
Definitions
Set:
A collection of distinct objects

Axiom:
A proposition which serves as a "starting point". Statements 
which are either self evident or defined for the purposes of 
further logical derivation.

Axioms cannot be proven as there are the base assumptions.

Commutative Ring:
A set R with operations "+" and  "×" satisfying the properties 
A1-4, M-13, and D1

Field:
A commutative ring also satisfying M4.

Non-Commutative Ring:
A set R with operations "+" and  "×" satisfying all of the 
properties of a commutative ring except for M1 and additionally 
satisfying D2

Contrapositive
The contrapositive of A ⇒ B is "not B" ⇒ "not A". They are 
equivalent.

Divisibility
In a commutative ring R, if a , b ∈ R we say a|b (a divides b) 
iff there is a c ∈ R such that b = ac

Prime Number
A prime (integer) is a positive integer p ≠ 1 such that the 
only divisors of p in Z are 1 and p

Integer Linear Combination
c is an integer linear combination of a, b ∈ ℤ if and only if 
there are s, t ∈ ℤ with 
 =      

Greatest Common Divisor (GCD)
Let a, b ∈ ℤ be non-zero. Then gcd(a, b) is the largest d ∈ ℤ 
such that d|a and d|b. 

Diophantine Equation
An equation with integer coefficients that one wants to solve 
over ℤ.

Congruence
Let a, b ∈ ℤ and n ∈ ℕ.
We say that a and b are congruent modulo n iff  |(   )
Write
    (     )

Congruence/Residue Class
The "congruence class" or "residue class" of a ∈ ℤ modulo n is 
the set:
[a] = {b ∈ ℤ :    (mod n)}
For a fixed n

A Ring   
The ring ℤ Is the set {[0], [1], …, [n-1]} with the operations 
" " and "∙" defined by [a] [b] = [c] iff      (mod n)
and [a]∙[b] = [c] iff     (mod n). The zero element will be 
[0] and the one element is [1].

Permutation

Injective (one-to-one)1.
Surjective (onto)2.

A permutation of a set is a function from the set to itself 
which is:

Least Non-Negative Residue
The least non negative residue of 

Theorems and Principles

Well-Ordering Principle
If S ⊆ N and S is not empty, then S has a least element.

⊆ - Subset of

Induction Principle
Suppose that P(n) is some statement about the natural number n, suppose that P(1) holds 
and suppose that whenever P(k) is true for 1 ≤ k < n, the P(n) is true. Then P(n) holds for 
all n.

Unique Factorization
Every integer other than zero can be written in the form:

 1    
      

      
        

  

This representation is unique up to reordering.

Primes
There are infinitely many primes.

Let   be the nth prime. Then   <      
.

Let   denote the nth prime. Then  

  
   

    diverges.

The Division Algorithm
Let a ≥ 1 and b be integers. Then there exist integers q and 0 ≤ r < a such that
 =     

Bezout's Identity (Extended Euclidian Algorithm)
If a and b are positive integers, then there exist x, y ∈ ℤ such that         = gcd( ,  )

Factoring Integers
If a and b are nonzero integers with gcd( ,  ) = 1 and a|bc, then a|c

Let p be a prime, and suppose that  |    …  (  ∈ ℤ)
The  |  for some i

Chinese Remainder Theorem v.2
Let   ,   , … ,  be rational number with gcd   ,    = 1

For all i ≠ j
Let   ,   , … ,   ∈ ℤ. Then there is a solution x ∈ ℤ to 
     (      )
     (      )
…
    (      )
If   is one solution, then x is another  iff     (        …  )

Fermat's Little Theorem
Let p be a prime and a ∈ ℤ with gcd(a, p) = 1
Then      1(     )

Fermat's Little Theorem, alternate form
If p∤a and       (      1) then         (     )

Euler's Totient Function

=                                 ℤ 

For m ≥ 1,  ( ) =             0 ≤  <    .  . gcd( ,  ) = 1

Suppose gcd(n, m) = 1. Then  (  ) =  ( ) ( )

If p is prime, e ≥ 1, then
 (  ) =     (  1)

Euler's Theorem
Let n ≥ 1 and a are integers gcd(a, n) = 1. Then

  ( )  1 (     )

Theorems and Definitions
12:28 PM
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The least non negative residue of 
  (     ) is a such that [ ] = [ ] and 
0 ≤  ≤  

Relation
A relation on a set is a set of pairs (a, b) which are "related". 

Equivalence Relation

   for all a ∈ S1.

Symmetric
   iff    for all a, b ∈ S2.

Transitivity
If    and    then    , for all a, b, c ∈ S3.

A relation   on a set S is an equivalence relation if and only 
if:

Equivalence Classes
Given an equivalence relation   on a set S, and a ∈ S define 
[ ] = {   ,  ∈   

   MATH 145 Page 2    



The Integers ℤ  = {0, 1, 2, -1, -2, … }

Properties satisfied by Z - Commutative Ring

[si] The integers consist of the set Z and the operations "+" and "×"

For all a, b ϵ Z,    =    
[A1] Commutativity of Addition

For all a, b, c ϵ Z, (   )   =   (   )
[A2] Associativity of Addition

There exists an element 0 ϵ Z such that   0 =  for all a ϵ Z
[A3] Additive Identity

For all a ϵ Z, there exists an element -a ϵ Z such that   (  ) = 0
[A4] Additive Inverse

For all a, b ϵ Z,    =    
[M1] Commutativity of Multiplication

For all a, b, c ϵ Z, (   )   =   (   )  
[M2] Associativity of Multiplication

There exists an element 1 ϵ Z such that 1   =  for all a ϵ Z
[M3] Multiplicative Identity

(   )   =      
[D1] Distributive Property

ℝ also satisfy the above properties with the usual  "+" and "×" operations, as do ℚ.
ℤ, ℝ, ℚ etc. are all commutative rings therefore properties proved for commutative rings will hold for 
all.

Fields
Let F2 be the set {0, 1}
Operators:

+ 0 1

0 0 1

1 1 0

This is a commutative ring.

Sometimes we'll study rings with some additional properties:

For all a ϵ Z, a ≠ 0 there exists an element a-1 ϵ Z such that      = 1
[M4] Multiplicative Inverse

Commutative rings with this property are called fields. R, Q, and  F2 are all fields. Z is not a field.

Non-Commutative Ring
Does not satisfy M1

Let M be the set of 2x2 matrices with integer entries.

 
  
  

   
  
  

 =   
      
      

 

 
  
  

   
  
  

 =  
          
          

 

With matrices, multiplication is not commutative.
Because M1 no longer applies, a new distributive property is needed:

  (   ) =      
[D2] Distributive Property

Set:
A collection of distinct objects

Axiom:
A proposition which serves as a "starting 
point". Statements which are either self 
evident or defined for the purposes of 
further logical derivation.

Axioms cannot be proven as there are the 
base assumptions.

Commutative Ring:
A set R with operations "+" and  "×" 
satisfying the properties A1-4, M-13, and D1

Field:
A commutative ring also satisfying M4.

Non-Commutative Ring:
A set R with operations "+" and  "×" 
satisfying all of the properties of a 
commutative ring except for M1 and 
additionally satisfying D2 × 0 1

0 0 0

1 0 1

Rings and Fields
September-13-10 3:10 PM
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Assignment 1
September-14-10 12:03 PM
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Well-Ordering Principle
If S ⊆ N and S is not empty, then S has a least 
element.

⊆ - Subset of

Induction Principle
Suppose that P(n) is some statement about the 
natural number n, suppose that P(1) holds and 
suppose that whenever P(k) is true for 1 ≤ k 
< n, the P(n) is true. Then P(n) holds for all n.

