Theorems and Definitions Theorems and Principles

12:28 PM
Well-Ordering Principle
. eye If S € N and S is not empty, then S has a least element.
Definitions
Set: C - Subset of

A collection of distinct objects

Induction Principle
Axiom: Suppose that P(n) is some statement about the natural number n, suppose that P(1) holds
A proposition which serves as a "starting point”. Statements and suppose that whenever P(k) is true for 1 < k < n, the P(n) is true. Then P(n) holds for

which are either self evident or defined for the purposes of alln.

further logical derivation. i L
Unique Factorization

Axioms cannot be proven as there are the base assumptions. Every igteger gther ti)an Zero Caél be written in the form:
+1 Xp11 Xp22 Xp33 XX p”
Commutative Ring: This representation is unique up to reordering.

A set R with operations "+" and "x" satisfying the properties .
Al1-4, M-13, and D1 Primes
There are infinitely many primes.

Field:
. on-1
A commutative ring also satisfying M4. Let p, be the nth prime. Then p,, < 2 '
Non-Commutative Ring: Let p,, denote the nth prime. Then}.; pl diverges.
A set R with operations "+" and "x" satisfying all of the
properties of a commutative ring except for M1 and additionally The Division Algorithm
satisfying D2 Leta =1 and b be integers. Then there exist integers q and 0 < r < a such that
b=aq+r
Contrapositive
The contrapositive of A= B is "not B" = "not A". They are Bezout's Identity (Extended Euclidian Algorithm)
equivalent. If aand b are positive integers, then there exist x, y € Z such that ax + by = gcd(a, b)
Divisibility Factoring Integers
In a commutative ring R, ifa, b € R we say a|b (a divides b) If a and b are nonzero integers with gcd(a, b) = 1 and a|bc, then a|c

iff thereis a c € Rsuch thatb =ac
Let p be a prime, and suppose that p|a,a; ...a, (a; € Z)

Prime Number The p|a; for some i
A prime (integer) is a positive integer p # 1 such that the
only divisors of pin Z are 1 and p Chinese Remainder Theorem v.2
Let My, M,, ..., My, be rational number with gcd(Ml-, Mj) =1
Integer Linear Combination Foralli=+j
cis an integer linear combination of a, b € Z if and only if Let aq,a,, ..., a, € Z. Then there is a solution x € Z to
there are s, t € Z with x = a; (mod M,)
c=sa+th x = a, (mod M)
Greatest Common Divisor (GCD) x = ai(mod M3)
Let a, b € Z be non-zero. Then gcd(a, b) is the largest d € Z If x, is one solution, then x is another iff x = xo(mod M;M; ... M)

such that d|a and d|b.
Fermat's Little Theorem

Diophantine Equation Let p be a prime and a € Z with gcd(a, p) = 1
An equation with integer coefficients that one wants to solve Then a?~* = 1(mod p)
over Z.

Fermat's Little Theorem, alternate form
Congruence If ptaand e; = e, (mod p — 1) then a® = a® (mod p)
Leta,b€Zandn € N,
We say that a and b are congruent modulo n iff n|(a — b) Euler's Totient Function
Write Form=>1,¢o(m) = #of values 0 < k <ms.t.gcd(k,m) =1
a =b (modn) = the number of units in the ring Z,
Congruence/Residue Class Suppose gcd(n, m) = 1. Then @(nm) = p(n)p(m)
The "congruence class" or "residue class" of a € Z modulo n is
the set: If pis prime, e > 1, then
[a]={bE€Z:a = b (modn)} (@) =p*tp-1)

For a fixed n
Euler's Theorem
ARing Z, Letn> 1 and a are integers gcd(a, n) = 1. Then
The ring Z,Is the set {[0], [1], ..., [n-1]} with the operations a®™ =1 (mod n)
"+"and "-" defined by [a]+[b] = [c] iff a + b = ¢ (mod n)
and [a]-[b] = [c] iff ab = ¢ (mod n). The zero element will be
[0] and the one element is [1].

Permutation
A permutation of a set is a function from the set to itself
which is:

1. Injective (one-to-one)

2. Surjective (onto)

Least Non-Negative Residue
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The least non negative residue of
x (mod n) is a such that [x] = [a] and
0<a<n

Relation
A relation on a set is a set of pairs (a, b) which are "related".

Equivalence Relation
Arelation = on a set S is an equivalence relation if and only
if:
1. a=aforalla€eS$
2. a=Dbiffb~aforallab€S
Symmetric
3. Ifa~bandb ~ cthena = ¢, foralla,b,c€S
Transitivity

Equivalence Classes

Given an equivalence relation = on a set S, and a € S define
[al. ={b =~ a,b € S}
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Rings and Fields

September-13-10 3:10 PM

Set:
A collection of distinct objects

Axiom:

A proposition which serves as a "starting
point". Statements which are either self
evident or defined for the purposes of
further logical derivation.

Axioms cannot be proven as there are the
base assumptions.

Commutative Ring:
A set R with operations "+" and "x"

satisfying the properties A1-4, M-13, and D1

Field:

A commutative ring also satisfying M4.

Non-Commutative Ring:

A set R with operations "+" and "x"
satisfying all of the properties of a
commutative ring except for M1 and
additionally satisfying D2

The IntegersZ ={0, 1, 2,-1, -2, ... }
Properties satisfied by Z - Commutative Ring

[si] The integers consist of the setZ and the operations "+" and "x"
[Al]  Commutativity of Addition

Foralla,beZ,a+b=b+a
[A2]  Associativity of Addition

Foralla,b,ceZ, (a+b)+c=a+ (b +c)
[A3]  Additive Identity

There exists an element 0 € Zsuch thata + 0 = aforallaeZ
[A4]  Additive Inverse

For all a € Z, there exists an element -a € Z such thata + (—a) = 0
[M1] Commutativity of Multiplication

Foralla,beZ,axb=bXa
[M2]  Associativity of Multiplication

Foralla,b,ceZ (axb)xc=ax (bXc)
[M3]  Multiplicative Identity

There exists an element 1€ Zsuchthat1 X a = aforallaeZ
[D1] Distributive Property

(a+b)Xc=ac+bc

R also satisfy the above properties with the usual "+" and "x" operations, as do Q.

Z, R, Q etc. are all commutative rings therefore properties proved for commutative rings will hold for

all.

Fields

Let F; be the set {0, 1}

Operators: X 0 1
+ 0 1 0 0 0
0 0 1 1 0 1
1 1 0

This is a commutative ring.
Sometimes we'll study rings with some additional properties:

[M4]  Multiplicative Inverse
For all a€Z, a # 0 there exists an elementaleZsuchthataxa ' =1
Commutative rings with this property are called fields. R, Q, and F; are all fields. Z is not a field.

Non-Commutative Ring
Does not satisfy M1

Let M be the set of 2x2 matrices with integer entries.

[a b+[e f:[a+e b+f

c d g h c+g d+h
[a b] y [e f] _ [ae +bg af + bh]

c d g h ce+dg cf +dh
With matrices, multiplication is not commutative.

Because M1 no longer applies, a new distributive property is needed:

[D2] Distributive Property
ax(b+c)=ab+ac

MATH 145 Page 3



Assignment 1
September-14-10

12:03 PM

PMATH 145 Assigniment 1

Patrick Ingram

due September 29th by 12:30PM

Problem 1. The Fibonacci numbers F), are defined by Fy =0, F; = 1, and
lL‘n - P‘r:—] + -Fn—‘z

for all n = 2, so that Fy = 1, Iy = 2, Fy = 3, F5 = 5, ele. (WARNING:
The textbook defines the sequence differently, so that all termns are shifted by
1. Ignore that.)

(a) Prove that F,, < 2" for all n € M. (Induction might be helpful.)

(b) Prove that
Fug1Fooy = F = (-1)"

for all n € M.

(c) Prove that
FZ” = F(2r+l - FJ?—I

for all n e M.
(d) Let 7 = (1++/5)/2, the golden ratio. Prove that

LT = (=1)"
Fo= \/F]

for all n € M. (It might be useful to note that 7% — 7 — 1 =0.)

(e) Prove that
Fosm = FaFos + Fno Fy

for all n,m e M.

Note: all of these properties hold for n = 0, too. [ just asked vou to prove them
for n € M for convenience.

Problem 2. Recall that v2 is irrational, and define

Q(V2) = {u. +bvV2:abe Q} :
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{a) Show that if a + b2 = ¢+ dv/2. for some a.b.c.d € Q. then a = ¢ and
h = d. This shows that the representation of an element of Q(v2 ) in the
form a + bv/2 is unique.

{(b) Let x,y & Q{ﬁ). Show that 0, 1,  + y, xy. and —z are in Q(ﬁ} This
shows that Q(\/‘E ) is a subring of E. {The definition of a subring is that
it's a subset of a ring which is closed under addition, multiplication, and
taking additive inverses, and contains 0 and 1. A subring auntomatically
satisfies the criteria for being a ring.)

Show that ©(+/2) is a field. That is, show that if  # 0, then there is an
element 2~ € Q(v/2) such that x -z~ = 1.

(e

—

Problem 3. Let
ZV2] = {a.-i— W2:ahe Z} .

which is clearly a subset of @(\/5) For # = a+ /2 € Z[\/E], we define the
conjugate of = over Z to be ¥ = a — bv/2, and define the norm by N(r) =z - 7.

(a) Prove that N(z) € Z, for all » € Z[v/2].
(b) Prove that N(xy) = N(z)N(y), for all .y € Z[V2)].

(c) An element @ of a ring is called a unit if and only if there is an element
271 in the ring such that -+~ = 1 (s0, another way of defining a field
is by saying that it's a commutative ring in which everything except 0 is
a unit). Note that this definition depends on the ring: 2 is a unit in QJ,

but isn't a unit in Z.
Show that 17 + 1242 € Z[\/‘i] is a unit.

(d) Prove that @ € Z[v/2] is a unit if and only if N(z) = +1.

(e) Prove that there are infinitely many units in Eé..[ﬁ]

Problem 4. Recall that if [? is a commutative ring, and a,b € R, then the
notation a | b means that there exists a ¢ € R such that b = ae.

(a) Leta.b. e, d e € Z, and suppose that a | band a | e. Show that a | (db+ce).

(b) Let R be a field. Prove that for a.b € R, we have a | b whenever a # 0,
and that 0| b if and only if b= 0.

Problem 5. Prove that for every m € N there exists an n € N such that none
of the numbers
nn+ln+2 ... n+m

is prime.
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Induction
September-15-10 12:37 PM

Well-Ordering Principle
If S € N and S is not empty, then S has a least
element.

C - Subset of

Induction Principle

Suppose that P(n) is some statement about the
natural number n, suppose that P(1) holds and
suppose that whenever P(k) is true for 1 <k
< n, the P(n) is true. Then P(n) holds for all n.

Contrapositive
The contrapositive of A = B is "not B" = "not
A". They are equivalent.

MATH 145 Page 6

Example of Induction Principle - Arithmetic Series

P(n):Zi =@
i=1

Proof:
P(1)says1 = 1(1—;2 which is true

Induction step:
Assume that P(k) holds forall 1 <k <n
Since P(n-1) holds,

n-1

Z._(n—l)n
L' T2
i=1
o
-1
n, X ] (n—1Dn n>—-n+2n nn+1)
Zl= i+n= 5 +n= > =—

i=1 i=1
By induction, P(n) holds foralln > 1

Induction = Well-Ordering Principle

Want to prove if S € N has no least element, then S = @ (empty set)
Let P(n) be "n € S" where S has no least element
Base case: P(1) since if 1 € S has a least element.

Induction case:

Assume P(k) forall 1 < k <n (n here is at least 2)
SokgSforl1<k<n

Then n & S because otherwise n would be the smallest element of S
So P(n) holds.

By induction, P(n) holds forallnson & Sforalln € N
“S=0m



Primes and Divisibility
September-15-10 1:04 PM

Divisibility
In a commutative ring R, ifa, b € R we say a|b
(a divides b) iff there is a c € R such thatb = ac

Prime Number
A prime (integer) is a positive integer p # 1
such that the only divisors of p in Z are 1 and p

Fundamental Theorem of Arithmetic
Every integer other than zero can be written in
the form:

+1 prl ngz X Py X e X joud

This representation is unique up to reordering.

Theorem:
There are infinitely many primes

Theorem:
Let p,, be the nth prime. Then p,, < 2

27‘L—1

Diverging Sum
An infinite sum of positive real numbers:

[

Y

n=1
Diverges iff for all M there exists an N with
N

ZanZM

n=1
In other words, Y54 a,, diverges iff
N

lim a, = ©
— 00

n=1

Proof of Existence of Factorization (Fundamental Theorem of Arithmetic)
Letn>1

Let P(n) be the statement "there exists a way of writingn = 1 X p;* X py? X pg® X - X p/7
P(1) is true, because 1 =1

Suppose that P(k) holds forall1 <k <n(n=>2)

If n is prime, the P(n) holds because n = n'. If n is not prime, we can write n = ab, where 1 < a, b,
< n. We can write a and b as products of prime powers since P(a) and P(b) hold. So we can write n
= ab as a product of prime powers.

By induction, every positive integer can be written as a product of powers of distinct primes.

Theorem: There are infinitely many primes

Proof:

Suppose that there are a finite number of primes, and list all of the primes p4, p,, ps, .., Pn- Then

P1 X Py X p3 X -+ X p, + 1is not divisible by any prime and yet is not on the list of primes. This is a
contradiction, so there are infinitely many primes. m

Frequency of Primes
Let t(x) = # of primes less than x.
m R->NuU{0}

Theorem:

Let p,, be the nth prime. Then p,, < 22",
Proof:

Basecasen=1p, =2 <22

Induction. Suppose that p, < 22 forall1 <k <n

Then p; X Py X - X pp_q +1 < 22" x 22" x . x22"* 41
= p2%+42% 4272 4 g

— 221’171_1 + 1 — 1 x 22n—1 + 1 < zzn—l
> <
SOPy X Py X - X ppg +1<22"7"
Butp; X py X -+ X p,_1 + 1is divisible by some prime q > p,,_4

SOPp < q <Py X Py X XPpg XPp+1<22"7"
Sop, < 22", and by induction we have the same for all n> 1

There is also a lower bound for the number of primes.
In particular, 7(x) = log,(log,(x))

Why?
If t(x) = n, then x < py,q < 22"
log,(log, x)) <n < w(x)

Theorem:
Let p,, denote the nth prime. Then
1
i Pn
diverges.
Proof
Suppose that Y77, pi converges where p,, is the nth prime.
n
If this is true, then there exists a k = 1 such that
1 1
n=k+1 Pn 2

Since the sum converges, then some subset at the end of the sum must be less than some arbitrary
value.

Let N = 4k+1
We'll count the elements of {1, 2, 3, ..., N}
First way: Clearly there are N elements in the set.

LetX ={1 <a <N :p;laforsomei=k+1}
LetY={1<a<N:aisnotinX}
It should be clear that number of elements in X + number of elements in Y = N

Each element of X is divisible by some prime p; for some i > k+1
The number of integers from 1 to N divisible by p; is at mostg

. N
Reason: if p;|x then x = p; x m where1 <m < .~
i

Therefore
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#X < Z (# of 1 < x < N divisible by p;)
i=k+1

(o)
N 1 N
Y howe 3 r
i P i S P

Now we count the elemetns of Y. Every Element of Y can be written as pfl X psz X e X pi" for some
e; = 0.1t follows that every element of Y can be writtenas py* X py? X -+ X pg* x b?, where a; =
0,1 foralli.

If pfl X pgz X e X p;:" x b% < N, certainly b < VN. Since b is an integer, this leaves < VN choices
for b. Since each q; is either 0 or 1, there are only 2¥ choices for a; X a X -+ X ay,

So the number of integers 1 < x < N which can be written in the form « = p*x py? X -+ X pg¥ X b?,
forb € Nand a; = 0 or 1is at most 2¥v/N

Therefore, #Y < 2kVN

zk\/TV_ — 2k l4k+; — Zk X 2k+1 =2 2k+1

=1x22k+2=}4k+1=ﬁ

2 2 2
#Y <

N =

We assumed that },;7_; pi converges and showed that for some N:
n

N N
N=#X+#Y<E+7:N
This is a contradiction. Therefore

1
m=ibn
diverges.
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*Binomial Theorem Binomial: a+b
omia core Powers of binomials: (a + b)? = a? + 2ab + b?

