about the y-axis. 
[i.e.              ] 
Let          . Then   and   are similar. 
  is the rotation  by    

Try
Is rotation counter clockwise by    similar to rotation counter clockwise by    

May be on exam

Proof of Proposition

         
Let  be any fixed basis. Then 
          

           . Take       

    Suppose that there is an isomorphism      so that

   Converse left as exercise

Example
Consider the two similar rotations mentioned earlier. Pick                 .  We get

       
cos    sin  
sin  cos   

  is similar to 

       
cos   sin  

 sin   cos  
  under    

   
  

 

Example of characteristic polynomials

   
  
  

 

Then its characteristic polynomial is 

det       det   
  
  

   
  
  

   det  
    

    
                           

Similar Maps
March-28-11 11:30 AM
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If X is a finite set with n elements then X can be 
partitioned into two  (disjoint) parts of same 
cardinality iff n is even.

Proposition
If X is an infinite set, then it can be partitioned into 
two parts of the same cardinality. 

Function Extension
Say        extends        

if   ⊇   and   ⊇   and         

Proof of Proposition
Consider the class  of all bijective functions from a set    onto          
 is non-empty. 
Define in  ,    when g extends f.

 is partially ordered by ≤
We seek maximal f.
Let C be a chain in  

            

 

   

 and           

 

   

      by if    then         for some     let           .
If          for some     then WLOG say that      so            .

Hence f is well defined

                 . It is easy to observe that A and B are disjoint and f is a bijection from A to B
So    

The maximal principle asserts that maximal   exists.
The union of the domain A of   and its range B is either the whole X or is       
We are done if      
Else,           
Select a sequence of distinct elements        

 from A.

          
            
              
                          

Adjust   to g:

Hence       and B is a partition of X, and the presence of bijective g means       and B are of the 
same cardinality. 

* Axiom of Choice
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Eigenvalues and Eigenvectors
Let   be a vector space over F. Let      be a linear 
operator. A scalar  is an eigenvalue of L if there exists    so 
that        .

If    and        for some    , then  is called an 
eigenvector of L.

Proposition
Eigenvalues of                 are given by the 
characteristic roots of A.

Hence,   has at most n distinct eigenvalues. 

Remark
Let       be an operator on finite dimensional V. Then  is 
an eigenvalue of L iff it is a characteristic root of     for any 
fixed basis  for V. 

Example
Let        be       
Then each non-zero vector on the line spanned by   is an 
eigenvector of L, and    is an eigenvalue.
Each    , perpendicular to   is also an eigenvector of L, and    
is an eigenvalue of L.

Proof of Proposition
Let  be an eigenvalue of   . Then, by definition, there exists   
    so that         . That is,      
                  
This is equivalent to that     is not invertible.
Therefore, det         
Therefore,  is a characteristic root.

The converse is also true and can be observed through the proof 
done backwards. 

Example
Let V be the space of all infinitely differentiable functions on the real 
line into the real line. (A subspace of       ) 
Let       be the differentiation. 

Each function    is an eigenvector of D. Hence  is an eigenvalue of 
D for every    .

Eigenvalues/vectors
March-30-11 11:34 AM
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Given a finite list of vectors       in   , how to extract a subset which is a basis for               

and extend that to a basis for the full   

Method
Form the matrix
                         and find its RREF, then read an answer out.

Example
Suppose that        and that RREF of A is

 
 
 
 
 
          
          
          
          
          
          

 
 
 
 
 

The then answer is        is a basis for                  . An extension to a basis for   is 
                   

If mission is to find a basis for                  in   then we could form

  

 
 
 
 
 
 

  

 
  

 
 
 
  

 
 
 
 
 
 

and find its RREF. At the end we produce a basis. For instance

                      

          

        

      
      

 

Then a basis for                                                           , not        

Computational comments
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Comments
The following are undefined:

      a linear map, dim    .
                  . dim         
Matrix  , dim 

Correct:             is a basis
         . They form a basis for V. Avoid saying           is a basis.

dim        is defined, though dim is undefined for          

     a linear operator, V finite dimensional, det is defined by det      

e.g. If D is the differentiation operator, then det D is defined when the 
space it acts on is finite dimensional, like      . It is undefined on     

When V is infinite dimensional, det  is undefined.

The characteristic polynomial of A is defined by det       . 
It cannot be computed using the RREF of A.

*Might be on exam
If A is similar to B, then det   det 
              
                                 
Characteristic polynomial of A = B?

         

             
                

                     
                       

As                                
then   is an eigenvalue of   

Similarly               det                     det        
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