Contrapositive
The contrapositive of A ⇒ B is "not B" ⇒ "not 
A". They are equivalent.

Example of Induction Principle - Arithmetic Series

 ( ):  

 

   

=
 (  1)

 
        

Proof:

 (1) says 1 =
 (   )

 
     which is true

Induction step:
Assume that P(k) holds for all 1 ≤ k < n
Since P(n-1) holds, 

  

   

   

=
(  1) 

 
        

So 

  

 

   

=   

   

   

  =
(  1) 

 
          =

       

 
          =

 (  1)

 
        

By induction, P(n) holds for all n ≥ 1

Induction ⇒  Well-Ordering Principle

Want to prove if S ⊆ N has no least element, then S = ∅ (empty set)
Let P(n) be "n ∉ S" where S has no least element
Base case: P(1) since if 1 ϵ S has a least element. 

Induction case:
Assume P(k) for all 1 ≤ k < n (n here is at least  )
So k ∉ S for 1 ≤ k < n
Then n ∉ S because otherwise n would be the smallest element of S
So P(n) holds.

By induction, P(n) holds for all n so n ∉ S for all n ∈ N
∴ S = ∅ ∎

Induction
September-15-10 12:37 PM
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Divisibility
In a commutative ring R, if a , b ∈ R we say a|b 
(a divides b) iff there is a c ∈ R such that b = ac

Prime Number
A prime (integer) is a positive integer p ≠ 1 
such that the only divisors of p in Z are 1 and p

Fundamental Theorem of Arithmetic
Every integer other than zero can be written in 
the form:

 1    
      

      
        

  

This representation is unique up to reordering.

Theorem:
There are infinitely many primes

Theorem:
Let   be the nth prime. Then   <      

.

Diverging Sum
An infinite sum of positive real numbers:

   

 

   

Diverges iff for all M there exists an N with

   

 

   

≥   

In other words,    
 
   diverges iff

lim
     

   =   

 

   

Proof of Existence of Factorization (Fundamental Theorem of Arithmetic)
Let n ≥ 1

Let P(n) be the statement "there exists a way of writing  = 1    
      

      
        

  

P(1) is true, because 1 = 1 
Suppose that P(k) holds for all 1 ≤ k < n (n ≥  )

If n is prime, the P(n) holds because  =   . If n is not prime, we can write n = ab, where 1 ≤  a, b, 
< n. We can write a and b as products of prime powers since P(a) and P(b) hold. So we can write n 
= ab as a product of prime powers.

By induction, every positive integer can be written as a product of powers of distinct primes.

Theorem: There are infinitely many primes
Proof:
Suppose that there are a finite number of primes, and list all of the primes   ,   ,   , … ,   . Then 
              1 is not divisible by any prime and yet is not on the list of primes. This is a 
contradiction, so there are infinitely many primes. ∎ 

Frequency of Primes
Let π(x) =   of primes less than x.
π: ℝ -> ℕ ∪ {0 

Theorem:

Let   be the nth prime. Then   ≤      
.

Proof:

Base case n = 1   =  ≤      

Induction. Suppose that   ≤      
for all 1 ≤ k < n

Then              1 ≤    
    

        
 1

=              
 1

=         1 =
1

 
        

 1 ≤      

So              1 ≤      

But              1 is divisible by some prime  ≥     

So   ≤  ≤                 1 ≤      

So   ≤      
, and by induction we have the same for all n≥ 1

There is also a lower bound for the number of primes.
In particular,  ( ) ≥ log  log ( )  

Why? 

If π(x) = n, then  ≤     ≤    

log (log  )) ≤  ≤  ( )

Theorem:
Let   denote the nth prime. Then

 
 

  
   

 

   

diverges.

Proof

Suppose that  
 

  
   

   converges where   is the nth prime. 

If this is true, then there exists a k ≥ 1 such that 

 
1

  
   <

1

 
  

 

     

Since the sum converges, then some subset at the end of the sum must be less than some arbitrary 
value.

Let  =     

We'll count the elements of {1,  , 3, …, N 
First way: Clearly there are N elements in the set.

Let  = {1 ≤  ≤     |            ≥   1 
Let  = {1 ≤  ≤                 
It should be clear that number of elements in X + number of elements in Y = N

Each  element of X is divisible by some prime   for some i ≥ k 1

The number of integers from 1 to N divisible by   is at most 
 

  
  

Reason: if   | then  =     where 1 ≤ m ≤ 
 

  
  

Therefore

  ≤ (     1 ≤  ≤                  )

 

     

Primes and Divisibility
September-15-10 1:04 PM
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≤  
 

  
  =    

1

  
  

 

       

 

     

<
 

 
  

  ≤  (     1 ≤  ≤                  )

 

     

Now we count the elemetns of Y. Every Element of Y can be written as   
     

       
  for some 

  ≥ 0. It follows that every element of Y can be written as     
     

       
     , where   =

0, 1 for all i.

If    
     

       
     ≤  , certainly  ≤   

   . Since b is an integer, this leaves ≤   
   choices 

for b. Since each   is either 0 or 1, there are only   choices for           

So the number of integers 1 ≤ x ≤ N which can be written in the form   =   
     

       
     , 

for b ∈ N and   = 0    1 is at most     
   

Therefore,   ≤     
   

=
1

 
        =

1

 
      =

 

 
  

    
   

=        
     

=        =       

  ≤
 

 
  

We assumed that  
 

  
   

   converges and showed that for some N:

 =      <
 

 
   

 

 
  =  

This is a contradiction. Therefore

 
1

  
   

 

   

diverges. 
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The Binomial Theorem
Let x, y be variables, n ∈ ℕ. Then

(   ) =   
 

 
       

 

   

Binomial: a+b

(   ) =    3    3      
Powers of binomials: (   ) =          

Binomial Theorem used to find (   ) ,  ≥ 1

Notation/Definitions
Factorial function:
0! = 1
 ≥ 1,   =  (  1)(   )

Binomial coefficients:
If n, r ∈ ℤ, 0≤ r ≤ n

  
 
   Read "n choose r" is defined by:

 
 

 
 =

  

  (   ) 
         

Combinatorial meaning of   
 
 is the number of ways of choosing r elements from a set with n 

elements.

  =  
 

 
     (   ) 

n! is the number of orderings for n elements

 
 

 
 =

  (  1)   (    1)

  
                        

   

1.

  
 
  is an integer2.

  
 
 = 1 =   

 
 3.

 
 

 
 =  

 

   
 4.

If 1 ≤ r ≤ n, then     
 

 =   
 
    

   
 5.

Properties of the Binomial Coefficient

Proof 1
 = {  ,   ,   , … ,      Choose r elements from S

If     is one of them, then there are   
   

 ways of choosing the others.

If     is not one of them, then there are   
 
 ways of choosing the others

⇒     
 

 =   
 
    

   
 

Proof 2

 
 

 
   

 

  1
 =

  

  (   ) 
          

  

(  1 )   (  1)  
                   =

  (  1   )     

  (  1   ) 
                  

=
(  1) 

  (  1   ) 
             =  

  1

 
 

The Binomial Theorem
Let x, y be variables, n ∈ ℕ. Then (   ) =    

 
        

   

Proof: Induction on n
n = 1

(   ) =  
1

0
    

1

1
  =    

Want to prove (   )   =      
 

            
   

(   )   = (   )(   ) = (   )    
 

 
       

 

   

=    
 

 
         

 

   

    
 

 
         

 

   

Terms with the same powers will have coefficients that match in the form   
 
    

   
 

=   
  1

 
         

   

   

*Binomial Theorem
September-20-10 4:27 PM
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The Division Algorithm
Let a ≥ 1 and b be integers. Then there exist integers q 
and 0 ≤ r < a such that
 =     

Greatest Common Divisor (GCD)
Let a, b ∈ ℤ be non-zero. Then gcd(a, b) is the largest d ∈ 
ℤ such that d|a and d|b. 