September-20-10 4:27 PM (a+b)3 =a3+ 3a%b +3ab? + b3
Binomial Theorem used to find (a + b)), n > 1
The Binomial Theorem

Let x, y be variables, n € N. Then Notation/Definitions
n Factorial function:

x+y)= Z (7) iyl 0l=1

i=0 n=1Lnl=nn—-1)n-2)

Binomial coefficients:
Ifn,reZ 0<r<n
(Trl) Read "n choose r" is defined by:

(Tl) n!

! ri(n—r)!

Combinatorial meaning of (’;) is the number of ways of choosing r elements from a set with n
elements.

n!=(:)><r!><(n—r)!

n! is the number of orderings for n elements

Properties of the Binomial Coefficient
n nXm—-1x-n-r+1)
1 ()=

r r!

2. (?) is an integer

. (D=1=0)
+ ()=o)

5. If1<r<n,then (") = (M) +(,1,)

Proof 1

S ={ey, ey €3, ...,6,41} Choose r elements from S

If e, 41 is one of them, then there are ( n ) ways of choosing the others.
r—1

If e, is not one of them, then there are (2) ways of choosing the others
= (=0 +(h)

Proof 2

n n n! n! nn+1-r)+nlr

(r)+(r—1):r!(n—r)!+(r—1!)(n—(r—1))!: rt(n+1—r)!
(n+ 1) n+1

:r!(n+1—m:< r )

The Binomial Theorem
Let x,y be variables, n € N. Then (x + y)* = X7 (7)x""y!

Proof: Induction on n
n=1

1 1
Gyt = (0)x+ (1>y:x+y
Want to prove (x + y)**1 = Z{.‘:Ol(k:rl)xkﬂ—iyi

k -
+ ) =+ + )k =x+y) XZ (i)x"—lyl

k k
Z k o Z k o
— (i)xk+1—1yl+ (i)xk—lyHl
i=0

i=0
i=0

Terms with the same powers will have coefficients that match in the form () + (%))
k+1

k+1 o
— Z( ; )xk+1—LyL

i=0
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Division and Euclid's Algorithm

September-22-10 12:31 PM

The Division Algorithm

Leta > 1 and b be integers. Then there exist integers q
and 0 <r < asuch that

b=aq+r

Greatest Common Divisor (GCD)
Let a, b € Z be non-zero. Then gcd(a, b) is the largest d €
Z such that d|aand d|b.

Remarks:
1. Ifd|a,anda # 0, thend < |a|
2. We can define gcd(a, 0) if a # 0 just by gcd(a, 0) =
ged(0,a) = [a|

Euclidian Algorithm for GCD
Basicidea: If b= aq + r, then ged(b, a) = gcd(a, 1)
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Proof of Long Division
Leta > 1 and b be integers. Then there exist integers q and 0 < r < a such that
b=aq+r

Let S = {s:s = b-aq for some q € Z and s > 0}

This set is non-empty, since a > 1 so we can choose q withb > aq
ScSN soifS# @, Shas aleast element, call itr € S.

r = b — aq for some q € Z.

Also,r=0

Supposer > a

Thenr —a = 0,and b = aq +r =a(q+1) +(r-a)

Sor-a€s

But r-a < r. This is a contradiction.Sor<a m

How to Calculate GCD?

1. Listall divisors of a, all divisors of b, and choose the largest common element in each list.
2. Factor a &b as a product of powers of primes, because it is easy to describe divisibility in

terms of theses factorizations. (eg. p¢|p/ iffe < f)

Euclidian Algorithm for GCD
Basicidea: If b=aq + r, then gcd(b, a) = ged(a, 1)

Proof

We'll suppose thata, b >1
Ifb=aq+randdlaandd|bthend|b-aq=r
Conversely, if d|laand d|r,thend|ag+r=b

Therefore, {common divisors of a & b} = {common divisors of a & r}
gcd(a, b) = ged(a, r)

If we start withb>a>1,thenb>a&a>r



Bezout's Identity

September-24-10 1:06 PM

Integer Linear Combination Bezout's Identity (Extended Euclidian Algorithm)
cis an integer linear combination of a, b € Z if and only if If a and b are positive integers, then there exist integers s & t so that as + bt = gcd(a, b)
there are s, t € Z with
c=sa+tb How? Use the Euclidian algorithm.
In computing ged(aq,a3) a; > a; =0
Factoring Integers a; = q1a; +as
Lemma: ay = (a3 + a4
If a and b are nonzero integers with gcd(a, b) = 1 and An-2 = Qn-20n-1 + @y <- you can write gcd(ay, az) as an ILC of an—, and @y,
a|bc, then a|c An-1 = Gn-10n + 0
Lemma: The previous line allows you to write a,,_; in terms of a,,_3 and a,,_, so you can write gcd(ay, a,) as

Let p be a prime, and suppose that p|a,a; ... a, (a; € Z) anILCof an_z and an_»

The p|a; for some |
Ex.

gcd(5172,1002) =7
5172 = 5x 1002 + 162
1002 = 6 x 162 + 30
162 =5x 30+ 12
30=2x12+6
12=2x6

Bezout's Identity (Extended Euclidian Algorithm)
Ifaand b are positive integers, then there exist integers s
& tso that as + bt = ged(a, b)

Backwards to compute ILC
6=1x30+(-2)x12

=1x30+ (-2)(162 — 5% 30)

=11 x 30+ (-2) x 162

=11 x (1002 — 6 x 162) + (=2) x 162
=11 %1002 + (—68) x 162

=11 %1002 + (—68)(5172 + (-5 x 1002))
= (—68) X 5172 + (351) x 1002

Factoring Integers
Lemma:
If a and b are nonzero integers with gcd(a, b) = 1 and a|bc, then a|c

Proof:

Chose integers s and t such that as + bt = 1, and d such thatad = bc
c=cx1

= c (as + bt)

= cas + cbt

= cas + adt

=a(cs + dt)

Soalc. m

Lemma:
Let p be a prime, and suppose that p|a,a; ...a, (a; €Z)
The p|a; for some i

Proof

By induction on n.

Base case:n =2

Suppose that p|a;a,

If p|a;, we're done, so supposep t a;
Then ged(p,a;) =1

By the previous lemma, p|a,

Induction Step:

Assume the statement is true for 1 < k < n (i.e. that p|a;a; ...a, = p|some a;)

If plaia, ...a, then plaia; ... (ay,—1ay) so either pla; for some 1 < i< n-2, or else p|a,,—1a,. In the
last case, pla,,—1 or pla,.

By induction, the lemma holds m

We've shown that every n > 2 can be written as
n = p1p; ... pr for some primes p; ... p, (maybe some repeats)

We will now prove that this representation is unique.

Proof of Unique Factorization of Integers

Base case:

For n = 2, this is clear. Since 2 is the only prime < 2,and 2 x 2 > 2.
n = 1is also unique since 1 is the product of no primes.

Induction:
Suppose that the prime factorization of k is unique for 1 <k <n, (n = 3)

Write

n=Dp1.-Pr=4q1-Gs

In particular, p1|q1 ... qs

By the previous lemma, p,|q; for some I

So p1 = q; since q; is prime.

Assume changing the order if necessary, that q; = g4
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Now,
P2P3 - Pr = Q2 .. G5, but this number is 1< num < n, so it has a unique prime factorization.

Therefore p,, ps3, ... p are the same as g,, g3, ... s, up to order. m

Application
Letn>1,n€N and suppose that §/n € Q. Thenn = a* for somea € Z

Proof

If ¥mn =%,a,b€Z,gcd(a,b) =1

Thenn x b¥ =a¥ a,b,neZ

Suppose p|b. Then p|a¥, so p|a. But gcd(a, b) = 1 so this is impossible. So b = 1 (or -1)
Therefore,n = +a

[ ]
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Diophantine & Bezout

September-27-10 12:31 PM

Diophantine Equation

An equation with integer coefficients
that one wants to solve over Z.
eg.2x+3y=7

x5 +y5 =25

ax + by = c can be solved in Z if and
only if gcd(a, b) |c

Bezout's Identity
ax + by = gcd(a, b)

For a, b, c € Z (non-zero)
ax + by = ¢ can be solved in Z if and only if gcd(a, b) |¢

If c = m X ged(a, b), and ax + by = gcd(a, b)
Then a(mx) + b(my) = m x gcd(a, b)
On the other hand, ged(a, b) |a and ged(a, b) |b, so if ax + by = ¢, then gcd(a, b) |c

Observation
ax + by = c has a solution iff gcd(a, b) |c, and then if x;, y, is one solution, all other solutions are of
the form:

x=x9+kx

gcd(a,b)
a
Y=Y kX i@
keZ
Fhy = axg+kx—2  hy—kx—2
ax T by =axo gcd(a, b) Yo gcd(a, b)

=axg+bys=c
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Congruences (modulus)
September-27-10 12:42 PM

Congruence
Leta,b€Zandn € N.
We say that a and b are congruent modulo n iff
n|(a—Db)
Write
= b (mod n)

Proposition
Ifai,ay, by, by € Zand n € N, with a; = a, (mod n)
and b; = b, (mod n) then:

1. ay+ by =ay + b, (mod n)

2. aibq = ayb, (mod n)

Proof of (1)

If a; = b, (mod n) and b; = b, (mod n), then a; —
a, = cn, say, and b; — b, = dn, say.

(a; +by) — (az + bz) = (a1 — az) + (by — by)
=c+dn=n(c+d)

Congruence/Residue Class

The "congruence class" or "residue class" ofa € Z
modulo n is the set:

[a]={b€Z:a = b (modn)}

For a fixed n

ARing Z,

The ring ZIs the set {[0], [1], ..., [n-1]} with the
operations "+" and "-" defined by [a]+[b] = [c] iff
a+ b = c (modn)

and [a]-[b] = [c] iff ab = ¢ (mod n). The zero
element will be [0] and the one element is [1].
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Congruence

We say the ring Z, (aka F,) is defined by
+ 0 1

0 0 1

1 1 0

x 0 1

0 0

1 0

Arithmeticin Zj is arithmetic up to multiples of 2
Soa; + by = a, + b, (mod 2)

Example:

a = b (mod 2) iff both are even or both are odd.

x = 7 (mod 10) iff the 'ones" digit of x is 7 for x > 0
a = 0 (mod n) iff n|a

FixneN

The "congruence class" of a € Z modulo n is the set:
[a]={b€Z:a = b (modn)}

There are n base congruence classes: [0], [1], [2], ... [n-1]

[1] = [n+1] since
n|(-1iffn|(b—n-1)
To check that the operation [a] + [b] is well defined, what do we need to check?

Need to check thatif [a;] = [a,] and [b,] = [b,], then a; + b; = a, + b, (mod n)
[a1] = [a,] iff a; = a, (mod n), so the above follows from this fact.

If[a;] = [ay] and [b;] = [b;] then [a; + b;] = [a; + b,]
In other works,

[a] + [b] = [a + b]

[a] - [b] = [ab]

Example (mod 5)

[2] +[2] = [2 + 2] = [4]
[3]+[3]=[3+3]=[6] =[1]
[2] + [3] = [5] = [0]
[21[3] = [6] = [1]



*Groups
September-27-10 4:34 PM

Group
A group G is a set with a binary operation * (G is closed
under this) with the following properties:
1. Associativity
ax(b xc)=(a *b) *xc
2. ldentity
There exists an e € G such that for all a € G,
axe=exa=a
3. Foralla € G thereisan a~! € G such that

axal=e

Commutative/"Abelian"

A group (G, *, e) is commutative (or Abelian) if for all a, b € G
axb=bxa

Permutation

A permutation of a set is a function from the set to itself
which is:

1. Injective (one-to-one)

2. Surjective (onto)

In other words, a permutation of {1, 2, ..., N} is a function
f:{1,2,..,N}->{1,2,..,N}

which is invertible.

Injective

x=y o fx)=[f>u)

Surjective
For every y, there is an x with f(x) =y

Injective and Surjective imply each other on a finite set
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Examples
(G *e)=(Z,+,0)
(8% e)=(R"x,1)
R* ={x€R:x % 0}

If Ris aring, (R, +, 0) is a group.

Another example:
Sy = {permutations of {1,2,3, ...,N}}



TheringZy, N>1€Z

The ring Zy [a] = {bEZ:b=a(modn)}

September-29-10 12:32 PM
Zy is the set of congruence classes [0], [1], ... [n-1] with the operations [a] + [b] = [a + b] and [a][b] = [ab]

To know that Zy is a commutative right, we need to know that:

[a] € Zy is a unit (has a multiplicative invers) iff 1. [a] + [b] = [b] + [a]
ged(a ) =1 2. [al + ([b] + [¢]) = ([a] + [b) + [c]
X X 3. ...and many others
Least Non-Negative Residue
The least non negative residue of All of these qualities follow from the integers
x (mod n) is a such that [x] = [a] and ex. [a] + [b] = [a+b] = [b+a] = [b] + [a]
Osasn ex. [a] + ([b] + [c]) = [a] + [b+c] = [a + (b+c)] = ([a] + [b]) + [c]
Etc.

So Zy, with this "+" and "-" really is a commutative ring.
"0" = [0]
"= [1]

[a] =[b] & a=b (mod N)

Addition and multiplication for Z3
+ [0] [1] [2]
[0] [0] (1 (2]
(1] (1 (2] [0]
[2] [2] [0] (1

* [0] (1] [2]
[0] (0] (0] [0]
(1] (0] (1] (2]
[2] (0] (2] (1]

Can we divide in Zy? Is Zy a field? Maybe this depends on N

Multiplication for Z,

* [0] [1] [2] [3]
[0] [0] [0] [0] [0]
(1] (0] (1 (2] (3]
[2] (0] (2] (0] (2]
[31 [0] (3] [2] (1

When can we solve
[a][x] = [1] in Zy? (for [x])

Claim: Iffgcd(a, N) = 1
= When can we solve ax = 1 (mod N)

We can solve ax = 1 (mod N) iff there is an integer m with
ax = 1+ mN if there exists x, y € Z with
ax + Ny = 1, which can be solved iff ged(x, N)=1

Proposition:
[a] € Zy is a unit (has a multiplicative invers) iff gcd(a, N) = 1

Ex. Find the multiplicative inverse of [26] in the ring Z, 3,
Also: solve
26x =1 (mod 137)

Need to solve 26x + 137y =1
137 =5%x26+7

26=3X7+5
7=1x5+2
5=2x2+1
2=2%x1+4+0

1=1x54+(-2)x2

=1x54+(-2)(1x7+(-1)x5)

=(-2)x7+3x5

=58x26+(—11) x 137

26 x 58 = 1 (mod 137)

Therefore, [58] is the multiplicative inverse of [26] in the right Z, 5,.
[26] [58] =[1]

It follows that Zy is a field iff N is prime (or maybe N = 1)

Proof:
If N is prime, gcd(a, N) = 1 unless N|a
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= [a] is a unit unless [a] = [0]
If there is some 1 < a < N-1 such that [a] is not a unit, then gcd(a, N) # 1, but 1 < gcd(a, N) <a<N
gcd(a, N) divides N so N is not prime *proved same direction as above*

If N is not prime, then N is note a field:

If N is not prime, writeN =ab,1<a,b<N

In Zy, [a][b] = [0]

If [a] has a multiplicative inverse, [a][x] = [1], then
[x][a][b] = [x][0] = [b] = [0]

This means N|b, which is impossible so [a] has no multiplicative inverse.

Example:

Solve 123x = 6 (mod 321)
Trying to solve 123x + 321y = 6
=41x+ 107y =2

Can solve iff gcd (41, 107)|2
41*47 -18*107 =1

41*%94 4(-36)*107 = 2

123 *94 + (-36)*321 =6

= [123][94] =6
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Equivalence
October-01-10 12:30 PM

Relation
A relation on a set is a set of pairs (a, b) which are "related".

Equivalence Relation

Arelation ~ on a set S is an equivalence relation if and only if:

1. a~aforalla€es$s

2. a=biffb~aforalla,besS
Symmetric

3. Ifa~bandb ~ cthena = ¢, foralla,b,c€S
Transitivity

Equivalence Classes
Given an equivalence relation ~ on a set S, and a € S define
[al. ={b=a:beES}

Chinese Remainder Theorem v.1

If gcd(M, N) = 1 and a, b € Z then we can solve
x = a (mod N)

x = b (mod M)

x €L
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Examples of Equivalence Relations
On any set S, the relations x = y is an equivalence relation.