If d|a, and a ≠ 0, then d ≤ |a|1.
We can define gcd(a, 0) if a ≠ 0 just by gcd(a, 0) = 
gcd(0, a) = |a|

2.

Remarks:

Euclidian Algorithm for GCD
Basic idea: If b = aq + r, then gcd(b, a) = gcd(a, r)

Proof of Long Division
Let a ≥ 1 and b be integers. Then there exist integers q and 0 ≤ r < a such that
 =     

Let S = {s : s = b-aq for some q ∈ ℤ and s ≥ 0 

This set is non-empty, since a ≥ 1 so we can choose q with b ≥ aq
S ⊆ ℕ  so if S ≠ ∅ , S has a least element, call it r ∈ S.
 =     for some q ∈ ℤ.
Also, r ≥ 0
Suppose r ≥ a
Then    ≥ 0, and b = aq +r = a(q+1) +(r-a)
So r-a ∈ S

But r-a < r. This is a contradiction. So r < a ∎ 

List all divisors of a, all divisors of b, and choose the largest common element in each list. 1.
Factor a & b as a product of powers of primes, because it is easy to describe divisibility in 
terms of theses factorizations. (eg.   |  iff e ≤ f)

2.

How to Calculate GCD?

Euclidian Algorithm for GCD
Basic idea: If b = aq + r, then gcd(b, a) = gcd(a, r)

Proof
We'll suppose that a, b ≥ 1
If b = aq + r and d|a and d|b then d| b - aq = r
Conversely, if d|a and d|r, then d| aq + r = b

Therefore, {common divisors of a & b} = {common divisors of a & r}
gcd(a, b) = gcd(a, r)

If we start with b > a ≥ 1, then b > a & a > r

Division and Euclid's Algorithm
September-22-10 12:31 PM
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Bezout's Identity (Extended Euclidian Algorithm)
If a and b are positive integers, then there exist integers s & t so that as + bt = gcd(a, b)

How? Use the Euclidian algorithm.
In computing gcd (  ,   )   >   ≥ 0
  =        

  =        

    =            <- you can write gcd(  ,   ) as an ILC of     and     

    =        0

The previous line allows you to write     in terms of     and     so you can write gcd (  ,   ) as 
an ILC of     and     

Ex. 
gcd( 1  , 100 ) =  
 1  =   100  1  
100 =   1   30
1  =   30  1 
30 =   1   
1 =    

Backwards to compute ILC
 = 1  30  (  )  1 
= 1  30  (  )(1      30)
= 11  30  (  )  1  
=  11   (100       1  )  (  )  1  
= 11  100  (   )  1  
= 11  100  (   )  1   (   100 ) 

= (   )   1   (3 1)  100 

Factoring Integers
Lemma: 
If a and b are nonzero integers with gcd( ,  ) = 1 and a|bc, then a|c

Proof:
Chose integers s and t such that as + bt = 1, and d such that ad = bc
 =   1
=   (     )
=        
=        
= a(cs + dt)
So a|c. ∎ 

Lemma:
Let p be a prime, and suppose that  |    …  (  ∈ ℤ)
The  |  for some i

Proof
By induction on n.
Base case: n = 2
Suppose that  |    

If  |  , we're done, so suppose  ∤   

Then gcd( ,   ) = 1
By the previous lemma,  |  

Induction Step:
Assume the statement is true for 1 ≤ k < n (i.e. that  |    …  ⇒  |       )
If  |    …  then  |    … (      ) so either  |  for some 1 ≤ i ≤ n-2, or else  |      . In the 
last case,  |    or  |  .
By induction, the lemma holds ∎ 

We've shown that every n ≥   can be written as
 =     …  for some primes   …  (maybe some repeats)

We will now prove that this representation is unique.

Proof of Unique Factorization of Integers
Base case:
For n =  , this is clear. Since   is the only prime ≤  , and       ≥  .
 = 1 is also unique since 1 is the product of no primes.

Induction:
Suppose that the prime factorization of k is unique for 1 ≤ k < n, (n ≥ 3)

Write
 =   …  =   …  

In particular,   |  …  

By the previous lemma,   |  for some I
So   =   since   is prime.
Assume changing the order if necessary, that   =   

Integer Linear Combination
c is an integer linear combination of a, b ∈ ℤ if and only if 
there are s, t ∈ ℤ with 
 =      

Factoring Integers
Lemma: 
If a and b are nonzero integers with gcd( ,  ) = 1 and 
a|bc, then a|c

Lemma:
Let p be a prime, and suppose that  |    …  (  ∈ ℤ)
The  |  for some I

Bezout's Identity (Extended Euclidian Algorithm)
If a and b are positive integers, then there exist integers s 
& t so that as + bt = gcd(a, b)

Bezout's Identity
September-24-10 1:06 PM
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Now, 
    …   =   …   , but this number is 1≤ num ≤ n, so it has a unique prime factorization.

Therefore   ,   ,…   are the same as   ,   ,…   , up to order. ∎ 

Application
Let n ≥ 1, n ∈ ℕ  and suppose that      ∈ ℚ. Then  =   for some a ∈ ℤ 

Proof

If       =
 

 
 , a, b ∈ ℤ, gcd( ,  ) = 1

Then     =   , a, b, n ∈ ℤ 
Suppose p|b. Then  |  , so  | . But gcd(a, b) = 1 so this is impossible. So b = 1 (or -1) 
Therefore,  =     

∎ 
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Bezout's Identity
     =    ( ,  )

For a, b, c ∈ ℤ (non-zero)
     =  can be solved in ℤ if and only if gcd( ,  ) | 

If  =   gcd ( ,  ), and      = gcd( ,  )
Then  (  )   (  ) =   gcd( ,  )
On the other hand, gcd( ,  ) | and gcd( ,  ) | , so if      =  , then gcd( ,  ) | 

Observation 
     =  has a solution iff gcd( ,  ) | , and then if   ,   is one solution, all other solutions are of 
the form:

 =      
b

gcd(a, b)
        

 =      
 

gcd( ,  )
        

k ∈ ℤ

     =       
  

gcd( ,  )
               

  

gcd( ,  )
        

=        =  

Diophantine Equation
An equation with integer coefficients 
that one wants to solve over ℤ.
e.g.    3 =  
     =   

     =  can be solved in ℤ if and 
only if gcd( ,  ) | 

Diophantine & Bezout
September-27-10 12:31 PM
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Congruence
We say the ring ℤ (aka   ) is defined by 

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

Arithmetic in ℤ is arithmetic up to multiples of 2
So            (mod 2) 

Example:
   (mod 2) iff both are even or both are odd.
   (mod 10) iff the 'ones" digit of x is 7 for x > 0
  0 (mod n) iff  | 

Fix n ∈ ℕ 
The "congruence class" of a ∈ ℤ modulo n is the set:
[a] = {b ∈ ℤ :    (mod n)}

There are n base congruence classes: [0], [1], [ ], … [n-1]

[1] = [n+1] since
  | (  1) iff   | (    1)
To check that the operation [a] + [b] is well defined, what do we need to check?

Need to check that if [  ] = [  ] and [  ] = [  ], then            (mod n)
[  ] = [  ] iff      (mod n), so the above follows from this fact.

If [  ] = [  ] and [  ] = [  ] then [     ] = [     ]
In other works, 
[ ]  [ ] = [   ]
[ ]  [ ] = [  ]

Example (mod 5)
[2] + [2] = [2 + 2] = [4]
[3] + [3] = [3 + 3] = [6] = [1]
[2] + [3] = [5] = [0]
[2][3] = [6] = [1]

Congruence
Let a, b ∈ ℤ and n ∈ ℕ.
We say that a and b are congruent modulo n iff 
 |(   )
Write
    (     )

Proposition

           (mod n) 1.
         (mod n)2.

If   ,   ,   ,   ∈ ℤ and n ∈ ℕ, with      (mod n) 
and      (mod n) then:

Proof of (1)
If      (mod n) and      (mod n), then    
  =   , say, and      =   , say.
(     )  (     ) = (     )  (     )
=      =  (   )

Congruence/Residue Class
The "congruence class" or "residue class" of a ∈ ℤ 
modulo n is the set:
[a] = {b ∈ ℤ :    (mod n)}
For a fixed n

A Ring   
The ring ℤ Is the set {[0], [1], …, [n-1]} with the 
operations " " and "∙" defined by [a] [b] = [c] iff 
     (mod n)
and [a]∙[b] = [c] iff     (mod n). The zero 
element will be [0] and the one element is [1].

Congruences (modulus)
September-27-10 12:42 PM
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Group

Associativity1.
  (    ) = (    )   
Identity2.
There exists an e ∈ G such that for all a ∈ G, 
   =    =  
For all a ∈ G there is an    ∈ G such that 3.
     =  

A group G is a set with a binary operation * (G is closed 
under this) with the following properties:

Commutative/"Abelian"
A group (G, *, e) is commutative (or Abelian) if for all a, b ∈ G
    =    

Permutation

Injective (one-to-one)1.
Surjective (onto)2.

A permutation of a set is a function from the set to itself 
which is:

In other words, a permutation of {1,  , …, N  is a function
f: {1,  , …, N  -> {1,  , …, N  
which is invertible. 

Injective
 =     ( ) =  ( )

Surjective
For every y, there is an x with f(x) = y

Injective and Surjective imply each other on a finite set

Examples
(G, *, e) = (ℤ ,  , 0)

ℝ   = {x ∈ ℝ : x ≠ 0 
(g, *, e) = (ℝ , ×, 1)

If R is a ring, (R, +, 0) is a group.

Another example:
  =                  {1,  , 3, … ,    

*Groups
September-27-10 4:34 PM
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The ring ℤ , N ≥ 1 ∈ ℤ 
[a] = {b ∈ ℤ : b   a (mod n) 

ℤ is the set of congruence classes [0], [1], … [n-1] with the operations [a] + [b] = [a + b] and [a][b] = [ab]

[a] + [b] = [b] + [a]1.
[a] + ([b] + [c]) = ([a] + [b]) + [c]2.
… and many others3.

To know that ℤ is a commutative right, we need to know that:

All of these qualities follow from the integers
ex. [a] + [b] = [a+b] = [b+a] = [b] + [a]
ex. [a] + ([b] + [c]) = [a] + [b+c] = [a + (b+c)] = ([a] + [b]) + [c] 
Etc.

So ℤ , with this " " and "∙" really is a commutative ring.
"0" = [0]
"1" = [1]

[a] = [b]   a   b (mod N)

Addition and multiplication for ℤ 

+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

* [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

Can we divide in ℤ ? Is ℤ a field? Maybe this depends on N

Multiplication for ℤ 

* [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

When can we solve
[a][x] = [1] in ℤ ? (for [x])

Claim: Iff gcd(a, N) = 1
⇒ When can we solve ax   1 (mod N)

We can solve ax   1 (mod N) iff there is an integer m with 
  = 1    if there exists x, y ∈ ℤ with 
     = 1, which can be solved iff gcd(x, N)=1

Proposition:
[a] ∈ ℤ is a unit (has a multiplicative invers) iff gcd(a, N) = 1

Ex. Find the multiplicative inverse of [26] in the ring ℤ   

Also: solve
  x   1 (mod 13 )

Need to solve     13  = 1
13 =       
  = 3     
 = 1     
 =     1
 =   1  0

1 = 1    (  )   
= 1    (  )(1    ( 1)   )
= (  )    3   
…
=       ( 11)  13 

      1 (mod 137)
Therefore, [58] is the multiplicative inverse of [26] in the right ℤ   .
[26] [58] = [1]

It follows that ℤ is a field iff N is prime (or maybe N = 1)

Proof:
If N is prime, gcd(a, N) = 1 unless N|a
⇒ [a] is a unit unless [a] = [0]

[a] ∈ ℤ is a unit (has a multiplicative invers) iff 
gcd(a, N) = 1

Least Non-Negative Residue
The least non negative residue of 
  (     ) is a such that [ ] = [ ] and 
0 ≤  ≤  

The ring ℤ 
September-29-10 12:32 PM
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⇒ [a] is a unit unless [a] = [0]
If there is some 1 ≤ a ≤ N-1 such that [a] is not a unit, then gcd(a, N) ≠ 1, but 1 < gcd(a, N) ≤ a < N
gcd(a, N) divides N so N is not prime *proved same direction as above*

If N is not prime, then N is note a field:
If N is not prime, write N = ab, 1 < a, b < N
In ℤ , [a][b] = [0]
If [a] has a multiplicative inverse, [a][x] = [1], then
[x][a][b] = [x][0] ⇒ [b] = [0]
This means N|b, which is impossible so [a] has no multiplicative inverse.

Example:
Solve 1 3x     (mod 3 1)
Trying to solve 123x + 321y = 6
⇒  1x   10 y =  
Can solve iff gcd(41, 107)|2
41*47 - 18*107 = 1
41*94 +(-36)*107 = 2 
123 * 94 + (-36)*321 = 6 
⇒ [1 3][9 ] =  
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Relation
A relation on a set is a set of pairs (a, b) which are "related". 

Equivalence Relation

   for all a ∈ S1.

Symmetric
   iff    for all a, b ∈ S2.

Transitivity
If    and    then    , for all a, b, c ∈ S3.

A relation   on a set S is an equivalence relation if and only if:

Equivalence Classes
Given an equivalence relation   on a set S, and a ∈ S define 
[ ] = {     ∈   

Chinese Remainder Theorem v.1 
If gcd( ,  ) = 1 and a, b ∈ ℤ then we can solve 
   (mod N)
   (mod M)
 ∈ ℤ

Examples of Equivalence Relations
On any set S, the relations x = y is an equivalence relation.

For any N ≥ 1, a   b (mod N) is an equivalence relation

    (mod N)    |(   ) = 0, which is true1.
    (mod N) iff    (mod N)   N|(b-a) iff N|(a-b), which is true2.
If    (mod N) and    (mod N) then N|(b-a) and N|(c-b) so N|(c-a) 3.
⇒    (mod N)

Check:

For real numbers x, y write    if x, y have the same sign (+, -, 0)

Equivalence Classes
   if and only if [ ] = [ ] 

If [ ] = [ ] , then  ∈ [ ] (because  ∈ [ ] by (1)) ⇒    

If    , then  ∈ [ ] 
If  ∈ [ ] , a   b, b   c, so a   c, so  ∈ [ ] 
So [ ] ⊆ [ ] . Also,  [ ] ⊆ [ ] .
Therefore [ ] = [ ] ∎ 

For the equivalence relation     if x, y have the same sign, on ℝ
-<----------------0------------------->
    [ 1]        [0] = {0              [1] 

Question:
Given a ∈ ℤ and M, N, ∈ ℕ if we know the congruence class of a modulo N, do we know 
anything about the congruence class of a modulo M?
i.e. When can    (mod N) and    (mod M) be solved?
  1 (mod 4)
  3 (mod 4) is clearly unsolvable

What about
  1 (mod 4)
   (mod 5) 
 = 1  is a solution
1   0 is also a solution for any k ∈ ℤ 

Chinese Remainder Theorem v.1 
If gcd( , ) = 1 and a, b ∈ ℤ then we can solve 
   (mod N)
   (mod M)
 ∈ ℤ

Given one solution   , the full set of solutions is just the congruence class of   modulo MN.