Forany N > 1,a=b (mod N) is an equivalence relation
Check:
1. a=a(modN) & N|(a—a) = 0, which is true
2. a = b (mod N) iff b = a (mod N) & N|(b-a) iff N|(a-b), which is true
3. Ifa=b (modN)and b = ¢ (mod N) then N|(b-a) and N|(c-b) so N|(c-a)
=a = ¢ (mod N)

For real numbers x, y write x = y if x, y have the same sign (+, -, 0)

Equivalence Classes
a ~ bifand only if [a] . = [b].

If [a]. = [b]., then b € [a]. (because b € [b]. by (1)) =a=b

Ifa =~ b,thenb € [a] .

Ifc € [b]l.,a=b,bxcsoa=csoc € [a]
So [b]. C [a].. Also, [a]. S [b]..
Therefore [a]. = [b]. ®

For the equivalence relation x = y ifx, y have the same sign, on R
-< 0 >
[-1l.  [0]. ={0} (1]~

Question:

Given a € Z and M, N, € N if we know the congruence class of a modulo N, do we know
anything about the congruence class of a modulo M?

i.e. When can x = a (mod N) and x = b (mod M) be solved?

x =1 (mod 4)

x = 3 (mod 4) is clearly unsolvable

What about
x =1 (mod 4)
x =2 (mod 5)

x =17 is asolution
17 + 20k is also a solution for any k € Z

Chinese Remainder Theorem v.1
If gcd(M,N) = 1 and a, b € Z then we can solve

x = a (mod N)
x = b (mod M)
x €Z

Given one solution x,, the full set of solutions is just the congruence class of x, modulo MN.



Chinese Remainder Theorem
October-04-10 12:30 PM

Chinese Remainder Theorem v.1

If gcd(N, M) = 1 and a, b € Z, then there is a solution x € Z to
x = a (mod N)

x = b (mod M)

If x, is one solution, then x is a solution iff x = xy (mod MN)

Need gcd(N,M) |b —a

Chinese Remainder Theorem v.2

Let My, M, ..., M, be rational number with gcd(Mi, M]) =1
Foralli+#]j

Let aq,ay, ..., a;y € Z. Then there is a solution x € Z to

x = a; (mod My)

x = a, (mod My)

x = ax(mod Ms)

If x, is one solution, then x is another iff x =
xO(mOd M1M2 Mk)
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Proof of Chinese Remainder Theorem
Want to solve

x=a+ Ny

x=b+ Mz

X, y,ZEZL

Want

a+Ny=b+ Mz

Ny + (—z)M = (b —a)

Can solve iff gcd(N,M) |b — a

(Prove uniqueness as homework)

Example: Solve
x =7 (mod 17)
x =9 (mod 23)
Want to solve
17y +23w =2
23=1x17+6
17=2X% 45
6=1x5+1

(—-4)x17+3x23=1
(-8)x17+6x23=2

y=-8

z=-w=-6
x=a+Ny=7+17x -8 =-129

Solution x = —129 (mod 391)
= 262 (mod 291)

Proof to Chinese Remainder Theorem v.2 by induction on k
(Repeated application of v.1 on groups of two)

Question:

How many solutions are there to x2 = 1 (mod N)?
IfN=p > 3isprime?

x2 =1 (mod p) iff x? — 1 = 0 (mod p)

= (x+ 1)(x —1) =0 (mod p)

Iffp|(x+ 1D(x—-1)

Iff p|(x + 1) orp|(x — 1)

x = 1 (mod p)

Now, consider N = p€ p=> 3, prime, e > 1

X € Z satisfies

x2 =1 (mod p), iff p®|(x + 1)(x — 1)

By unique factorization, write

x + 1 = p® X (something not divisble by p)
x — 1 = p? x (something not divisible by p)
ab>e

Ifa# 0and b # 0, then p|(x+1) and p|(x-1), so
p|(x+1)-(x-1) =2

Impossible because p > 2, so min(a, b) =0
Sob>eora=esop?|(x —1)orp®|(x+1)
Andso x = +1 (mod p®)

So For p odd (prime), e > 1, x? = 1 (mod p®) iff x = +1 (mod p®)

For e = 1, how many solutions to
x? =1 (mod 29)
e=1=>x=1(mod?2)
e=2>=>x=+1(mod4)

e=>3:

Suppose x? = 1 (mod 2°)

x + 1 =2% X (something odd)
x —1 = 2% x (something odd)
a,b=0

at+b=>e

Zmin(a,b)l(x + 1)
2min(a,b)|(x _ 1)
So 2min@)|(x + 1) + (x — 1) = 2
Somin(a,b) <1
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Casel:a=00rb=0
x =1 (mod 2¢) or x = —1(mod 2°)

Case2:a=1,thenb >e-1

So 2871 (x — 1)
x=1+21xk

Ifk is even, then x = 1(mod 2)
Ifkisodd,sayk =2m+ 1
Then
x=1+2"1x(1+2m)
=1+e®1+2m

=1+ 2°1(mod 2°)

Case3:b=1anda=e-1
Then x = —1 (mod 2°)
Orx = —1+ 271 (mod 29)

The number of solutions to x* = 1 (mod 2°) is
life=1
2ife=2
4ife >3



3

*Groups and Functions

October-04-10 4:32 PM

Group

A group is a set G with an operation * and an element e such that

1. ax(b xc)=(a*b)*c
2. axe=exa=a

1_

3. Forallathereisana™ € G witha *a ! =¢e

(When a set has an operation, it is closed under that operation)

Commutative

G is commutative iff a*b = b*aforalla,beG

Subgroup

Let G be a group. A subgroup of G is a subset H € G containing e

and closed under * and inverse.
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Let Sy be the set of permutations of {1,2,...,N}
Functions f:{1, .., N} -> {1, ..., N} which are invertible
This is a group under "o"
Given fand f, g € Sy define f og

If fand g are invertible, then fogand (fo g)™t = f~1o g7

1. fo(geh) = (feg)eh
f(geh(x)) = f(g(h(x)))
fog(h(x)) = f(g(h(x)))
2. ldentity element e(x) = x

foe(x) = f(e(x)) = f(x)

3. Inverses
fofx)=x
fFr@)=e

Denote functions by pseudo matrices

(f(ll) f@ £3) fgw)“N
Examples:

In S,

G1IGs V=G
Ins, .
Gi1i3-=0G033D=e
InS,

=3t

b=_(213212 12 3y _(1 2 3
“=y Py Pl )
ba:(z 3 1)(2 1 3):(3 2 1)

So S5 is not commutative

S, howiveg is ci)mr;utative
S2= {(1 2) ' (2 1)}

In fact, Sy is not commutative for N > 3

Example of Subgroup
If G = Z (with + as the operation) then for any n € N, H,, = {a € Z: n|a} is a subgroup of Z

Show it is a group:

1. n|0so0€H,

2. Ifa, b€ H, thenn|aandn|bson|(a+b) = (a+b) € H,

3. n|(-a),so-a€H,
Exercise: Every subgroup of Z is of the form H,, for some n € N or {0} (= H,)
Another example
Mark the corners of a square with 1, 2, 3, 4
Let D, be the subset of S, consisting of permutations which preserve the square.
Then D, € S, is a subgroup

Show that D, is a subgroup of S, and find how many elements there are in D,



x? =1 (mod N) Lemma
If pis prime, e > 1, then x2 = 1 (mod p®) has exactly 2 solutions (mod p®), unless
October-06-10 12:30 PM .
p =2and e = 1= 1 solution
p = 2 and e = 3 = 4 solutions

How many solutions are there to x> = 1 (mod N)?

Theorem

Let N = Zepflpgz ...p,((d"),dk >1

With p distinct odd primes. Then the number of solutions to x? = 1 (mod N) is exactly:
« 2kife=0,1
o 2ktlife=2
o 2k*Zife>3

Proof:
Suppose that N is odd so thate =0
Then x? = 1 (mod N) iff

x2 =1 (mod p)

x? =1 (mod pgz)

x2

1 (mod p,f")

Ifm; = pidi, then ged(m;, m;) = 1 fori, j < k so by CRT
y =1 (mod my)

y =1 (mod my)

y =1 (mod my,)
=y =1 (mod mymyms ...my)

x2 =1 (mod p) & x = +1 (mod pi™)
x2 = 1 (mod pi*) & x = +1 (mod pS?)

x2 =1 (mod p*) & x = +1 (mod p*)

Each choice of + or - in each congruence defines a unique congruence class modulo N
There are 2% choices of + or - for each congruence so there are 2% congruence classes mod N
corresponding to:

x? =1 (mod pfl)
x2 = 1 (mod p3?)

x2 =1 (mod p,f")
So there are 2¥ solutions to the congruence x? = 1 (mod N) if N is odd

Aside

Example:

x% =1 (mod 15)

Same as solving x> = 1(mod 3) and x> = 1 (mod 5)

Same as solving the four systems of congruencies

x =1(mod 3) x = 1(mod 3) x = 2(mod 3) x = 2(mod 3)
x =1(mod5) x =4(mod5) x = 1(mod 5) x = 4(mod 5)

x = 1(mod 15) x =4(mod 15) x =11(mod 15) x = 14(mod 15)

Proof Cont.

If N is even, write N = 2¢ x N’ for N' odd

We have

x2 =1 (mod 2°)

x%2=1(modN")

There are 2% distinct values 0 < a4, ay, as, ...a < N’ such thatx? = 1 (mod N')

x2=1(modN) &

xZ

1 (mod 2°) & x =1 (mod 2%) fore=1

x% =1 (mod 2°) & x = +1 (mod 2°) fore = 2

x%2=1(mod?2°)iffx = +1or+ 1+ 2 1(mod 2°) fore >3

By CRT, there are 2%, 2 x 2¥,4 x 2¥ congruence classes mod 2¢N corresponding to:
x = a;(mod N") for some i and

x =+1,(£1 +2°71,if e = 3)(mod 2°)
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Therefore, there are exactly 2%, 2%+1, or 2k+2

dependingonife =0,1e=2,0ore=3

congruence classes mod N whose square is 1,
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Fermat's Little Theorem In Z, the values a, a?, a3, a*, ... are all different (ifa # 0, + 1)

October-06-10 1.07PM In Zy, this is not true. If [a] € Zy [a], [a]?, [a]3, ..., [a]™ cannot all be different because there are

finitely many congruence classes.

Midterm, everything up to and including this
lecture When do you get the first repetition?

Fermat's Little Theorem What happens with addition? S
Let p be a prime and a € Z with ged(a, p) = 1 There is some smallest m>1 such that [ma] = 0 (eg, if N is prime and [a] # 0 then m = N)

Then a?~1 = 1(mod p) m = N/GCD(a, N) Repeats at (m+1)
FLT. alternate form Is there a smallest k positive such that [a]¥ = [1] in Zy? If so, what is it?
’
If ptaand e; = e, (mod p — 1) then a®t = .
0 (modp) Fermat's Little Theorem
Let p be aprime and a € Z with gcd(a, p) =1
Then a?~! = 1(mod p)

Ex.Ifais 2 and p = 7,then 2% = 1 (mod 7)

Proof of Fermat's Litter Theorem
Define a function f: Z, — Z,

By f([x]) = [ax] = [a][x]

Claim: f is a one-to-one (ie. f ([x{]) = f([x,]) if f [x1] = [x;]) and onto (ie. Fore every [y] € Z,
there isan [x] € Z,, with f(xD =[yD

Proof that f is onto and one-to-one
If [y] € Z,, then f([a]*[y]) = [y]
So everything is in the image of f = onto.
Z,, is finite so f also has to be one-to-one

Therefore f just permutes the residue classes.

Since f([0]) = [0],
[ x[2] x-x[p—1] = f([1D) x f([2D % - X f([p — 1D
[ax1][a x 2] ..[a %X (p—1)]
[al[1][a][2] ... [a]l[p — 1]

= [alP1[1][2] ...[p — 1]
In other words,

[(0 — D1 - [aP1[(p - D]

[(p — D!] # 0, since pt1, pt2, ... pt(p-1)

So [(p — 1)!] has a multiplicative inverse
Multiplying both sides by this inverse gives:

[1] = [aP~1] or, equivalently aP~! = 1 (mod p)

Fermat's Little Theorem:

If pta,aP~! = 1 (mod p)

If ptaand e; = e, (mod p — 1) then a®t = a® (mod p)

Because ife; = e, + k(p — 1)

So a8 = ge2tk(-1) = gez x (gP~1)k = g x 1% (mod k)
= a®2(mod k)

Example
Find some 0 < x < 11 (least non-negative residue) such that
7291373 = x (mod 11)

By FLT, we only need to know what the exponentis mod 11-1 = 10
So 7291373 = 73(mod 11)

=49 x 7 (mod 11)

=5x7 (mod 11)

=2 (mod 11)
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Euler's Theorem
October-08-10 1:00 PM

Euler's Totient Function
Form>1, ¢(m) = # of values 0 < k <
ms.t.ged(k,m) =1

= the number of units in the ring Z,

Euler's Theorem
Letn > 1 and a are integers gcd(a, n) = 1. Then
a®®™ =1 (mod n)

Theorem
Suppose gcd(n, m) = 1. Then p(nm) = p(n)p(m)

If pis prime, e > 1, then
p(@*) =p*tp-1)
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Euler's Totient Function
Form > 1, o(m) = # of values 0 < k < m such that gcd(k,m) = 1
= the number of units in the ring Z,

Euler's Theorem
Letn > 1 and a are integers gcd(a, n) = 1. Then
a®™ =1 (mod n)

Example:
What is the last (one's) digit of 7213737
We want the least non-negative residue of this mod 10

Need to know the least non-negative residue of the 291373 mod (¢(10)) and we've check that
ged(7,10) =1

0 1 2 3 4 5 6 7 8 9
No Yes No Yes No No No Yes No Yes
Sop(10) =1

291373 = 1 (mod 4)

By Euler's Theorem:
7291373 = 71 (mod 10)

Example

Find the least non-negative residue of

217" (mod 13)

Need to find the least non-negative residue of 17'°(mod 12)
Need to fine the least non-negative residue of 19 (mod ¢(12))
p(12) =4

19 = 3 (mod ¢(12))

=171 =17% =53 =5 (mod 12)

= 217" = 25 = 32 = 6 (mod 13)

Proof

Let U be the set of integers 0 < u < n-1 withged(u,n) =1

By definition, p(n) = #U

Given a € Z with ged(a, n) = 1 define f([x]) = [ax] for all [x] in Z,
Ifu € U, then f([u]) is also a unit.

U =1{0 <u<n-—1suchthat [u] € Z, is a unit}
If u € U then [u] is a unit but so is [au] because [au] = [a] ~*[u]™?
[u] by definition has an inverse, gcd(a, n) = 1 so [a] has an inverse

Also, we have that f is one-to-one because f ([u1]) = f([u,]) = [auq] = [au,]
= [a] M allug] = [a] *alluz] = [u1] = [uz]

So f'sends each [u] with u € U to some unique [v] = [au] withv €U

Therefore fis a permutation of the residue classes [u] for u € U

IfU = {ug,up, ..., Up(n} then

lua][us] . [t ] = laws]laus] ... [avgem]

= ([ul] [uz] ... [ulp(n)]) = [a]¢(n) ([u1][u2] [u¢(n)])
This gives [1] = [a]®™ = [a?™)]

~a?™ =1 (modn) m

Computing ¢(n)
To compute ¢(n) so far, we had to count (explicitly) things with ged 1

Theorem
Suppose ged(n, m) = 1. Then ¢(nm) = p(n)p(m)
(Aside: ¢ is a multiplicative function)

Proof
Given that gcd(n, m) = 1, then for each 0 < a <nand 0 <b < m, there is a unique 0 < ¢ < nm such
that

x = a (mod n)
x = b (mod m)
x = ¢ (mod mn)

Suppose that gcd(a, n) = ged(b,m) =1

And suppose that for the ¢ constructed by the CRT, gcd(c, mn) # 1

Then for some prime p, p|c and p|mn. Then p|m or p|n. suppose p|m.