Equivalence
October-01-10 12:30 PM
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Chinese Remainder Theorem v.1
If gcd( , ) = 1 and a, b ∈ ℤ, then there is a solution x ∈ ℤ to 
   (mod N)
   (mod M)
If   is one solution, then x is a solution iff     (mod MN)

Need gcd( , ) |   

Chinese Remainder Theorem v.2
Let   ,  , … ,  be rational number with gcd   ,    = 1

For all i ≠ j
Let   ,   , … ,   ∈ ℤ. Then there is a solution x ∈ ℤ to 
     (      )
     (      )
…
    (      )
If   is one solution, then x is another  iff   
  (        …  )

Proof of Chinese Remainder Theorem
Want to solve
 =     
 =     
x, y, z ∈ ℤ 
Want 
    =     
   (  ) = (   )
Can solve iff gcd( ,  ) |   
(Prove uniqueness as homework)

Example: Solve
    (mod 17)
  9 (mod 23)
Want to solve
17y +23w = 2
 3 = 1  1   
1 =      
 = 1    1

(  )  1  3   3 = 1
(  )  1     3 =  
 =   
 =   =   
 =     =   1    =  1 9

    (mod 291)
Solution    1 9 (mod 391)

Proof to Chinese Remainder Theorem v.2 by induction on k
(Repeated application of v.1 on groups of two)

Question:
How many solutions are there to    1 (     )?
If N = p ≥ 3 is prime 
   1 (     ) iff    1  0 (mod p)
⇒ (  1)(  1)  0 (     )
Iff   | (  1)(  1)
Iff  |(  1) or  |(  1)
   1 (     )

Now, consider  =   p≥ 3, prime, e ≥ 1
x ∈ ℤ satisfies
   1 (mod p), iff    |(  1)(  1)
By unique factorization, write
  1 =    (                           )

  1 =    (                            )
a, b ≥ e
If a ≠ 0 and b ≠ 0, then p|(x 1) and p|(x-1), so 
p|(x+1)-(x-1) = 2
Impossible because p > 2, so min(a, b) = 0
So b ≥ e or a ≥ e so   |(  1) or   |(  1)
And so     1 (      )

So For p odd (prime), e ≥ 1,    1 (      ) iff  =  1 (      )

For e ≥ 1, how many solutions to
   1 (      )
 = 1 ⇒   1 (     )
 =  ⇒    1 (     )
 ≥ 3:
Suppose    1 (      )
  1 =    (             )

  1 =    (             )
a, b ≥ 0
   ≥  

    ( , )|(  1)

    ( , )|(  1)

So     ( , )|(  1)  (  1) =  
So min ( ,  ) ≤ 1

Chinese Remainder Theorem
October-04-10 12:30 PM
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Case 1:  = 0     = 0
  1 (      )       1(      )

Case  : a = 1, then b ≥ e-1
So     |(  1)
 = 1        
If k is even, then   1(     )
If k is odd, say k = 2m + 1
Then 
 = 1       (1    )
= 1          
 1      (      )

Case 3: b = 1 and a ≥ e-1
Then    1 (      )
Or    1      (      )

The number of solutions to    1 (      ) is
1 if e = 1
2 if e = 2
  if e ≥ 3
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Group

  (    ) = (   )   1.
   =    =  2.
For all a there is an    ∈  with       =  3.

A group is a set G with an operation * and an element e such that

(When a set has an operation, it is closed under that operation)

Commutative
G is commutative iff      =    for all a, b ∈ G

Subgroup
Let G be a group. A subgroup of G is a subset H ⊆ G containing e 
and closed under * and inverse.

Let   be the set of permutations of  {1,  , … ,   
Functions f:{1, …, N  -> {1, …, N  which are invertible
This is a group under "∘"
Given f and f, g ∈   define f ∘g

If f and g are invertible, then f∘g and ( ∘  )  =    ∘    

f(g∘h(x)) = f(g(h(x)))
f∘g(h(x)) = f(g(h(x)))

f∘(g∘h) = (f∘g)∘h1.

f∘e(x) = f(e(x)) = f(x)
Identity element e(x) = x2.

 ∘    ( ) =  
     ( ) =  

Inverses3.

Denote functions by pseudo matrices

 
1  3 …  

 (1)  ( )  (3) …  ( ) ∈   

Examples:
In   

 
1  3
 1 3

  
1  3
3  1

 =  
1  3
3 1  

 

In   

 
1  3  
 1  3

 
 

=  
1  3  
1  3  

 =  

In   

 =  
1  3
 1 3

 

 =  
1  3
 3 1

 

  =  
1  3
 1 3

  
1  3
 3 1

 =  
1  3
1 3  

 

  =  
1  3
 3 1

  
1  3
 1 3

 =  
1  3
3  1

 

So   is not commutative

  , however, is commutative

  =   
1  
1  

 ,  
1  
 1

  

In fact,   is not commutative for N ≥ 3

Example of Subgroup
If G = ℤ (with   as the operation) then for any n ∈ ℕ,   = {a ∈ ℤ : n|a  is a subgroup of ℤ

n|0 so 0 ∈   1.
If a, b ∈    then n|a and n|b so n|(a b) ⇒ (a b) ∈   2.
n|(-a), so -a ∈   3.

Show it is a group:

Exercise: Every subgroup of ℤ is of the form   for some n ∈ ℕ or {0  (=   )
Another example
Mark the corners of a square with 1, 2, 3, 4
Let   be the subset of   consisting of permutations which preserve the square.
Then   ⊆   is a subgroup

Show that   is a subgroup of   and find how many elements there are in   

*Groups and Functions
October-04-10 4:32 PM
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Lemma
If p is prime, e ≥ 1, then    1 (      ) has exactly 2 solutions (      ), unless
 =        = 1 ⇒ 1 solution
 =        ≥ 3 ⇒   solutions

How many solutions are there to    1 (     )?

Theorem

Let  =     
    

  …  
(  )

,   ≥ 1

  if  = 0, 1•

    if e = 2•

    if e ≥ 3•

With p distinct odd primes. Then the number of solutions to    1 (     ) is exactly:

Proof:
Suppose that N is odd so that e = 0

   1        
   

   1        
   

…

   1 (      
  )

Then    1 (     ) iff

If   =   
  , then gcd   ,    = 1 for i, j ≤ k so by CRT

  1 (      )
  1 (      )
…
  1 (      )
⇒   1 (          …  )

   1        
       1        

   

   1        
       1        

   

…

   1        
       1 (      

  )

Each choice of + or - in each congruence defines a unique congruence class modulo N

   1        
   

   1        
   

…

   1 (      
  )

There are   choices of + or - for each congruence so there are   congruence classes mod N 
corresponding to:

So there are    solutions to the congruence    1 (     ) if N is odd

Aside
Example:
   1 (    1 )

Same as solving    1(    3)        1 (     )
Same as solving the four systems of congruencies

  1(    3)   1(    3)    (    3)    (    3)

  1(     )    (     )   1(     )    (     )

   (      )    (      )     (      )     (      )

Proof Cont.
If N is even, write  =      for N' odd
We have 

   1 (     )    
   1 (      )

   1 (      )

There are   distinct values 0 ≤   ,   ,   , …   <   such that    1 (      )

   1 (      )     1 (      ) for e = 1
   1 (      )      1 (      ) for e = 2
   1 (      ) iff    1    1      (      ) for e ≥ 3

    (      ) for some i and
   1, ( 1      ,     ≥ 3)(      )

By CRT, there are   ,     ,     congruence classes mod    corresponding to:

Therefore, there are exactly   ,     ,        congruence classes mod N whose square is 1, 

   1 (     )
October-06-10 12:30 PM
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Therefore, there are exactly   ,     ,        congruence classes mod N whose square is 1, 
depending on if  = 0, 1 e = 2, or e = 3
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In ℤ, the values  ,   ,   ,   , … are all different (if a ≠ 0,   1)

In ℤ , this is not true. If [a] ∈ ℤ [ ], [ ] , [ ] , … , [ ] cannot all be different because there are 
finitely many congruence classes.

When do you get the first repetition?

What happens with addition?
There is some smallest m≥1 such that [ma] = 0 (eg, if N is prime and [a] ≠ 0 then m = N)
 =      ( ,  ) Repeats at (m+1)

Is there a smallest k positive such that [ ] = [1] in ℤ ? If so, what is it?

Fermat's Little Theorem
Let p be a prime and a ∈ ℤ with gcd(a, p) = 1
Then      1(     )

Ex. If a is 2 and p = 7, then    1 (     )

Proof of Fermat's Litter Theorem
Define a function  : ℤ  ℤ 

By  ([ ]) = [  ] = [ ][ ]

Claim: f is a one-to-one (ie.  ([  ]) =  ([  ])     [  ] = [  ]) and onto (ie. Fore every [ ] ∈ ℤ 

there is an [ ] ∈ ℤ with  ([ ]) = [ ])

Proof that f is onto and one-to-one
If [ ] ∈ ℤ , then  ([ ]  [ ]) = [ ]

So everything is in the image of f ⇒ onto.
ℤ is finite so f also has to be one-to-one

Therefore f just permutes the residue classes. 

Since   ([0]) = [0],

= [  1][   ] … [  (  1)]
= [ ][1][ ][ ] … [ ][  1]
= [ ]   [1][ ] … [  1]

[1]  [ ]    [  1] =  ([1])   ([ ])     ([  1])

In other words,
[(  1) ]  [    ][(  1) ]
[(  1) ] ≠ 0, since p∤1, p∤ , … p∤(p-1)
So [(  1) ] has a multiplicative inverse
Multiplying both sides by this inverse gives:
[1] = [    ] or, equivalently      1 (     )

Fermat's Little Theorem: 
If p∤a,      1 (     )
If p∤a and       (      1) then         (     )
Because if   =     (  1)

    (     )
So    =      (   ) =     (    )      1  (     )

Example
Find some 0 ≤ x < 11 (least non-negative residue) such that
          (    11)

By FLT, we only need to know what the exponent is mod 11-1 = 10

  9    (    11)
     (    11)
    (mod 11)

So           (    11)

Midterm, everything up to and including this 
lecture

Fermat's Little Theorem
Let p be a prime and a ∈ ℤ with gcd(a, p) = 1
Then      1(     )

FLT, alternate form
If p∤a and       (      1) then     
    (     )

Fermat's Little Theorem
October-06-10 1:07 PM
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Euler's Totient Function

=                                 ℤ 

For m ≥ 1,  ( ) =             0 ≤  <            gcd( , ) = 1

Euler's Theorem
Let n ≥ 1 and a are integers gcd(a, n) = 1. Then

  ( )  1 (     )

Example:
What is the last (one's) digit of        ?
We want the least non-negative residue of this mod 10

Need to know the least non-negative residue of the  913 3 mod (φ(10)) and we've check that 
gcd(7, 10) = 1

0 1 2 3 4 5 6 7 8 9

No Yes No Yes No No No Yes No Yes

So  (10) = 1
 913 3  1 (     )

By Euler's Theorem:
           (    10)

Example

Find  the least non-negative residue of

     
(    13)

Need to find the least non-negative residue of 1   (    1 )
Need to fine the least non-negative residue of 19 (     (1 ))
 (1 ) =  
19  3       (1 ) 

⇒ 1    1        (    1 )

⇒      
    3    (    13)

Proof
Let U be the set of integers 0 ≤ u ≤ n-1 with gcd(u, n) = 1
By definition,  ( ) =   
Given a ∈ ℤ with gcd(a, n) = 1 define  ([ ]) = [  ] for all [x] in ℤ 

If u ∈ U, then f([u]) is also a unit.

 = {0 ≤  ≤   1           [ ] ∈ ℤ            

[u] by definition has an inverse, gcd(a, n) = 1 so [a] has an inverse
If u ∈ U then [u] is a unit but so is [au] because [  ] = [ ]  [ ]  

Also, we have that f is one-to-one because  ([  ]) =  ([  ]) ⇒ [   ] = [   ]

⇒ [ ]  [ ][  ] = [ ]  [ ][  ] ⇒ [  ] = [  ]
So f sends each [u] with u ∈ U to some unique [v] = [au] with v ∈ U
Therefore f is a permutation of the residue classes [u] for u ∈ U

If  =    ,   , … ,   ( )  then 

[  ][  ]…    ( ) = [   ][   ]…     ( ) 

⇒ ([  ][  ]…    ( ) ) = [ ] ( ) ([  ][  ]…    ( ) )

This gives [1] = [ ] ( ) =    ( ) 

∴   ( ) = 1 (     ) ∎ 

Computing φ(n) 
To compute  ( ) so far, we had to count (explicitly) things with gcd 1

Theorem
Suppose gcd(n, m) = 1. Then  (  ) =  ( ) ( )
(Aside:  is a multiplicative function)

Proof
Given that gcd(n, m) = 1, then for each 0 ≤ a < n and 0 ≤ b < m, there is a unique 0 ≤ c < nm such 
that 
    (     )
    (     )
    (      )

Suppose that gcd(a, n) = gcd(b, m) = 1
And suppose that for the c constructed by the CRT, gcd(c, mn) ≠ 1
Then for some prime p, p|c and p|mn. Then p|m or p|n. suppose p|m. 
But c   b (mod m), say b = c   km, k ∈ ℤ but then p|c and p|m means p|b
But gcd(b, m) =1, contradiction. So the supposition that g(c, mn) ≠ 1 is false

So gcd(a, n) = gcd(b, m) = 1 ⇒ gcd(c, mn) =1

Suppose that gcd(c, mn) = 1

Euler's Totient Function

=                                 ℤ 

For m ≥ 1,  ( ) =             0 ≤  <
   .  . gcd( ,  ) = 1

Euler's Theorem
Let n ≥ 1 and a are integers gcd(a, n) = 1. Then

  ( )  1 (     )

Theorem
Suppose gcd(n, m) = 1. Then  (  ) =  ( ) ( )

If p is prime, e ≥ 1, then
 (  ) =     (  1)

Euler's Theorem
October-08-10 1:00 PM
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Suppose that gcd(c, mn) = 1
If p|a and p|n (if gcd(a, n) ≠ 1), then
    (     ),      =     so p|c.
So p|c and p|mn, a contradiction so gcd(a, n) =1
Similarly, gcd(b, m) = 1 b y the same argument.
So gcd(c, mn) = 1 ⇒ gcd(a, n) = gcd(b, m) = 1

So gcd(a, n) = gcd(b, m) = 1   gcd(c, mn) = 1

So every pair a, b with 0 ≤ a < n and 0 ≤ b < m defines a unique 0 ≤ c ≤ mn such that

 
    (     )

   (     )
      (      )

And gcd(c, mn) = 1 iff gcd(a, n) = gcd(b, m) = 1
So the number of 0 ≤ c < mn with gcd(c, mn) = 1
Is equal to the number of pairs (a, b) with
0 ≤ a < n, gcd(a, n) = 1
0 ≤ b < m, gcd(b, m) = 1
 (  ) =  ( ) ( )

This shows that if 
 =   

    
  …  

  , then 

 ( ) =     
       

   …    
   

(if the   are distinct)

 (  ) =
    0 ≤  <       gcd( ,   ) = 1
=         0 ≤  <   with gcd( ,   ) ≠ 1
=        

Because gcd( ,   ) ≠ 1iff p|s, which happens iff s = pr with 0 ≤  <
  

 
  =     

Lemma
If p is prime, e ≥ 1, then
 (  ) =        =     (  1)

Example
 (1000) =  
 (1000) =  (     ) =  (  ) (  ) =   (  1)  (  1) =  00
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Encoding
Translating data into numbers
(In general, one type of data into 
another type of data)

Ex. Text: Unicode, ASCII

Encrypting
Translating data into some form which 
is hard for other people to read. 