But ¢ = b (mod m), say b = ¢ + km, k € Z but then p|c and p|m means p|b
But gcd (b, m) =1, contradiction. So the supposition that g(c, mn) # 1 is false

So gcd(a, n) = ged(b, m) = 1 = ged(c, mn) =1



Suppose that gcd(c, mn) =1

If plaand p|n (if gcd(a, n) # 1), then

¢ =a(modn),sayc=a+knsop|c

So p|cand p|mn, a contradiction so gcd(a, n) =1
Similarly, gcd(b, m) = 1 b y the same argument.
So gcd(c,mn) =1 = gcd(a, n) = ged(b, m) =1

So gcd(a, n) =ged(b,m) =1 < ged(c, mn) =1

So every pair a, bwith 0 <a <nand 0 <b < m defines a unique 0 < ¢ < mn such that
{x = a (mod n)
x = b(mod m)

And gcd(c, mn) = 1iff ged(a, n) = ged(b,m) =1
So the number of 0 < ¢ < mn with gcd(c, mn) =1
Is equal to the number of pairs (a, b) with
0<a<n,gcd(an)=1

0<b<m,gcd(bm)=1

p(mn) = p(n)p(m)

}:}xzc(modmn)

This shows that if
n=p;*p;’ ...ps* then

o) = o(p;)e () - 9(p*)
(if the p; are distinct)

o(p°) =
of 0 <k < pwithged(k,p®) =1
=pf —#of 0 <s < p®withged(s,p®) # 1
— pe _ pe—l
e . . . _ . P e—1
Because gcd(s, p¢) # 1iff p|s, which happens iff s = prwith 0 < r < S=P
Lemma
If pis prime, e > 1, then
p@) =p*—p*t=pHp-1
Example

©(1000) =?
©(1000) = (23 x 53) = p(23)p(53) = 22(2 — 1)52(5 — 1) = 400
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Encryption

October-15-10 12:34 PM

Encoding

Translating data into numbers
(In general, one type of data into
another type of data)

Ex. Text: Unicode, ASCII

Encrypting
Translating data into some form which
is hard for other people to read.

Basic Problem:

Send a message from person A (Alice) to person B (Bob), in such a way that the message cannot be
read by anyone else if intercepted.

One-time Pad

Shift each character by some amount given by the pad, and that is the encrypted message.
Unbreakable.
But how do Alice and Bob share the same pad? They need some common secret to start with.

[s there any easy way for Alice and Bob to generate a common secret over open communication?
Mathematically, no (barring quantum mechanics). But practically, yes.

Diffie-Hellman Key Exchange
Used to generate a common secret "key" or secret number.

Using successive squaring, Alice and Bob can generate a key very quickly. Eve takes a long time to
figure out the key.

Algorithm
Alice and Bob choose a large prime p, and some 0 <g<p,g€Z
Public: pand g

Choose g so that g* # 1 (mod p) for 1 <k < p-1

In secret, Alice chooses an integer a and Bob an integer b.

Alice computes the least non-negative residue of g®(mod p) and sends this to Bob. Bob sends the
least non-negative residue of g”(mod p)

Public: g%(mod p), g° (mod p)
Now, Alice computes (gb)a =g

Bob computes (g*)? = g%

The least non-negative reside of g%? (mod p) is the secret.

If Eve intercepts g, p, g%(mod p), and gP(mod p), then she needs to solve:
Discrete Log Problem
Given p, g (mod p), and g%(mod p), find a (mod p-1)

To solve this, compute g* (mod p) for 0 <k <p -1

Examples
Suppose p is some large prime. Find a such that
2% = 97 (mod 101)

We hope (think) that the computations Alice and Bob need to do are a lot faster than the one Eve
needs to do

Successive Squaring
Very fast way to compute g%(mod n)

1. Write a as a sum of powers of 2 (in binary)
a = by + 2by + 4b, + -+ 2Ky

2. Compute
g? (mod p)
(g%)? = g** (mod p)

) k
g% (mod p)
3. g%= gb0+2b1+4b2+~~-+2kbk = g% x (g2)P1 x - x (gk)bk (mod p)

Example

Compute 51°275 (mod 22447)

10275 =213 4211 4254214240
52" = 25 (mod 22447)

52% = 625 (mod 22447)

52° = 9026 (mod 22447)

52° = 12253 (mod 22447)
52" = 18470 (mod 22447)
52" = 10583 (mod 22447)

510275 = 10583 x 18470 X 12253 X 25 x 5
= 10009 (mod 22447)

Suppose you have a function (on a computer): multiply_mod_p(x, y) which takes a fixed amount of
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time (depending on p)

Calculating g%(mod p) by repeated multiplication takes approximately a uses of this function.
0(2™) where n is the length of a in binary

For successive squaring, we need to square k times, where k is largest power of two less than (or
equal to) a.

2¥<a=>k<log,a

To construct g% (mod p) from this we have to do at most k more multiplications.

# of calls of multiply_mod_p < 2log, a

0(n) where n is the length of a in binary

So Alice and Bob can generate the keys exponentially faster than Eve can break the key

Example

Assume that 1 multiplication takes ~ 10735
a Alice & Bob Eve

1000  0.053s 1s

10° 0.079s 17 min

108 0.106s 24 hours

10%2°  0.2657s 3.17 billion years
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Public Key Cryptography

October-20-10

12:32 PM

Diffie-Hellman Key Exchange

Reasonable for communication between two equal parties, Alice and Bob. But it requires both to do
work so it is less reasonable for things like e-commerce. If there a central hub receiving lots of
encrypted information, they have to spend time setting up a key with each partner.

Alice should be able to post a "public key" which people can use to send her encrypted messages.
Cannot use the concept of a one time pad to be able to send/receive messages

RSA (Rivest-Shamir-Adelman)
Creating the Key
o Alice chooses two large primes p and q and computes m = pq, (m) = (p —1)(g — 1)
o She then chooses 1 < e < ¢(m) with ged(e, p(m)) = 1
Hopefully note=1ore=¢@(m) — 1
o Then compute d such that ed = 1 (mod ¢(m))
(Using Bezout's and Euclidean Algorithm)

Public Key: m and e
Private Key: ¢ (m) and d (forget p, q)

Encrypting the Message
If Bob wants to send a message a,
Bob's message needs to satisfy:
e I1<a<m
e gcd(a,m) =1, this is very likely since the only possibilities are 1, p, q
Bob computes a®(mod m) - can by done very quickly by successive squaring and sends that

Public: a®(mod m)

Decrypting the Message
Alice gets a®(mod m)
She computes (a®)? = a®® = a (mod m) by Euler's Theorem since ed = 1 (mod (p(m))

Cracking

How can Eve, using m, e, and a(mod m), find a (mod m)

Even needs to figure out d, so needs to solve ex = 1 (mod ¢(m))

She needs to know ¢ (m). If you can factor m you can easily compute ¢ (m)

How do you factor m?
It is the product of two primes, so you just have to find a factor.

In fact, if m = pq, it turns out that computing ¢ () is just as hard as factoring m.
Suppose we know m and ¢ (m).
Thenpq =mand (p — 1)(q — 1) = p(m)
m
(0= (5~1) = otm
(p—D(m—-p) =emp
(pm —p? —m+p) = p(m)
p?+(pm) —-m—-Dp+m=0
Can solve for p using the quadratic formula, so factoring m must be at least as fast as finding ¢(m)

We suspect that it is hard (not polynomial time) to factor integers.

Chance that Bob's Message is relatively prime to m
7—;} possible a which are divisible by p and %which are divisible by q so
m — % - % =m(1l-— % - i) different messages are OK. The proportion of messages which will work

is>1-2-2

SR
QR

Example of RSA

Alice chooses p =31, q=37 som = 1147. ¢(m) = 30 x 36 = 1080
Public Key: m = 1147, e = 419

d = 299 because 299 x 419 = 1 (mod 1080)

Bob want to send "917". gcd(1147,917) = 1
Bob computes 91741° = 763 (mod 1147)
Public Cyphertext: 763 (mod 1147)

Alice gets this and computes
763299 = 917 (mod 1147)

Creating the key and encrypting/decrypting use
1. Successive squaring
2. Euclidean Algorithm

Running Times
Successive squaring is fast (polynomial time). The time it takes is roughly proportional to the
number of digits of the numbers involved (linear time)
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The Euclidean algorithm is also polynomial time.

Breaking the key requires factoring, which is slow.
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Factoring Numbers

October-22-10

12:55 PM

How do you factor numbers?

Pollard p-1 "Algorithm"
Not guaranteed to work but it is fast if it does work.

Idea:
Want to factor m = pq (or anything else)

Pick ka < m.If gcd(a, m) # 1, we're done.

If (p — 1)|k, then a* = 1 (mod p)

Sop|(a® —1)

If we compute b = a¥ — 1 (mod m)

p|ged(ak — 1, m) = ged(b, m)

Hopefully gcd(b, m) is not m, if it isn't then we have another multiple of p

In general, it's possible that a¥ = 1 (mod p) for some k smaller than p-1
We chose a "likely candidate" k,
compute b = a¥ — 1 (mod m) and ged(a* — 1,m) = ged(b, m)

This is a divisor of m. If it is 1 or m, this tells us nothing. But maybe it isn't.

This works best if k has a lot of small prime factors. k is usually chosen so:
k=1Icm(2,3,4,5,...,7)

Example

m = 143

a=2

k=1cm(2,3,4) =12

Calculate b = 212 — 1 (mod 143)

212 = 92 (mod 143) so

b =91 (mod 143)

gcd(21? — 1,143) = ged(91,143) = 13

So0143 =13 x11

Example

m = 391

a=2

k=1Icm(2,3,4) =12

212 _ 1 =185 (mod 391)

gcd(2'? — 1,185) = gcd(185,391) = 1

Try again:
k=1cm(2,3,4,5,6,7) = 420
2420 — 1 = 49 (mod 391)
gcd(49,391) =1

And again:

k=1cm(1,2,3,4,5,6,7,8) = 840

Don't need to recalculate everything. k = 2 X k., in this case
2840 _ (2420)2

2840 _ 1 =153 (mmod 391)

gcd(153,391) = 17

m=23x17
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inli i ; Back to Euler ¢ function
Multiplicative Functions Rocall if gca(nm, 1) — 1 then o (m, ) = ¢(m)p(n)
October-25-10 12:33 PM

Obvious, Trivial Examples of Multiplicative Functions
Multiplicative Function f(m)=1vn
f:N - Ris multiplicative if and only if f(m)=nvn
gcd(m,n) = 1= f(mn) = f(m)f(n)

Less Trivial Examples
f(n) — 2# of distinct prime factors of n

Theorem
If g is a multiplicative function, then f(pe) =2
' flpy .pgs) =28

)= g(d)

amn Theorem
Is multiplicative. If g is a multiplicative function, then
Sigma fn) = Z g(d)

pe+1 -1 dln
a(p®) = P Is multiplicative.

Perfect Numbers Proof of Theorem

A number is perfect if it is the sum of all it's

i .. . Lemma
positive divisors other than itself.

Let gcd(m,n) = 1, and d|mn. Then d can be written in one and only one way as d=ab with a|m and
b|n.

Proof of Lemma

Let a = ged(d, m) and b = gcd(d, n). Then gcd(a, b) = 1 and a|d and b|d so ab|d.
On the other hand,

d = ged(d, mn) | ged(d, n) ged(d, m) = ab

So d|ab, thus d = ab leave uniqueness as an exercise.

Proof of Theorem
If gcd(m,n) = 1 then

fanm) = D" g@= ) ) glab) = <Z g(a)) (Z g(b)) = fmf ()

d|lmn a|m b|n alm bln

Example

Let d(n) be # of divisors of n

d)=1

dp®) =e+1

Soifn =p{*..pZthend(n) = (e; + (e, + 1) ... (5 + 1)

Example:
d(1000) =d(23x53) =GB+ 1B +1) =16

Set
o= d

din
So ¢ is multiplicative.
o(6)=14+2+3+6=12
c(4)=14+2+4=7
0(5)=1+5=6

Ifn= pfl ...pss, what is 0(n)?

Well,
pe+1 -1
o(p)=1+p+p*+-+p° p—
e1+1 es+1
-1 -1
p1—1 ps—1

Example
Letn = 1521 = 32 x 132

33 -1\/133-1
0(1521) = (——)( ) = 2379

2 12

Perfect Numbers
A number is perfect if it is the sum of all it's positive divisors other than itself.

o(n) = Zd=2n

din
0(6) =142+ 3 = 6506 is perfect
0(28) = (4 x 7) = 0(4)a(7) =7 x 8 = 56 = 2 x 28
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*Complex Numbers

October-25-10

4:40 PM

The set of complex number is C = {x + iy:x,y € R}
Where i is a symbol have the property i2 = —1

We define addition and multiplication on C
z=x+iyw=u+iveC

z+w=x+uw +ily+v)
zxXxw=(x+iy)(u+iv) = cu—yv) +ilxv +uy)

Theorem
Cis afield
If z=x + iy # 0,zhas a multiplicative inverse

4 1 x —iy R iy
Cx+iy (c+iy)x—iy) x2+y? x2+y?
Check Everything Else

Definition
Ifz=x+iyecC
x + iy is the standard form of z
(x,y) are the Cartesian coordinates
X = Re(z) is the real part of z
y = Im(z) is the imaginary part of z

Complex Numbers

Geometric representation of C

The function f: C — R is a bijection x + iy — (x,y)

Check (C, +) corresponds to parallelogram law of addition of vectors

Exercise

Write the standard form of (1 + i)~?

Gapro_ b 1 1 - i1
Yot a0 T 1-1+2i 2= 27072

Ifz=x+iyecC

The complex conjugate of zis Z=x —y

The modulus (or absolute value) of z is |z| = \/x% + y2
Theorem (Properties of z)
Ifz=x+iyw=u+iwecC

N Sl wh e
N
N
Il
N
[\S}

Properties of |z|

|z]| =022z=0
|Z] = |z|
|zw|=]z| |w]|

lz| =%, |z| =y
Triangle inequality |z + w| < |z]| + |w|
|z — w] is the distance between z and w in R?

A

Polar Coordinates
r =|z|
Coordinate: (r,0)
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*Complex Numbers cont.
November-01-10 4:31 PM

Polar Coordinates

Letz=x+iy€ecC
Letr = |z|,0 = angle in radians away from the real axis

6 =tan~! Y
x

(r, 8) - the polar coordinates for z
reRr=0

6 € R, 8 is not unique

0=1(0,0)

Other notation:
z=r(cos@ +isinf) =rcis
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Converting from polar to standard form

From polar to standard form
z=rcisf =>z=rcosf +irsinf

From standard to polar form
z=x+1iy

r=x2+y?=|z]

tan0 = %, and same quadrant as (x,y)

Examples
1. Writez =5cis G) in standard form

Z=5COS(Z')+iSin(E)=5—ﬁ+iﬂ

4 2 2
2. Writez = —/3 — i in polar form
r=2
tand = — tan” = = but drant
an 0 = —,tan— = — but wrong quadran
V36 V3 94
T
6= -
71'+6

— 9 (77r)
z=2cis (¢
Theorem
Let z; =7y cis (6,),z, = 1, cis (6,) be complex numbers

Then z,z, = i1, cis (6; + 6,)

2125 = (1 cos 01 + iry sin 6,) (1, cos B, + ir, sin 6,)

=117y cos 0; cos B, — 11y sin B, sin 6, + 2(ry1, cos 6, sin 6, + ry 1, sin B; cos 6,

=11y cos(0; + 0,) + 2r 1y sin(0; + 0,) = ryr, cis (6, + 6,)

Corollary (De Moivre's Theorem)
(rcis@)*=r"cis(@n)neN,reR>0,0 € R

Write (1 - \/§i)6 in standard form.
Convert to polar form (1 — \/§i)6 =2cis (— g)
T\16 6m
(VN 2 o6 i (O _ 6
[ZCLS( 3)] 2 ClS( 3) 2
Theorem (Roots of Complex Numbers)

Letz=rcis,n €N
Then the nth complex root of z (w € C : W™ = 2)

1
are rn cis (



Perfect Numbers
October-27-10 12:33 PM

Theorem

Let n be an even number. Then n is perfect if and
only ifn = 2P~1(2P — 1) for some prime p such
that 2P — 1 is also prime.

Mersenne Prime

A prime of the from 2™ — 1 is called a Mersenne
Prime
= nis prime

Theorem
For any n,

Z pd)=n
dn
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Is 2€ perfect?
e+1 __ 1

2
0'(29) — T — 2&+1 — 1=+ 2&+1
What about other numbers?