Basic Problem:
Send a message from person A (Alice) to person B (Bob), in such a way that the message cannot be 
read by anyone else if intercepted. 

One-time Pad
Shift each character by some amount given by the pad, and that is the encrypted message. 
Unbreakable.
But how do Alice and Bob share the same pad? They need some common secret to start with. 

Is there any easy way for Alice and Bob to generate a common secret over open communication?
Mathematically, no (barring quantum mechanics). But practically, yes.

Diffie-Hellman Key Exchange
Used to generate a common secret "key" or secret number.

Using successive squaring, Alice and Bob can generate a key very quickly. Eve takes a long time to 
figure out the key.

Algorithm
Alice and Bob choose a large prime p, and some 0 < g < p , g ∈ ℤ 
Public: p and g

Choose g so that    1 (     ) for 1 < k < p-1
In secret, Alice chooses an integer a and Bob an integer b. 
Alice computes the least non-negative residue of   (     ) and sends this to Bob. Bob sends the 
least non-negative residue of   (     )

Public:   (     ),   (     )

Now, Alice computes     
 

=    

Bob computes (  ) =    

The least non-negative reside of    (mod p) is the secret. 

If Eve intercepts g, p,   (     ),       (     ), then she needs to solve:
Discrete Log Problem
Given p, g (mod p), and   (     ), find a (mod p-1)

To solve this, compute   (mod p) for 0 ≤ k ≤ p -1

Examples
Suppose p is some large prime. Find a such that
  = 9  (    101)

We hope (think) that the computations Alice and Bob need to do are a lot faster than the one Eve 
needs to do

Successive Squaring
Very fast way to compute   (     )

 =                  

Write a as a sum of powers of 2 (in binary)1.

   (     )

(  ) =    
(     )

…

   
(     )

Compute2.

  =                   =     (  )         
  

 (     )3.

Example
Compute        (         )

10   =                 0 

   
    (         )

   
     (         )

   
 90   (         )

… 

   
 1   3 (         )

    
 1   0 (         )

    
 10  3 (         )

 10009 (         )
       10  3  1   0  1   3      

Suppose you have a function (on a computer): multiply_mod_p(x, y) which takes a fixed amount of 
time (depending on p)

Encryption
October-15-10 12:34 PM
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time (depending on p)

Calculating   (     ) by repeated multiplication takes approximately a uses of this function. 
 (  ) where n is the length of a in binary

For successive squaring, we need to square k times, where k is largest power of two less than (or 
equal to) a.
  ≤  ⇒  ≤ log  
To construct    (     ) from this we have to do at most k more multiplications. 
  of calls of multiply_mod_p ≤  log  
O(n) where n is the length of a in binary

So Alice and Bob can generate the keys exponentially faster than Eve can break the key

Example
Assume that 1 multiplication takes  10   

a Alice & Bob Eve

1000 0.053s 1s

10 0.079s 17 min

10 0.106s 24 hours

10  0.2657s 3.17 billion years
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Diffie-Hellman Key Exchange
Reasonable for communication between two equal parties, Alice and Bob. But it requires both to do 
work so it is less reasonable for things like e-commerce. If there a central hub receiving lots of 
encrypted information, they have to spend time setting up a key with each partner.

Alice should be able to post a "public key" which people can use to send her encrypted messages.
Cannot use the concept of a one time pad to be able to send/receive messages

RSA (Rivest-Shamir-Adelman)

Alice chooses two large primes p and q and computes m = pq,  ( ) = (  1)(  1)•

Hopefully not e = 1 or e =  ( )  1

She then chooses 1 ≤  ≤  ( ) with gcd  ,  ( ) = 1•

(Using Bezout's and Euclidean Algorithm)
Then compute d such that    1 (     ( ))•

Creating the Key

Public Key: m and e
Private Key:  ( ) and d (forget p, q)

Encrypting the Message
If Bob wants to send a message a, 

1 ≤ a < m•
gcd ( ,  ) =1, this is very likely since the only possibilities are 1, p, q•

Bob's message needs to satisfy:

Bob computes   (     ) - can by done very quickly by successive squaring and sends that

Public:   (     )

Decrypting the Message
Alice gets   (     )
She computes (  )        (     ) by Euler's Theorem since    1       ( ) 

Cracking
How can Eve, using m, e, and   (     ), find a (mod m)
Even needs to figure out d, so needs to solve    1       ( ) 

She needs to know  ( ). If you can factor m you can easily compute  ( )

How do you factor m? 
It is the product of two primes, so you just have to find a factor.

In fact, if m = pq, it turns out that computing  ( ) is just as hard as factoring m.
Suppose we know m and  ( ). 
Then   =       (  1)(  1) =  ( )

(  1)  
 

 
   1 =  ( )

(  1)(   ) =  ( ) 
(          ) =  ( )

   ( ( )    1)   = 0
Can solve for p using the quadratic formula, so factoring m must be at least as fast as finding  ( )

We suspect that it is hard (not polynomial time) to factor integers. 

Chance that Bob's Message is relatively prime to m
 

 
  possible a which are divisible by p and 

 

 
  which are divisible by q so

   
 

 
   

 

 
  =  (1  

 

 
  

 

 
 ) different messages are OK. The proportion of messages which will work 

is ≥ 1  
 

 
  

 

 
 

Example of RSA
Alice chooses p = 31, q = 37 so m = 1147.  ( ) = 30  3 = 10 0
Public Key: m = 1147, e = 419
 =  99 because  99   19  1 (    10 0)

Bob want to send "917". gcd(11  , 91 ) = 1
Bob computes 91       3 (    11  )
Public Cyphertext:   3 (    11  )

Alice gets this and computes
  3    91  (    11  )

Successive squaring1.
Euclidean Algorithm2.

Creating the key and encrypting/decrypting use

Running Times
Successive squaring is fast (polynomial time). The time it takes is roughly proportional to the 
number of digits of the numbers involved (linear time)

Public Key Cryptography
October-20-10 12:32 PM
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The Euclidean algorithm is also polynomial time.

Breaking the key requires factoring, which is slow.

   MATH 145 Page 30    



How do you factor numbers?

Pollard p-1 "Algorithm"
Not guaranteed to work but it is fast if it does work.

Idea:
Want to factor  =   (or anything else)

Pick   <  . If gcd(a, m) ≠ 1, we're done. 

If  (  1)| , then    1 (     )

So  |(   1)
If we compute      1 (     )

 | gcd a  1, m = gcd(b,m)

Hopefully gcd(b, m) is not m, if it isn't then we have another multiple of p

In general, it's possible that    1 (     ) for some k smaller than p-1
We chose a "likely candidate" k,
compute      1 (     ) and gcd    1,  = gcd( , )

This is a divisor of m. If it is 1 or m, this tells us nothing. But maybe it isn't. 