Write n = 2m where m is odd
a(n) = 6(29)a(m) = (2¢** — 1o (m)
If nis perfect the o(n) = 2n = 2¢*1m

So (2¢*t — 1)a(m) = 2¢*tm
and thus
2¢*1g(m) and 2% — 1|m

So there is a k such that m = (2¢+1 — 1k
Soo(m) = 2¢*1k
So k|o(m)

m and k are both divisors of m and m+k = (26*1—1)k + k = 2¢*1k = g(m)
So m has only two divisors, so m is prime.

So m has only two divisors and thus m is prime, which implies k =1. Since m = 2¢*! — 1 is prime,
e+1is prime.

Set p = e+1 (since primes should be called p)
Thene =p-1son = 2P~1(2P — 1)

Theorem
Let n be an even number. Then n is perfect if and only if n = 2P~*(2P — 1) for some prime p such
that 2P — 1 is also prime.

To see the other way
o(2P71(2P = 1)) = (2P Do (2P — 1) = (2P — 1)(2P) =2 x 2P"1(2P — 1)
- _ (@P-1%-1 _ ((@P-1D)+1)((2P-1)-1) _
(2P — 1) isprimesoc(2P? — 1) = @1 D1 =2P
221 _op g

(2P~ 1) is not prime so ¢(2P~1) =

Are there any odd perfect numbers?
Probably not, but we can't show how.

Mersenne Number
A number of the from 2™ — 1 is called a Mersenne number.

Mersenne Prime

A prime of the from 2™ — 1 is called a Mersenne Prime
= nis prime

However, if p is prime then 2P — 1 is not necessarily prime

Conjecture
There are infinitely many Mersenne Primes

*** In homework, this alone makes no sense ***

For example, if e is odd, p is prime (n is odd)

oc@®) =1+p+p?+-+p°=even

but 4 does not divide 2n,

at most one exponent of p; orn = pf1 pSeS can be odd.
*** end of nonsense ***

Identify an multiplicative function, want to know when f(n) = g(n)
You need only show that f(p*) = g(p*) for all prime powers p*

Theorem
For any n,
Z o(d)=n
dln
Proof
Since ¢ is multiplicative, so is
g = p(d)
din
g(p*) = Z o) =)+ @)+~ + (@) =1+p -1+ (p" 1 —p¥2) + (pk - p*?)
d|pk
=p
[ ]

Question:
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If we have

f= 9@

(dn)
Can you tell what gis? Yes
Ex.

Z p(d)=n
(dn)
Gives us a formula for ¢



Mobius Inversion
October-29-10 12:35 PM

Characteristic / Identify Function
_[tifn=1
1) = {Oifn >1

Mobius Function
0if p?In
) =
a (1), n=p1 Xpy X X ps
if n is the product of s distinct primes

Lemma
u is multiplicative

Theorem
=) ud)
(dn)

Mobius Inversion
If g is a multiplicative function and

Fo= ) g(d), then
@m

g(n) = Z u(df (g)
(dn)

*don't need to know below this line*
Prime Number Theorem

i ”_("2-> _1
()

Riemann Hypothesis
Foranye>0

N
i (gzn=11 u(@) Y

NZTE

g(n) is NOT the function denoting the number of divisors of n, it is a placeholder function

If

f=Y 9@
(dln)
Then can we get a nice expression for g(n)?

The simplest multiplicative function is
_|tifn=1
1) = {Oifn >1

Find a g such that
=) g@

(djn)
If p is a prime, then I(p) = 0
So we need g(p) = —1 since

Z 9D =g +gP)=1+ppP) =0=1(p)
dlp)
Soglp)=-1land g(1) =1

Z gD =g +gP)+9g@H=1-14+0=0
(dlp®)
Sog(»*) =0

So g is given on prime powers by

1ife=0
9@ ={-1life=1
Oife>1

Mobius Function
This is called the Mobius function, and is denoted by u

0if p?In
) =

H (=% n=py Xpy X X ps
Lemma

u is multiplicative

Proof

Letm,n € Nand ged(m, n) = 1.
If p?|mn then p?|m or p%|n

So that u(mn) = 0 = u(n)u(m)

Now suppose that m and n are square free and writem = p; ...ps andn = g ...
Since gcd(m,n) = 1,p; # q;j foranyi € {1,2,..,s}and j € {1,2, ...,7}

pimn) = (=1 = (=" (=1)° = u(n)u(m)
Theorem

M=) )
@m)

Proof

n = 1lisobvious. I(n) = u(1) =1

Ifn = p* and k = 1, then I(p*) = 0 and Z(d|p")
Mobius Inversion

If g is a multiplicative function and

IFfm = 9@, thengm) =y w@f (3)

d
(dln) (dn)
Proof
Assume
fa=) g@
(dn)
Then
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> w@r(3)= u(d)< D g(e)>= D ”(d)g(e):(;ug(e)<(dz u(d)>

(dn) (dn) |(§)>

= > 9@1(5)=gm
(ein)
]

Example
We have
n= Z o(d),so
(djn)
o) = ) ud)x=
(dn)
Ifn =pq
pw = Y wdE =pg-q-p+1=@-D@-1
(dipq)

Example

fn) = Z 1 so
(dln)
1= Z wd)f (g)
(dln)

Why is p interesting?
Prime Number Theorem
Not proving here PMATH 740 level

912“30((@)) 1

This is equivalent to

lim (Zl'y;llv”(n—)> -0

N—-oo

Riemann Hypothesis
Foranye>0

_ <(Zﬁ:1 u(n))>

lim =0

N-0

N7+E

(Worth $1000000 if solved)
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Polynomials and Divisibility
November-01-10 12:30 PM

Definition of a Polynomial
If R is a commutative ring, then let R[x] be the set
of polynomials with coefficients in R.

d
fx) = Zaixi,ai ER
i=0

R[x] as a Ring
Adding and multiplying polynomials:

Z aixt + Z bixt = Z(ai + b)x!
(o) (Do)=Y, (z b)

Note
IfFisafield, and f(x), g(x) € F[x]
Then deg(fg) = deg(f) + deg(g)

Constant Units
Let F be a field, and f (x) € F[x] be a unit. Then
f(x) is constant.

Division on Polynomials
Let F be a field, and f(x), g(x) € F[x] (non-zero).

Then there are polynomials q(x) and r(x) such that

9() = q()f (x) +7(x) and deg(r) < deg(f).
Furthermore, q(x) and r(x) are unique.

Useful Fact:
deg(f + g) < max{deg(f),deg(g)}

Other Useful Fact:
fx) =qlx)(x —c) + f(c)

Corollary to the Division Algorithm
IfFisafield, f(x) € F[x],and ¢ € F, then f(c)=0
iff (x — o) |f(x)
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Definition of a Polynomial
If R is a commutative ring, then let R[x] be the set of polynomials with coefficients in R.

d
f) =agx® +ag_1x¥ 1+ +agxt +ap = Z a;xt,a; ER
i=0
Consider them not as functions but as objects

Note also polynomials always have positive degrees since i > 0

R[x] as a Ring
Adding and multiplying polynomials:

Z a;xt + Z bixt = Z(a" + b)xt
(Yaw) (o) =2 3wt

j¥k=i
Can check that R[x] is also a commutative right, with 0 and 1 being the constant polynomials 0 and 1

The degree of a polynomial
m

>

n=0
Is the largest d such that a; # 0. The zero polynomial has degree —oo

Note
IfFisafield, and f(x), g(x) € F[x]
Then deg(fg) = deg(f) + deg(g)

Example of a ring where this doesn't work:

R =17

f(x) = 3x% + 1 <- Degree 2

g(x) = 2x5 + x <-Degee 5

F()g(x) = 6x7 + 3x3 + 2x5 + x = 2x5 + 3x% + x <- Degree 5

Why does it work in a field?
(agx® + -+ )(bex® + ++) = aghxd+e + -
If the coefficients are in a field, F and ag # 0, b, # 0, then agb, # 0

Claim
Let F be a field, and f (x) € F[x] be a unit. Then f(x) is constant.

Proof

If g(x) € F[x] with fg =1, then

deg(f) + deg(g) = deg(fg) = 0
f#0and g # 0,s0deg(f),deg(g) =0
So deg(f) = deg(g) =0

Algebra with Polynomials
If F is a field, then algebra in F[x] is a lot like algebra in Z
We really need F to be a field, or things are not like Z

Example
InZ,if a® = 1, then a + 1. If F is a field then this is true in F[x]

Case when not a field: If f(x) € Z4[x] then (2f (x) + 1)? = 4(/’(x))2 +4f(x)+1=1

Lemma: Division on Polynomials
Let F be a field, and f(x), g(x) € F[x] (non-zero). Then there are polynomials q(x) and r(x) such that
g(x) = q(x)f(x) + r(x) and deg(r) < deg(f) . Furthermore, q(x) and r(x) are unique.

Proof
We can assume that deg(g) > deg(f), otherwise =0, r = g works.

Proceed by induction on the degree of g.

Base Case:

If deg(g) = 0, then either deg(g) < deg(f) (done!) or else f(x) and g(x) are both constant.
If f(x) = ag, g(x) = by then

b
g =a—2f(X) +0

Induction Step:

Assume that for any g, (x) € F[x] with deg(g,) < deg(g) we can write
92(x) = q2 () f () + 12 (x), deg(r,) < deg(f)

Write g(x) = azx® + [other lower degree terms]

and f(x) = box¢ + [lower order terms],b, #+ 0
deg(g)=deg(f)sod=>e
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let g,(x) = g(x) — %f(x)xd_e

Write out the first term
a
9200 = (agx® + ) — b—dxd‘e(bexe +)
e

920 = (agx® + -+ ) — (agx® + -+ ) = something of degree less than d = deg(g)
So deg(g2) < deg(g)

By the induction hypothesis, we can write
92(x) = g2 () f(x) + r(x)with q,,7 € F[x]and deg(r) < deg(f)
Since g(x) = g,(x) + % x4 f(x), we get

gx) = %xd‘ef(x) +q)f() +7r(x) = (Z—d x47€ 4+ q, (X)) f(x) + r(x)withdeg(r) < deg(f)
So take q(x) = %xd‘e +q,(x)

By induction, this is true for all polynomials. m

Proof of Uniqueness
Suppose that
9 = g )f (x) +71.(x) and g(x) = g2 () f (s) + 712(5)
Then 0 = qif + 11— qof —1p501 — 13 = f(q2 — q1)
Since F is a field, deg(r; — 1) = deg(f) + deg(qz — q1)
If g — g, # 0,then
deg(ry — 1) = deg(f)
but deg(ry), deg(r,) < deg(f),sodeg(r, — ) < deg(f)
Useful Fact:
deg(f + g) < max{deg(f),deg(g)}
That is a contradiction, so q; = q3,501 =71,
Therefore, q(x)and r(x) are unique.

This proof also shows how to do the division algorithm using long division.

Example:
Long divide x? — 1 into x> — 2x2 + 1 and fine the quotient q(x) and remainder r(x)
x—2
x2+1]x%—2x2+1
x3 +x
—2x2—x+1
—2x%2 -2
—x+3
Sog(x) =x—2andr(x) =—x+3=> (3 -2x>+1) = (x—2)(x* + 1) + (—x + 3)

Corollary to the Division Algorithm
IfFisafield, f(x) € F[x],and ¢ € F, then f(c)=0 iff (x — ¢)|f (x)

Proof
By the division algorithm, we can write f(x) = q(x)(x — ¢) + r(x) where
deg(r(x)) < deg(x —c) = 1,sor € F is a constant.

Sof(c)=qlc)c—c)+r=q(A)x0+r=1
f)=q)x -0 +f()

If f(c) = 0,then f(x) = q(x)(x — c),s0 (x — ¢)|f (x)
Conversely, if f(x) = (x — ¢)h(x) for some h(x) € Flx],so f(c) = (c—c)h(c) =0



GCD Of Polynomials Example of division on polynomials

(x —1)|(x®—1) inQ[x]butalso 2x — 2)|(x3 — 1)
November-03-10 1:10 PM 1) = (2 2 (1 ) 1 1)
x?—=1) =(2x — 2x + 2x + >

Theorem (Euclidean Algorithm for Polynomials)
Let F be afield, f(x), g(x) € F[x] and non — zero
There is a polynomials d(x) so that

Division on a commutative ring
For any commutative ring R, we say that a divides b
(for a, b € R) if and only if b = ac for some c € R, a|b.

1. d|fandd|g

L. L 2. ife(x) € F[x] with e|fand e|g then e|d
Division on a polynomial field 3. There exist s(x), t(x) € Fx] with
IfFisafield and f(x), g(x) € F[x], then f(x)|g(x) d=fs+gt
means ¢, f (x)|c,g(x) forany ¢y, c; € F d is not unique

If d has those properties then so does cd for any c € F,c # 0

GCD for Polynomials If d, is another polynomial with all of the same properties, then d(x) = cd,(x) for some non-zero
Let F be a field, f(x), g(x) € F[x] ¢ € F (since d|d, and d,|d)
There is a polynomials d(x) so that

1. d|fandd|g Observation

2. ife(x) € F[x] with e|f and e|g then e|d If Fisafield and f, g € F[x] then f|g and g|f iff f = cgfor somec€F,c#0

3. There exist s(x), t(x) € F[x] with

d=fs+gt Proof

Call the GCD of f and g the polynomial d which Iff =cgtheng|fand g = ¢c7f,sof|g
satisfies all of these properties and is monic. If g|f and f|g, deg(f)=deg(g).So g = hf for some h € F[a], deg(h)=0,soh=c € F
Monic Proof of the Theorem (Euclidean Algorithm for Polynomials)
f(x) € F[x] is monic if We can suppose that deg(f) = deg(g)
f(x) = x% + smaller terms Using the division algorithm, write

f = q1g9 + 11, deg(ry) < deg(g)
g = a1y + 15, deg(ry) < deg(ry)

Eventually, r; = 0
Tj2 =q7j-1+0
Then the GCD is r;_; (made monic) (proof of 1.)

d=r1j_4|152
d|gj-qTj-2 + 71 =Tj3
... etc. Eventually see g|d and g|f

d=1x73+(=qj1) X175

butr_y = qj_z7j-3 + 1j—2, 50

d =) x7j_3 + (=qj-1) (1j_s — qj=a17-3) = Qrj_3 + (Dr1_g = )f + ?)g.
(proof of 3.)

Now, ife|f and e|g, then e|sf + tg = d (proof of 2.)
]

Example

Find the GCD of

Flx) = x*—2x3 +x% — 2x
gx) =x*+3x3+2x2+3x+1

Step 1: write f = q;g +7,¢, = 1,1, = =5x3 —x2 —5x — 1
Now write g = g1y + 1,
1,1
—s—725
—5x3 —x2 —5x —1x*+3x3 +2x2 +3x + 1
—x* +§x3 + x?2 +§x

-1, 14 _1.>_ 1
Soq, = X2 x“+
Now want to write
T =q3r T3

125 25

_ et
11 2 11 3 2
gx +g —5x° —x*—=5x—-1
—5x3+0-5x+0
—x% -1
—x? -1
0

11 11
=—x24+—= = x2
d 25x + 75 so gcd(f(x),g(x)) x2+1

Findsand tsothatsf +tg=x%+1
2112 (Zx 1) G0+ (- xx 1) ()
TR TV A rr )9
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GCD for polynomials over F < GCD for integers
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Factorization of Polynomials
November-05-10 1:10 PM

Irreducible Polynomial

A polynomial f(x) € F[x] is irreducible iff whenever
f(x) = g(x)h(x), g, h € Flx|, then g or h is constant.
(In other words, degree of its divisors can only be 0
or the degree of itself)

Unique Factorization for Polynomials

Any non-zero polynomial f(x) € F[x] can be written
as f = ap;'p;? X - X p¥ where a € F

pi € F[x] are distinct, monic and irreducible, and e; >
1. This representation is unique (up to order)

Lemma
Ifp,q, 7 € F[x] and gcd(p, q) = 1 and p|qr, then p|r.

Corollary

If p is irreducible, and p|q1 93 ... ¢, then p|g; for some
i
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Unique factorization for polynomials

Theorem

Any non-zero polynomial f(x) € F[x] can be written as f = apflpsz X e X p;" wherea € F
p; € F[x] are distinct, monic and irreducible, and e; > 1. This representation is unique (up to
order)

Lemma
Ifp,q,7 € F[x] and ged(p,q) = 1 and p|qr, then p|r.

Proof

Choose s,t € F[x]sothatsp+tq =1
r=rx1=r(sp+tq) =prs+rqt
plp and plqr so p|r

]

Corollary
If p is irreducible, and p|q1 g3 .- qr, then p|g; for some i

Proof (Forr =2)

Suppose that p is irreducible and p|q1q2

gcd(p, g4) is a divisor of p(x)

So gcd(p, q1) = 1 or cp for some c € F

If gcd(p, q1) = cp, then cplqy so pla,

If gcd(p, 1) = 1 then the previous lemma gives p|q,

[ ]

Forr>2

Induct over r, either divides p, or divides p;p; ... pr—1, in which case p divides one of those

Proof of Factorization
If f(x) = ax®+ -, then%f(x) is monic.
So we'll assume that f(x) is monic (because we can just multiply by a at the end)

Want to show that f(x) can be written as the product of irreducible monic polynomials.
By induction on the degree of f.

Base Case: deg(f) =1
Then f(x) = x + b forsomeb € F
f(x) is irreducible, so can write f as a product of itself.

Induction: Suppose that the statement is true for polynomials of degree < degree(f)

If f is irreducible then we're done. If not, then f(x) = g(x)h(x) with deg(g), deg(h) < deg(f) say,
g(x) = bx® + -
h(x) =cx™ + -

fx) = (bx® + - )(cx” + ) = bcx®*¥,s0 bc = 1
F0) = gh(x) = (cg(0))(c7 h(x)) = (x® + -+ )(x¥ + )

So f can be factored into two monic polynomials. By the induction hypothesis, both cg(x) and

¢~ 1h(x) can be written as a product of monic, irreducible polynomials.

So f(x) can be written as the product of monic, irreducible polynomials.

By induction, any monic polynomial can be written as a product of monic irreducible polynomials.
If £ (x) € F[x] is non-zero (possibly not monic) then f(x) = ap;'p;? ...py" as in the theorem.
]

Proof of Uniqueness

Suppose that

apy'ps? vy = bay 14y ? . qs”

with a, b € F non-zero, p;, q; monic and irreducible, and e;, w;, > 1

Multiplying out, a is the coefficient of the highest power of x in apflpsz prer and b is the coefficient

of the highest power of x in bg; gy > ... qe° soa = b.

Now we want to show that plelpzeZ e = qrﬁ qg/z G2 = p;are the q;j(in some order)
Induction on the number of factors. Total number of factors on the leftisn=e; + e, + -+ e,

Base Case:n=1

LHS =p = q;"q;* ..q45*
RHS should not be the product of two or more monic irreducible polynomials, since p is irreducible.
SoRHS=q,andp=q
Sowe'redoneifn=1

Induction: Suppose that this is true for products of fewer than n monic, irreducible polynomials.
If pf1p§2 py = qr/lq;/z Q% thenwithn = e; + e, + -+ e, then py is monic, irreducible, and
Wy W2 Ws
P1lay ' qz” s
By the corollary, p;|q; for some j. But g; is also irreducible and monic, so p; = q;
e;—1 e, e _ wji-1 wg

Sop;t pyt.pr = qr/l - qj s
By the induction hypothesis, the polynomials on the LHS are the same as the polynomials on the
RHS, up to order.

By induction, the representation is unique. m



*Elliptic Curves
November-08-10 4:31PM

Elliptic Curve: Simple Explanation
Solutions to an equation of the from y? = x3 + ax + b,
where a and b are given (in some field).

Want 27b% + 4a® # 0, ensures the equation has three
distinctroots (in the complex plane)
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Example
y2=x3+1,F=R

Elliptic Curves are Groups

A

Addition of Points

PR
N

Example: Let C:y? = x3 + 1

The equation of the line is
y=x+1

x+1D?=x3+1
x2+2x+1=x3+1
x3—x2-2x=0=x(x+1)(x—2)
x=-10,2

y?=23+1>y=3 Qj_-/'])\

So(=1,0)+(0,1) =(2,-3) A

What about when P = Q?
The line should be the tangent line

What about when the line is vertical?
Need to add a "point" O, which is on all
vertical lines. The reflection of O is O

0,1) +(0,-1)=0

Fact
This operation makes the points on the curve (along with O) into a group, with O as
the identity.

For all points Pand Q, P + Q = Q + P (abelian group)
1. P+O=PforallOonC
2. Forevery P on the curve, there is a -P such that P+(-P) =0
So -(X, y) = (X, 'y)
3. P+(Q+R)=(P+Q)+R

If P and Q have Q coordinates, then the line joining P and Q has rational coefficient.
Therefore the third point must have rational coefficients.

If P and Q have coefficients in any field F, so does P+Q

Example
Ony?=x3+1
Calculate 2(2,—-3)
dy dy 3x?
2y—=3x?=—=—
ydx = dx 2y

At (2, —3), the slope of the tangentline is i—26 =-2

Tangentline:y = —2x + 1
x34+1=(-2x+1)?

23 +1=4x?—4x+1

x% —4x% + 4x = 0 = x(x — 2)?

So the third point of intersection is (0, 1)
S02(2,-3)=(0,-1)

Interpret tangents as double intersections
Inflection points are interpreted as triple intersections.
(0, 1) is an inflection point
2(0,1)=(0,-1) =-(0,1)
3(0,1)=-(0,1)+(0,1) =0



Irreducible Polynomials in Z[x]
November-10-10 12:31PM

Primitive

A polynomials f(x) € Z[x] is primitive if the ged of the
coefficients is 1. i.e. if there is no prime dividing all of
the coefficients.

Lemma (Gauss' Lemma)
If f, g € Z[x] are primitive, then so is fg.

Theorem (Gauss)
If f(x) € Z[x] and f(x) is reducible in Q[x], then f(x) is
reducible in Z| x|

Corollary

Let
d

fx) = Z a;xt € 7|x]
i=0
and suppose that f (2) =0, bc€Zgcd(bc)=1

Then c|ayz and b|ay
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When can f(x) € Z[x] be factored (in Z[x])

Proof of Lemma
Let p be a prime, and
d

flo = Z aixt (a; €Z)

i=0
900 =) bixl (b eD)
i=0

i=
By hypothesis, there is at least one i with p t b;. Let i be the smallest i such thatp { b;
Similarly, let j, be the least j such thatp t a;

Now,
d e d+e
fg = (Z ajxf> (Z bixi> = Z ( Z ajbi>xk
j=o i=0 k=0 \i‘+j=k

The coefficient of xio+Jo is:

D b= @by, + @abgos + + Gpysby + i, bo
i+j=io+jo=ko
= (aoby, + arby—1 + ) + aj by, + (@jp41biy—1 + =+ ai,bo)
The first term is divisible by p since a; is divisible by p for every j < j,
The last term is divisible by p since b; is divisible by p for every i < i,
aj by, is not divisible by p

So the coefficient of xio*Jo in f(x)g(x) is not divisible by p.
Since p was any prime, fg is primitive. m

Proof of Theorem
Let f(x) € Z[x] and suppose that f = gh for g, h € Q[x]
deg(g), deg(h) < deg(f)

Choose M, N € Z such that Mg(x), Nh(x) € Z[x]
Also, if m is the gcd of the coefficients of Mg(x), then
Mg (x) = mg,(x) for g, (x) € Z[x]. g, is primitive
Similarly,
Nh(x) = nhy(x) where h,(x) € Z|x],n = gcd of coeffcients of h, h, is primitive.

Now, g, hy € Z|x] is primitive, and mn(g,hy) = (mgl (x))(nhl (x)) = Mg(x)Nh(x) = MNf(x)

If d is the gcd of the coefficients of f, then mn=MNd

Since ged of coefficients of mn(g, h,) is mx nx 1=mn and gcd of coefficients of MNf(x) is MNd
and so

MNd g, (x)hy (x) = MNf(x)

(dg1(0))(ha () = £ ()

dgy(x), hy (x) € Z[x]

(degrees have not changed) m

Proof of Corollary
b . b
Suppose that f (;) = 0. Then in Q[x], (x - Z) |f (%)
So there is some integer N such that N (x - g) € Z[x] is primitive and N (x - g) |f(x) in Z[x]
(cx—b) =c (x — g) is primitive so

(ex = b)|f (x) in Z[x]

This means
(cx = b)(gex® + -+ go) = (agx? + -+ ay)
cgex®*1+ - —bgy = agx® + -+ aq

Soay = —bg, = bla,
ag =cge = cla,
n

Example

Show that f(x) = 3x% + 2x — 2 has no rational roots.

Solution

Iff (%) = 0,% € Q|x] in lowest terms. Then the corollary says that
b|2 and c|3

b= +1,+2 c=%1,43

b_ +1,+2 +1 +2
c T T3'73

None of these is aroot. m



Eisenstein's Criterion Example 3
f(x) =2x19—10x3+5
Hovember-10-10 Lo P is irreducible, since

5142,5/10,5|,5% 5

Proof of Eisenstein's Criterion

Theorem (Eisenstein's Criterion) _ _ _
Suppose f(x) is reducible, and write

Let f(x) € Z[x],
d

fl) = Z a;x', a; €Z,ay %0 f@) =g)hx) = (; bixi> (Z ij1)

L =0
If there ;;?a prime p such that deg(g), deg(h) < (?eg(f), b;, ¢; € Z by Gauss' Lemma
1 play agq = by, cy, (assuming m=deg(g), n = deg(h))
2. plajfor0<i<d Sopt by, andp t ¢y
3. p%tag Also, ag = bycyp.

So plbyc, but p?!|bycy

then f(x) is irreducible. o
Thus, exactly one of b, ¢y is divisible by p

We'll suppose thatp|bg, b t cq

Let iy be the least value of i such thatp { b;
Lookat a;, (ip <m < d)

Since iy < d,pla;,

aio = Z bij = biOCO + bio—lcl + -+ bOCiO
jH+k=ig
bi,—1¢1 + -+ + byc;, is divisible by p since p|b; fori < iy
but p|a;, so p|b;,co
However, p t b;; and p 4 ¢
This is a contradiction. So f(x) does not factor in Q[x]
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Algebraic Numbers

November-12-10 12:48 PM

Algebraic Numbers

A number a € Cis algebraic if there is some polynomial
f(x) € Q[x] such that f(a) =0

Transcendental
If a € Cis not algebraic, then it is transcendental.

Theorem

If a € Cis algebraic, then there is a unique monic polynomial
f(x) € Q[x] such that f(a) = 0 and f(x)|g(x) for any non-
zero g(x) € Q[x] such that g(a) =0

Minimal Polynomial
The polynomial in the theorem is the minimal polynomial for
a.

Corollary

If a € Cis the root of a polynomial f(x) € Q[x], which is non-
zero and irreducible, then a is irrational - unless deg(f) =1
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Example
Despite being rational, V2 can be described in terms of rational numbers
VZ is the positive solution to x2 —2 = 0

If f(x) € Q[x], the roots of f(x) (in C or R) are somehow described in terms of Q

Proof of Theorem

We know that a is the root of some non-zero polynomial. Let f(x) be a polynomial of lowest
degree in Q[x] which is monic, and f(a) = 0. Suppose that g(a) = 0 for g(x) € Q[x]
Write:

9(x) = qCf (x) +r(x),
Then

0 =g =ql@f(a) +r(a) =0 =r(a),since f(a) =0

If r(x) is not the zero polynomial, then dividing by the leading coefficient gives a polynomial
r5(x) € Q[x] which is monic, and r,(a) = 0, and deg(r,) < deg(f)

But fis a polynomial of the smallest degree with these properties, so this is a contradiction.
Sor(x) = 0and g(x) = q(x)f(x), in other words f(x)|g(x)

q,7 € Q[x] and deg(r) < deg(f)

If f1(x) and f,(x) both have this property.

f2(@) = 0,50 f1()f2(x)

fi(@) = 0,50 f,()|f1 ()

This means that f; (x) = cf,(x) forceQ

But both f; and f, are monic,soc =1,s0f; = f,
And so f(x) is unique.

]

Proof of Corollary
If ais rational, then (x — a)|f (x) (given that f(a) = 0)
So f(x) is not irreducible, a contradiction. m

Example
f(x) = x™ — 2 € Q[x] is irreducible, by the Eisenstein criterion
Soifn > 1,then ¥/2 ¢ Q

Example
V2 + V3 is algebraic but what is the (minimal) polynomial f (x) € Q[x]st. f(v2 ++V3) =0

w=v2++3

Find a polynomials f(x) € Q[x] with f(w) =0
Solution

Want some agw? + ag_w@ 1+ +ay =0
w=vV2++3

w2=2+2V6+3=542V6

w3 =11¥2 + 9V3

w* =49 4+ 20V6

w? — 10w? = (49 +20V6) — 10(5 + 2V6) = -1

Sof(x) =x*—10x?+1m

Done, but is f(x) the minimal polynomial?
If not, f(x) factors in Z[x]. If f(x) factors, then either it has a root in Q, or else it factors as
(quadratic)(quadratic)

By Gauss Lemma Corollary, the only possible roots of f(x) in Q are x = + 1, these are not roots
so f(x) has no roots in Q.

So if itis reducible, it factors as

f)=x*—10x2+1=&%+ax+b)(x>+cx+d)
=x*+(a+)x3+({d+b+ac)x?+ (ad + bc)x +db

a+c=0>a=—c
ad+bc=0
d+b+ac=-10
db=1

—cd+bc=0=>d=b

d>=1>d=b=+1

1+1—c?=—-10= c? = 12 = ¢ = V12 = 23, which is irrational
—1—-1-c?=-10 > c2 = 8 > ¢ = 22, which is irrational

So there are no solutions for factors in Q[x]



Transcendental Numbers Examples (Without proof)

e, ...
November-15-10 12:30 PM

How do you show that a specific number is transcendental?

Transcendental Number

a € Cis transcendental iff it is not algebraic. Theorem (Liouville)
Suppose that a € R is a root of the irreducible polynomial f(x) € Q[x]. Then thereisa § > 0 such

Theorem (Liouville) that |a - §| > ;63, or = 0 for any rational numbers € Q in lowest terms, d= deg(f)

Suppose that a € R is a root of the irreducible
polynomial f(x) € Q[x]. Then there isa § > 0 such that

|a - §| > % for any rational numbers € Q in lowest
terms, d= deg(f) > 1

For any real number a, you can find rationals %with |a - §| as small as you want.

Ex: just cut off the decimal expansion of a at some point.

If I want |a — §| < & aalgebraic and irrational

1)
—d'< w<E

So¥/se1<gq

Proof
We have f(x) € Q[x] of degree d > 1, irreducible, f(a) = 0
Without loss of generality, f(x) € Z[x]

So f(x) = agx? + ...a;x + a,
Want a lower bound on |x — a| for x € Q
Ifxisnotin[a—1,a+ 1] then [x —al > 1

On the other hand, ifxis in [a — 1, a + 1], then for some cin [a — 1, a + 1], by the mean value
theorem we have:

f@) = fla)=f"(c)(x—a)

fla) =0,so0

[fFN=1f"( x |x - al

By the extreme value theorem |f'(c)| < M for c on this interval, for some M.
1
— >
lx—al = jgeall

Now we want a lower bound on |f(x)| for x € Q. Write x = 5, »,qEL

d d-1
14 14 14
f(5)=adq—d+ad_1aﬂ+"'+a0
14 _ _
a*f (5) = agp® + ag_1qp? " + -+ a1pq? Tt + agq?
df (P
Soq i(q)EZ ,
d d
q f(—);&O so |q f(—)‘21
q 1 q
e
|f<q ~q4
So
1 1
P_ofxlt
q M~ q?
-1
Soif%isnotin [a—1,a+1], |a—§| >1 Zq—ldandifaisin [a—1,a+ 1]then|a—§| an—d
So
) 1. -1
p| _ min{1, M~1} imm{l.M }os
|a——| > a > 2 =—
q q q q
]

Example of Liouville's Theorem
Forp/q€qQ, |\/§—§| >q%f0rsome6> 0

Constructing transcendentals, construct a € R with very good approximations in Q
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*Elliptic Curves Cont. Example Curve
Consideringy? = x3 + 1
November-15-10 4:38 PM
Obvious points on this curve:
0,(-1,0),(0,1),(0,-1),(2,3),(2,-3)

Addition of Points

0 (2,-3) (0,-1) (-1,0) (0,1) (2,3)
0 0 (2,-3) (0,-1) (-1,0) (0,1) (23)
2,-3) (2-3) (0,-1) (-1,0) (0,1) (23) O
(0,-1) (0,-1) (-1,0) (0,1) (23) O 2,-3)
(-1,0) (-1,0) (0,1) (23) O (2,-3) (0,-1)
01 (01 (23 o0 2,-3) (0,-1) (-1,0)
2,3 (23 0 2,-3) (0,-1) (-1,0) (0,1)

If labeled Py, Py, P, Py, Ps in order along the table
then
B+ Py = Pa+b(mod6)

Are there more points with coordinates in Q?
Hard question

Could consider elliptic curves over any field, Eg Z,, (4a, + 27b% #0in Zy,)

Eg.y?2 =x3+1 overZsg
Solutions: O, (0, 1), (0, -1), (2, 3), (2,-3), (4,0)
These are the "same" six points, and add in the same way.

y?=x3+1inZ,

Solutions: O, (0, 1), (0, -1), (1, 3), (1, -3), (2, 3), (2,-3), (3,0), (4, 3), (4,-3), (5, 0), (-1, 0)

12 pointson y? = x3 + 1in Z,

If we take any points that work over integers, than you have the same closed group of 6 points. But
look at other points.

Try to add (5, 0) + (5, 0)

"slope of the tangent line"
3x2

=%

which is a vertical line so

5,00+ (5,0=0

(1,3)+(1,3)
slope of tangentline:
3 1

2+3 2
So the equation of the tangent line: y — 3 = 4(x — 1)
y=4x—-1

yi=x3+1
B+1=0Ux—-1)?%=16x*—-8x+1=2x>—-x+1
x3-2x24+x=0=x(x—-1)2=0
Sox=0,y=-1

So(1,3)+(1,3)=(0,1)

Use in Cryptography
What can elliptic curves over finite fields be used for?

With an elliptic curve C over a finite field, can use the Diffie-Hellman key exchange.
Alice and Bob want to agree on a common secret.

1. Alice and Bob select a prime p, and elliptic curve C over Z, , and a point Q on C.
Alice choses a, and makes aQ public.
Bob choses b, and makes bQ public (a, b = 2 are integers)
Common secret: abQ

B W

For a 3rd person to get the key, they need to solve the. ECDLP (Elliptic Curve Discrete Log
Problem):
Given an elliptic curve C over Z, a point Q, and the point aQ, find a.

Elliptic curves over Z, have approximately p points on them, so for p large, this is hard.
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Transcendentals With Liouville
November-17-10 12:38 PM
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Want to use Liouville's Theorem to show that certain numbers are transcendental

Need to construct a number with very good rational approximations

Ex
Let

(o2}
a= Z 10~™
m=1

Then a is transcendental

1 1 1 + 1 1 +
10 102 * 10% 1024 10120 ° 10720
=0.1100010000000000000000010000 ...00000010000

a
a

Point: the partial sums are rational numbers that are extremely close to a

Let
n
Pn _ Z 107 e Q
L1
qn = 0™

n
Pn = Z 10n!—m!
m=1

1
3:210—’”’:1
@~ 10
1 11

2
P2 z 1
Ll 100M=—4— =_——
q2 10 T 100 ~ 100
m=1

3
1 1 1 11001
S SO S S 1
q3 = 10 100 1000000 1000000

(o] n o

‘a _z_)ﬂ — z 10—m! _ z 10—m! — z 10—m! — 10—(Tl+1)! + 10—(n+2)1 +

n m=1 m=1 m=n+1
So
‘a ~Prl < 2% 10-0r0y

n
qn = 10™
‘a —f—;ﬂ < 2(10m) "M = g D

n

Now, suppose that a is algebraic. So
f(a) = 0 for some irreducible f(x) € Q[x] of degree d > 2
ais not rational since the decimal expansion never halts or repeats

By Liouville's Theorem, there is a § > 0 such that

p| 4

‘ ql” q¢

for all 5 €EQ

So...

1) 2
ac< |a -B o prEs]
qn An An
So

Sqntt < 245
Assoonasn>d,weget 10™ =g, < qit'74 < % foralln>d
But% is constant, while 10™ is unbounded, so this is impossible.

Therefore, a is transcendental. m

Can use this to show that

oo

z b—m!

m=1
is transcendental for any integer b> 2

Or
oo
>
m=1
Lots of transcendental numbers.

e and m are transcendental

< 2 x 10" (D)}



Arithmetic Modulo a Polynomial
November-17-10 1:09 PM

Modular Arithmetic for Integers
Ifa,b, m € Z, m> 1 then
a = b (mod m) & m|(a—b)

Modular Arithmetic for Polynomials
If Fisa field, and g, h, f € F[x], f # 0, then

g = h (mod f)iff f|(g — h)

Theorem

Ifa; = a, (mod f) and by = b,(mod f)
ay,0,,by,by, f €EF[x],f #0

Then

ai + by = ay + by (mod f)
a;b1 = azb, (mod f)

Congruence Classes for Polynomials
Define the congruence class of g mod f to be

[g] = {h € Flx]such that h = g (mod f)}

[g]+[h] =g +hl
[g1[n] = [gh]

Theorem

The set of congruence classes (mod f) under the operations is

a commutative ring. 0 = [0], 1 = [1]

Observation

Working modulo f, deg(f) > 1, every congruence class has a

representative g with deg(g) < deg(f)

Notation
If F is a field, and f(x) € F[x] has degree > 1 then,
F[x]/(f) is the ring of congruence classes (mod f)
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Examples
x}+x+1=x(modx®+1)
x3 = x (mod x? — 1)

since x3 —x = x(x2 — 1)

With congruence classes:
Mod x3 — 1

[x°] = [x]

[x*+1] = [2]

Congruence Class Properties
e g=g(modf)forallg
e g=h(modf)© h=g(mod f)forallgh
e g=h(mod fand h = j (mod f) = g = j (mod f)

[g] = [r]l © g = h (mod f)

Operations on the Congruence Classes
Define:
[g]+ [h] =g +hl

Fact:

If a; = a, (mod ) and by = b, (mod f) then a; + b; = a, + b, (mod f)

So the definition for addition of congruence classes is well defined. No matter what representatives
are chosen for [g] and [h], [g+h] will always be the same.

Define:
[g][h] = [gh]

Fact:
If a; = ay(mod f)and by = by(mod f) then a;b, = ab,(mod f) so multiplication is well-defined.

So all of the properties of the congruence classes follow from the properties of the polynomials, so
the congruence class under + and X is a commutative ring.

Example

F=Q

f(x) e Qlxlisx? +1

[x—1lx+ 1] =[x — D+ D] = [x* = 1] = [-2]

Observation
Working modulo f, deg(g) = 1, every congruence class has a representative g with deg(g) < deg(f)

Proof
If f(x) € F[x], deg(f) = 1 and h(x) € F[x], we can write h(x) = f(x)q(x) + r(x), deg(r) < deg(f)
h =r (mod f), [h] = [r]

Example
F=173f(x)=x*+1
F[x]/(f) = Z3/(x* + 1)

Every congruence class has a representative of degree less than 2.
Polynomials in Z3[x] with degree < 2:
0,1,2,x,x+1,x+2,2x,2x+1,2x + 2

The only congruence classes are [0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]

So Zz[x1/(x* + 1) = {[0], [1], [2], [x], [x + 11, [x + 2], [2x], [2x + 1], [2x + 21}
Is this a field? Does every non-zero element have a multiplicative inverse?

[1][1] = [1]

[21[2] = [4] = [1]

[x1[2x] = [2x2] = [-x?] = [-x? + x? + 1] = [1]

[x +1][x + 2] = [x* +3x + 2] = [1]

[2x + 1][2x + 2] = [2][2][x + 1][x + 2] = [1][1] = [1]

Zs[x]/(x? + 1) is a field with 9 elements.
This is the first example of a finite field where the number of elements is not prime.



Finite Fields

November-19-10 1:07 PM

Theorem
IfFisa field, and f(x) € F[x] and deg(f) = 1 then
F[x]/(f) is afield if and only if f(x) is irreducible.

Theorem
Let F be a field, and f (x) € F[x] an irreducible
polynomial of degree > 1. Then F[x]/(f)

1. Isafield

2. Contains a copy of F

3. Contains a root of f(x)

Proposition

Let p be a prime and f(x) € Zj, an irreducible
polynomial of degreed > 1

Then Z, [x]/(f) is a field with p? elements.

Theorem

Fermat's Little Theorem for Finite Fields

If Fis a field with n (< o) elements, and a € F is
non-zero then a®1 =1

Corollary
If F is a finite field with n elements, then (x™ — x)
factors as:

[[e-a
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What are the finite fields?

Ones we know: Zy, Zz[x]/(x* + 1)

Proof of Theorem
Suppose f(x) is not irreducible, then f(x) = g(x)h(x) with g(x), h(x) € F[x],
deg(g),deg(h) < deg(f)

[g],[h] # Osince f t g,h

But [g][h] = [gh] = [f] =0
If [g] had a multiplicative inverse, then [g]~*[g][h] = [0] = [h] = [0], a contradiction.
Therefore F[x]/(f) is not a field.

Suppose f(x) is irreducible, then for any [g] # 0, so f + g. The only divisors of fare 1 and f so:
ged(f,9) =1

So we can choose polynomials s,t € F[x] withsf +tg =1

By Bezout's Identity for Polynomials

[1] = [sf + tg]l = [tg] = [¢][g]

So [g]~* = [t] Since [g] # 0 was any element of F[x]/(f), this is a field

]

Example
x? + 1is irreducible in Q[x], so Q[x]/(x? + 1) is a field
Can think of @ as being in this field since for every rational q € Q, g € Q[x]/(x? + 1)

If [q1] = [q2], 41,2 € Qthen (x* + 1)|(q2 — q1)
q1 = q3 as rational numbers
So the function g — [q] is injective (one-to-one)

This field also contains a square root of -1
[x]? = [x*] = [-1]
so [x]is V-1

This field is "the same" as Q[{]

Finite Fields
Proof of 2nd Theorem
1. Already done
2. We can define a function g(a) = [a] from F to F[x]/(f)
By definition, g(a + b) = g(a) + g(b) and g(ab) = g(a)g(b)
and g is one-to-one because if
g(a) = g(b), then [a] = [b] so f(x)|(b — a). This is impossible unless b=a
So g(a) take every F to a unique F[x]/(f)
3. f([x]) =[f(x)] = 0,s0 [x] isaroot of f(x) m

Proof of Proposition

Every congruence class contains a unique polynomial r(x) with deg(r) < d — 1

If 13 (x), 5 (x) have degree < d-1 then if [r;] = [ry], we have f|(r, — r;) then deg(f) > deg(r, — ;)
So this is only possibleif r, = r;

The congruence classes are in one-to-one correspondence with the polynomials of degree < d-1
The number of polynomials in Z, [x] with degree < d-1 is the number of sequences

Ao, Ay,dz, - Qg1 € Ly

So there are p choices. m

Proof of Fermat's Little Theorem for Finite Fields

Define f : F - Fby f(x) = ax

f0)=0

f is one-to-one because if f (x) = f(y), then
ax=ay>alx—y)=0>alalx—y)=a0=>x—-y=0=>x=y
fis onto, sinceforany x € F, f'(a™'x) = x

So

| |x=| |f(x)=| |ax=a"‘1| |x
X€eF X€F X€eF XxeF
x#0 x#0 x#0 x#0

| | x#0

X€EF

x%0

Sol=a"'m

Proof of Corollary

Foreacha € F,eithera=0soa®*—a=0"-0=0
Ora # 0,and

a"—a=a(@1-1)=ax0=0

So
l_[(x —a)|x"—x

a€eF
But both have the same degree n so



Cl_[(x—a) = (x" —x)for somec € F

acF

Soc=1and

X" —x = H(x —a)
acF

(]
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* Gaussian Integers Z[vV—1] >0 fzew] cC
, ks aring
November-22-10 4:30 PM Sis a subring if

e closed under addition
¢ closed under additive inverses
e 0,1,€S

z|Vd| = {a + bVd,a,b € Z}

(a+bVd)+ (e+ fVd) = (a+e) + (b+ f)Vd € Z|Vd]
(a+ bVd)(e + fVd) = (ae + bfd) + (af + be)Vd € Z|Vd|
(a+bVd) + (—a — bVd) = 0,(—a — bVd) € Z|Vd]
(0+0Vd),(1+0Vd) € Z[d]

The Gaussian integers are Z[ —1| =1Zli] ={a+ bi,a,b,€ Z)
N is the norm function
N :Z[i] - Z*

a+ bi - a®+ b?

Units of Z[i]
UZ[i]) = {u € Z[i]i 3v € Z[i] such that uv = 1}
1=Nwv)=NwN@w)=>N@uw) =1

u=a+bi
a’?+b%2=1
>a=11,b=0
>a=0b= +1
So

Ui ={1,-1,i,-i}

Lemma

a,b € Z[i],a# 0

Then there are elements q,r € Z[i] such thatb = aq + 1,0 < N(r) < N(a)
b _ b1+Lb2 xal_iaz

a a;+iay, a;—ia,
SOZ € Qli]

b
E=u+iv,u,v€(@

Pickn,m € Z, |lu — n| S%,Iv—ml <
Letq = n+ im € Z[i]

S

Verify 0 < N(x) < N(a)
N(x) = N(b — aq) = N(b — a(n — im))
b=a(u+iv)

N(x) =N(au+iwv—n—-mi)) =N@)(u—-n)?+w-m)?) S@<N(a}

Theorem (Euclidean Algorithm)
a,b€eZil,a#0=%b

= 3d € Z[i],d|a,d|b

3s,t such that d = as + bt = gcd(a, b)

a=bq+r, 0<N(r;) <N(b)

b=rq,+1

=143+ r3,{N(rj)} strictly decreasing € Z = 0
= Jk such thatry_1 =1 Q1 +02d =1y

r; = asj + btj,sj, tj € Zl[i]

d =as + bt

d|ti-1,d|Ti— = dlr—3 = dla,d|b

x|a,x|b = x|as + bt =d

Exercise
Find ged (—21 + 27i,—77 + 49i)

Lemma
p prime in Z[\/jl-],plab = plaorpl|b

Theorem: Unique Factorization
a € Zli]l,a # 0

MATH 145 Page 54



a = up,px = vqq -..q;, uv € U, p; ... p; are prime
= k = [,3a permutation m such that p; is associated to (backwards F)m(i)
for1<i<k

Are 2,3 and 5 primes in Z[i]?
2=014+DA-19)
5=(1+2i)(1-20)

3 is prime

N(xy)=N@3) =9

N(x)=3

a? + b? = 3,impossible
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Characteristic Of Finite Fields The Characteristic of a (finite) field.
Every field F contains a multiplicative identity "1".
November-24-10 12:32 PM 1, 1+1, 14141, ...
If F is finite, eventually this sequence repeats. So for some m # n
1+1+1+..+1=1+1+..4+1

L. m times n times
Characteristic 14+1+..41=0
The characteristic of a field is the smallest m > 0 such that m-n times
1+1+..+1=0
m times Example
or 0 if there is no such m. Q has characteristic 0

Z, has characteristic p

Lemma because 1+ 1+ 1+ -+ 1 =m (mod p)
Let F be a field of characteristic m # 0. Then m is prime. m times
(If you think F = {0} is a field, then characteristic 1 is also m = p is the smallest integer m > 0 such that m = 0 mod p

possible, but for us F = {0} is not a field.)
Proof of Lemma

Theorem Supposem = jk, 1 <j,k<m
Let F be a finite field of characteristic p. A+1++DA+14++D=1+14--+1=0
1. p#0isprime j times k times j*k = m times
2. #F =p%forsomed>1 So either
A+14+-4+D=00r(1+14+--4+1=0
j times k times

But j, k < m and m was the smallest number of "1"s whose sum was 0
Contradiction, so m is prime. m

So every finite field has some prime characteristic p. We'll relate these to Zj. You can think of
Z, as being inside any field of characteristic p.

Ex: Z3[x]/(x? + 1) "contains" Z5: {[0], [1], [2]}

If F has characteristic p # 0, then

=1
"2t =141

"3" = 14141
"p-1"=1+--+1(p—1times)
"o =0

Proof of Theorem
1. is already done

2.
Construct a finite sequence ay, ...ag € F as follows:
a =1

IfF ={1,2,3,..p — 1,0}, then stop.
In this case, every element of F has the form m;a,, for somem; € {0,1,2, ...,p — 1}

If this is not true, choose some a, which cannot be written in the form m,a, for m; €
{0,1,2,..,p—1}

If every element of F can be written in the from m;a; + mya,, m; = {0, 1, ..., p — 1} then stop.
Otherwise, choose a3 not of this form.

Eventually we get aq, a,, ...a; € F

such that everything in F has the form

d
Zmiai,mi ={0,1,..,p— 1}
i=1

And for each j, a; cannot be represented in the form 2{:—11 m;a;
In fact, the representation of an element of F in the form

d
i=1

is unique.
If not, then there are some m; € {0,1,2,...,p — 1} andn; € {0,1, 2, ...,p — 1} such that
d

d
i=1 i=1
With m; # n; for at least one i.
Let j be the largest value so that m; # n;

Then

a
Z(mi —na; =0
=

J
Z(mi —na; =0
= ]

j-1
—(m] - nj)aj = Z(ml - nl—)ai

i=1
Since (mj - n]-) # 0, there issome b € {1,2, ..., p1} such that

b (—(mj - n])) =1

Then multiplying both sides by b,
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j-1
4= Zb(mi -nja;,  bmi—n)€{0,1,...,p—13
i=1

This is impossible, by construction.

So if

d d
2 mia= ) may
i=1 i=1

thenm; = n; Vi

Sg every element of F can be written in one and only one way as

Zmiai, m; €{0,1,2,..,p—1}

iSzolthe number of elements in F is the same as the number of different sequences:
myq, ..mq withm; €{0,1,2,...,p — 1}

So

#F = p¢
u

If F is a finite field, then #F is a prime power.



Primitive Roots
November-26-10 12:30 PM

Theorem - Primitive Roots

If F is a finite field with n elements, then there is some
a € F,a# 0such that

F ={0,a,a? a3, ..a" 1}

ais a "primitive root" for the field F

Order
Ifa € F,a # 0, define the order of a by
ord(a) =min{fe > 1:a® =1}

If1<i,j<ord(a),andi +# jthen
al #al
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Example - Primitive roots

If F =1Zs

2 is a primitive root
21=2,22=4,23=3,2*=1

Proof of Order statement

If j > i, then

a=ad=>a"t=1

Butj—i>1landj—i < ord(a) = min{e = 1:a® = 1}
So al = a causes a contradiction, so a/ # a’

So {a' az, a3' - aord(a)}
are all distinct

a is a primitive root < ord(a) = n-1
(ord(a) < n-1 by Fermat's little theorem)

Proof of Primitive Roots Theorem
Let f(e) = # of elements in F of order e

First, notice that a? — 1 = 0 iff ord(a)|d

This is true because if d = ord(a) X m then a¢ — 1 = gord@xm _ 1 = (gord@)™ _1 = qm _ 1

Now assume a® —1 =0

We can find integers s, t such that ged(ord(a),d) = s X ord (a) + t X d

agcd(a‘rd(a),d) — asxord(a)+t><d — (aa‘rd(a))s X (ad)t =1

By definition, ord(a) < ged(ord(a),d) < ord(a)
Soged(ord(a),d) = ord(a) = ord(a)|d

Things with order dividingd & roots of x¢ — 1
How many roots does X¢ — 1 have in F? When d|n — 1

Every non-zero element of F satisfies
av1l-1=0
SoX™ 1 —1=0hasn-1rootsinF

X4 —1jxm1 -1

For any m,

XM —1=X-1DX™1+Xm™2+...4+1)

Ifn—1=dm,then

X1—1 = (x4—1)(X90m-D 4 xdm-2) 4 ... 4+ 1)
# of roots is < d(m-1)

X™=1 — 1 has exactly n-1 roots

dm = (#roots of X% — 1) + (something < dm — d)
exactly d, since < dand > d

There are exactly d elements of F with order dividingd (if d | n-1)

This means that for all d|n-1

> fe=d
(erd

Claim:
Foreachd|n — 1, f(d) = ¢(d)
We know that for any d,

Z ple)=d
(e]d)

Proof

f(1) =1, since

al-1=0oa=1

@(1) = 1,soit's true that (1) = f(a)

Now, assume that
f(e) =¢@(e) forall e|(n — 1) withe < d.

Then

D fE@=d=) @

(efd) (ef

P+ Y ple) =@+ Y fle)=d
T (efd)
e<d e<d

By the induction hypothesis:

Y@= fe©

(e|d) (eld)

e<d e<d

So ¢(d) = f(d) V¥ d|n-1

So there are ¢(n — 1) > 1 elements of order n-1 m

0



(In fact, ¢ (n — 1) is usually almost as big as n-1)
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Isomorphism of Fields
November-29-10 12:33 PM

Isomorphism
If F; and F, are fields, then an isomorphism is a
function
fiF1 - F,
1. fisabijection
2 fx+y)=f)+f)vxy
fGy) = fCOf ()

f@)=0
fw=1
Isomorphic

We say that F; and F, are iff there exists an
isomorphism f: F; = F,

Isomorphism as an Equivalence Relation
Isomorphism is an equivalence relation so:
1. for any field F, F is isomorphic to itself (the
isomorphism is f(x) = x)
2. if f: F; - F, is an isomorphism, then
f~1:F, - F, is an isomorphism. So the
property is symmetric.

3. If F; and F, are isomorphic, and F, and F3 are

isomorphic, then F; and F3 are isomorphic.
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Example

Fy =17,

+ 0 1
0 0 1
1 1 0

If F, is isomorphic to Z, that means that F, = {a, b}

a=f(0)

b=f)

+ a b

a b
a

x a b

a a

a a b

"Isomorphic” = same fields, but elements have different names
Every finite field has p? elements, for some prime p and some d > 1

Claim:
If #F; = #F,, then F; and F, are isomorphic.

Example:

Let F; = Q[i] ={a+ bi:a,b € Q}
Andlet F, = Q[x]/(x? + 1)

Then F; and F, are isomorphic

Define f: F, — F; as follows:

fgh =9®

Is this well defined? THIS IS MADNESS
No... THIS IS ALGEBRA!

If [g1] = [g.] then, by definition,

91(x) = g2(x) + (x* + Dh(x)
S0 91()) = g2 () + (i* + D) = g, (D)
So itis well defined

Every congruence class has a representative of degree < 1

Every element of Q[x]/(x? + 1) is of the form [a + bx], for a,b € Q

f(la+ bx]) =a+bi,sof:F, > F,

This also shows that f is onto since for any a + bi € F;,a + bi = f([a + bx])
Also, fis one-to-one. Suppose that f([g:]) = f([g2])

Then g, (i) = g, (i), soiisaroot of g, (x) — g, (x).

Since x? + 1isirreducible and i%? + 1 = 0, we must have

x% + 1|91 (x) — g2 (x)

So [g1] = [g.]

fis one-to-one and onto

f(la+bx] +[c+dxD)=f([(a+c)+B+d)x])=(@a+c)+ (b+d)i

f(a+bx]) + f(lc+dx]) =a+bi+c+di=(a+c)+ (b+d)i

f([a+ bx])f([c + dx]) = (a + bi)(c + di) = ac + (bc + da)i + bdi? = (ac — bd) + (bc + da)i
f(la + bx][c + dx]) = f([(a + bx)(c + dx)]) = f([ac + (bc + ad)x + x%])

[bdx?] = [—bd] because x* + 1|bdx? + bd

f(la + bx][c + dx]) = f([(ac — bd) + (bc + da)x]) = (ac — bd) + (bc + da)i

So F; and F, are isomorphic

F,: things of the form [a+bx] witha, b € Q and [x]? = —1
F,: things of the form a+bi with a,b € Q and i? = —1

Uniqueness of Fields
We're going to show that, up to this equivalence relation of isomorphism, there is exactly one field
with p¢ elements, for each prime p and d > 1



*Prime Gaussian Integers
November-29-10 4:31PM

Zlil = {a + bi a,b € 7}
N(a + bi) = a? + b?

Theorem
Let p be an odd prime integer. TFAE (the following are
equivalent)
1. p=1(mod 4)
x%2 4+ 1 = 0 (mod p) has a solution
InmeZpinptm/pn®+m?
p = a?+ b?
p = (a+ib)(a—ib) in Z|x]

v W

Wilson's Theorem
p prime, then (p — 1! = —1 (mod p)

Theorem
The primes in Z[i] are:
1. The elements of prime order: the primes + 1+i of
norm 2 and x such that N(x)=p, p prime in Z, p =
1 (mod 4)
2. The elements +p, + ip, p prime integerand p =
3 (mod 4)

MATH 145 Page 61

Proof of Theorem

1=2

RTP: x? = —1 (mod p)

p=1+4nx = (2n)!

(4n)!' = (p — 1)! = —1 (mod p)
2n

(4n!) = l_[j(4n +1—j)=(0(“4n)2MAln—-1))BMUn—2)..2n(4n + 1 —2n))

j=1
2n 2n 2n
| en+1-n= (1_[1) (1_[ _,-> (=12 = (2!
j=1

j=1 j=1
2=3
3In /n? + 1 = 0 (mod p) Let m = 1 then p|n? + m?
3=4

p|n? + m? = (n + im)(n — im)

Suppose p is prime in Z[{] = p|n + imor p|n — im
Claim p|n and p|m
px+iy)=n+im=>px=npy=m

Then p is not prime in Z|i|

Jx € Z[i], x is not a unit, not p. x|p
=>N@IN@) =p*>=>N&x) =p
x=a+ib=>Nx)=a?+b%2=p

54
4=1
n? = 0,1 (mod 4)
0
p=a?+b%=1:1(mod 4)
2

Butpisoddsop!=0,2 (mod 4)

Proof of Theorem
1. N(x) is prime = x is prime
For N(x) to be prime, x # a € Zor x # ib € iZ
= x = a + ib,a, b are not both even

p=Nkx)=a’>+b?=>p= {;(modél-)

p =1 (mod 4)
p=2(mod4)=>Nx)=2=>x=+1+i
2. Supposep € Z, prime p = 3 (mod 4)
Suppose p is not prime in Z[i] = p = xy
p?>=N(@)=N@N() = Nx),N(y) =p = a? + b?
Sop! = 3 (mod p) a contradiction
= pis prime in Z[i] and so are its associates -p, + ip
And the primes from (1) and (2) are the only ones in Z[i]
Let x = n + im prime in Z[i]
= x~ = n — im primes as well

N(x) = xx~ either prime in Z - 1 or not prime in Z

xx~ =pq

xx~ is the product of two primes and Z[i] has unique factorization so
p and q are prime

X=up=>x~=u"p

x~ =vq

For u, v units

u~p=vq:p=u”_1vq=>p=q

x = xporx = xip

Want to see that p = 3 (mod 4)

If p = 1 (mod 4) = then p is not prime in Z|i]
p! = 0 (mod 4)p prime

p!=2(mod4)p =2casel



Uniqueness of Fields Proof
December-01-10 1231 P F has a primitive root a € F, so

da_
F ={0,a1,a2,a3,...,a1’ 1}

also know that F contains a "copy” of Z,,, {0,1,2,...,p—1} € F

Theorem 6.2

Let F be a finite field with p¢ elements.
For some polynomials Q[x] € Z,[x], with
deg(q) = d, F is isomorphic to Z, [x]/(q)

We know that a € Fis a root of x?* — x = 0 (even, Xt — 1)

So there is some q(x) € Z,[x] with q(x)|xpd —xandq(a) =0
q(x) monic and irreducible

(q is a monic factor of xP® — x such that a is a root of Q)

EoFm”?irIZ finite fields, and #F, = #F Lplx/(q) is a feld

, and F, are finite fields, an | = #F,, Defi functi .7 Fb _

then F; and F, are isomorphic. cfine a function £ p[x]/(q) > Fbyf(gh = g(@
This is well defined because if [g;] = [g2], g1(x) — 92 (x) = g(x)h(x) for some h(x) € Zy[x]

So g,(a) = g,(a) + q(@)h(a), but g(a) = 0s0 g,(a) = g,(a)
So f([g.]) = f([g,]) and fis well-defined.

It's also true that f is one-to-one. Suppose that f([g,]) = f([g,])
Then g, (a) = g,(a), sog,(a) —g,(a) =0

So g1(x) — g2 (x) € Z,[x] has arootatx = a, so q(x)|g; (x) — g,(x)
That means [g;] = [g,]

We've shown that f:Z,[x]/(q) = F is one-to-one

Why is f onto?
f(op =0
Also, for any integer k> 1

f([x*]) = a*

d .
F = {0, a,, ay, ..., abP ‘1},50 f is onto

Check addition and multiplication

flg] + [9.D) = f(g1 + 921 = (g1 + 92)(a) = g,(a) + g,(a)
flgD + FgD) = g1(a) + g,(a)

So f([g:] + [g.]) = F([g:]D) + f([g,]) for any [g,], [g,] € Z,[x]/q

fLg:llg2D) = f(lg1 X g21) = (g1 X g2)(a) = g1(a) X g,(a)
flg:D) x fg.]) = g,(a) X g,(a)

So f([g21lg:D = f([g:]) x f(lg.]) for any [g,], [g,] € Z[x]/q
fop =o0,7((1h =1

So f:Z,[x]/q > F is an isomorphism

F has p¢ elements and Z,[x]/(q) has p®¢9(@ elements
So the isomorphism between p%and Z,[x]/(q) is one-to-one and onto so deg(q) = d
[ ]

Proof of Corollary

We know that there is some prime p and some d > 1 with

#F, = #F, = p¢

F, is isomorphic to Z,[x]/(q) for some monic, irreducible q(x) € Z,[x] dividing X% —x,
deg(q) = d

Write x?* — x = q()h(x) in Z,[x]

Now, every element of F, is a root of xpd — x, so this has p? roots in F,
deg(h) = p% — d, so h(x) has no more than p¢ — d roots in F,
Soq(x) atleastd > 1rootsinF,

Define f:Z,[x]/(q) - F; by f([g]) = g(b), where b is a root of q(x) in F,
All of the steps to show that f is well-defined, one-to-one, and that addition and multiplication work

are the same.

Need to show that f is onto.
f:Z[x]/(q) — F, is one-to-one, and the two sets have the same number of elements so f is onto.

Therefore, fis an isomorphism and it follows that Z,, [x]/(q), F,, F, are all isomorphic.
]
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Finite Fields and Cryptography

December-03-10 12:32 PM

Summary

If F is a finite field, then #F = pd for some
prime p, and some integerd > 1

If #F = p® then F can be constructed as
Zy[x]/(q) for some irreducible q(x) € Z[x]

Any two finite fields of the same size are
isomorphic.

Need to know that there is at least one field of size p¢ for each p and each d.

True, but no time to prove - in the notes
Then for every p prime and every d = 1, there is a unique (up to isomorphism) field with p¢
elements. Then the field with p? elements is written as Fa or GF(p?)

If deg(q) = d and q € Z,[x] is irreducible, then Zy[x]/(q) is a field with p? elements.
Need to show that Z,[x] contains irreducible polynomials of every degree.

It is not obvious, for example, in R[x] it is not true that there are irreducible polynomials of every
degree. There are none of degree 3, for example.

Application of Finite Fields - Cryptography
Diffie-Hellman Key Exchange

Diffie- Hellman key exchange can be done with any finite field.
Alice and Bob want to generate a common secret.

Alice and Bob choose a finite field F and an element g € F (preferably a primitive root)
Alice chooses a, and publishes g¢

Bob chooses b, and publishes g°

Both know g%?

What makes it hard for other people to find g®°?
Finite Field Discrete Logarithm Problem (FFDLP):

Given g and h in a finite field, solve h = g for a, if possible.
FFDLP is thought to be hard.

But why bother with finite fields when integers modulo a prime work?
e It's easy to write computer programs to do computation in Fyn
¢ More choices

* EIGamal Public Key

Alice want to create a public key

Alice chooses a finite field F, and a primitive root a € F and some k > 1. She computes b = a
publishes F, a, and b. Alice can easily compute a* through successive squaring.

k and
If Bob wants to send the message m € F, Bob chooses r > 1 and sends e; = a” and e, = mb"

k

Alice computes e;®e; = a ™ x m x a™ =m

For Eve to find k, Eve needs to solve the FFDLP
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