This works best if k has a lot of small prime factors. k is usually chosen so:
 =    ( , 3,  ,  , … ,  )

Example
 = 1 3
 =  
 =    ( ,3, ) = 1 
Calculate       1 (    1 3)

    9  (    1 3)   
  91 (    1 3)

gcd(    1, 1 3) = gcd(91, 1 3) = 13

So 143 = 13 × 11

Example
 = 391
 =  
 =    ( , 3,  ) = 1 
    1  1   (    391)

gcd(    1, 1  ) = gcd(1  , 391) = 1

Try again:
 =    ( , 3,  ,  ,  ,  ) =   0
     1   9 (    391)
gcd( 9, 391) = 1

And again:
 =    (1,  , 3,  ,  ,  ,  ,  ) =   0
Don't need to recalculate everything. k = 2 ×       in this case

    = (    ) 

     1  1 3 (    391)
gcd(1 3, 391) = 1 
 =  3  1 

Factoring Numbers
October-22-10 12:55 PM

   MATH 145 Page 31    



Back to Euler φ function
Recall, if gcd(m, n) = 1 then  ( ,  ) =  ( ) ( )

Obvious, Trivial Examples of Multiplicative Functions
 ( ) = 1 ∀ n
 ( ) =   ∀ 

Less Trivial Examples

 (  ) =  
    

  …  
   =   

 ( ) =                                  

Theorem
If g is a multiplicative function, then

 ( ) =    ( )

 

 | 

Is multiplicative.

Proof of Theorem

Lemma
Let gcd( ,  ) = 1, and d|mn. Then d can be written in one and only one way as d=ab with a|m and 
b|n.

Proof of Lemma
Let  =     ( , m) an   =    ( ,  ). Then gcd(a, b) = 1 and a|d and b|d so ab|d.
On the other hand,
 = gcd( ,  ) | gcd( ,  ) gcd( , ) =   
So d|ab, thus d = ab leave uniqueness as an exercise. 

Proof of Theorem
If gcd( ,  ) = 1 then

 (  ) =   ( )

 

 |  

=     (  )

 

 | 

=    ( )

 

 | 

    ( )

 

 | 

 =  ( ) ( )

 

 | 

Example
Let d(n) be # of divisors of n
d(1) = 1
 (  ) =   1
So if  =   

  …  
  then  ( ) = (   1)(   1) … (   1)

Example:
 (1000) =  (     ) = (3  1)(3  1) = 1 

Set

 ( ) =   

 

 | 

So σ  is multiplicative.
 ( ) = 1    3   = 1 
 ( ) = 1     =  
 ( ) = 1   =  

If  =   
  …  

  , what is  ( ) 

Well,

 (  ) = 1           =
     1

  1
        

 ( ) =  
  

     1

   1
          … 

  
     1

   1
         

Example
     = 1  1 = 3  13 

 (1  1) =  
3  1

 
        

13  1

1 
        =  3 9

Perfect Numbers
A number is perfect if it is the sum of all it's positive divisors other than itself. 

 ( ) =   

 

 | 

=   

 ( ) = 1    3 =  so 6 is perfect
 (  ) =  (   ) =  ( ) ( ) =    =   =     

Multiplicative Function
 :ℕ  ℝ is multiplicative if and only if 
gcd( ,  ) = 1 ⇒  (  ) =  ( ) ( )

Theorem
If g is a multiplicative function, then

 ( ) =    ( )

 

 | 

Is multiplicative.

Sigma

 (  ) =
     1

  1
        

Perfect Numbers
A number is perfect if it is the sum of all it's 
positive divisors other than itself. 

Multiplicative Functions
October-25-10 12:33 PM
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The set of complex number is  = {    :  ,  ∈ ℝ 

Where i is a symbol have the property   =  1

We define addition and multiplication on  
 =     ,  =     ∈  
   = (   )   (   )
   = (    )(    ) = (     )   (     )

Theorem
 is a field
If  =      ≠ 0, z has a multiplicative inverse

   =
1

    
      =

    

(    )(    )
              =

 

     
        

  

     
       

Check Everything Else

Definition 
If  =     ∈  
    is the standard form of z

 =   ( ) is the real part of z
 =   ( ) is the imaginary part of z

(x, y) are the Cartesian coordinates

Complex Numbers
Geometric representation of  
The function  :   ℝ is a bijection       ( ,  )
Check ( ,  ) corresponds to parallelogram law of addition of vectors

Exercise
Write the standard form of (1   )  

(1   )  =
1

(1   )        =
1

1  1    
         =

1

  
   

  

  
   =  

 

 
  = 0  

1

 
   

If  =     ∈  

The complex conjugate of        =    

The modulus (or absolute value) of z is | | =               

 Theorem (Properties of   )

           =      1.
      =      2.
   =  3.
   = | | 4.
    =   5.
    =     6.

 ≠ 0,    =
  

| |
   7.

If  =     ,  =     ∈  

| | = 0   = 01.
|  | = | |2.
|zw|=|z| |w|3.
|z| ≥ x, |z| ≥ y4.
Triangle inequality |   | ≤ | |  | |5.
|   | is the distance between z and w in ℝ 6.

Properties of |z|

Polar Coordinates
 = | |
Coordinate: ( ,  )

*Complex Numbers
October-25-10 4:40 PM
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Polar Coordinates

Let  =     ∈  
Let  = | |,  =                                         

 = tan  
 

 
  

(r, θ) - the polar coordinates for z
 ∈ ℝ,  ≥ 0
 ∈ ℝ,  is not unique
0 = (0,  )

Other notation:
 =  (cos    sin  ) =        

Converting from polar to standard form

From polar to standard form
  =        ⇒  =  cos      sin  

From standard to polar form
 =     

 =       
        

= | |

tan  =
 

 
  ,                      ( ,  )

 =  cos  
 

 
     sin  

 

 
   =

   
   

 
      

   
   

 
    

Write  =       
 

 
  in standard form1.

 =  

tan  =
1

 3
   

   , tan
 

 
  =

1

 3
   

                      

 =   
 

 
  

 =        
  

 
    

Write  =    3
   

   in polar form2.

Examples

Theorem
Let   =        (  ),   =        (  ) be complex numbers
Then     =          (     )

    = (  cos       sin   )(  cos       sin   )
=     cos   cos       sin   sin     (    cos   sin        sin   cos   

=     cos(     )       sin(     ) =          (     )

Corollary (De Moivre's Theorem)
(       ) =        (  )  ∈ ℕ,  ∈ ℝ ≥ 0,  ∈ ℝ

Write  1   3
     

 
in standard form.

Convert to polar form  1   3
     

 
=         

 

 
  

         
 

3
    

 

=          
  

3
    =   

Theorem (Roots of Complex Numbers)
Let  =        ,  ∈ ℕ
Then the nth complex root of z ( ∈     =  )

are  
 

 
       (

*Complex Numbers cont.
November-01-10 4:31 PM
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Is   perfect? 

 (  ) =
     1

  1
        =      1 ≠      

What about other numbers?

Write n =    where m is odd
 ( ) =  (  ) ( ) = (     1) ( )

If n is perfect the σ(n) =  n =      

So (     1) ( ) =      
and thus
    | ( ) and      1| 

So there is a k such that  = (     1) 
So  ( ) =      
So  | ( )

m and k are both divisors of m and m+k = (     1)   =      =  ( )
So m has only two divisors, so m is prime.

So m has only two divisors and thus m is prime, which implies k =1. Since  =      1 is prime, 
e+1 is prime.

Set p  = e+1 (since primes should be called p)
Then e = p-1 so  =     (   1)

Theorem
Let n be an even number. Then n is perfect if and only if  =     (   1) for some prime p such 
that    1 is also prime.

To see the other way

(   1) is prime so  (   1) =
(    )   

(    )  
        =

 (    )    (    )   

(    )  
                 =   

(    ) is not prime so  (    ) =
    

 
    =    1

      (   1) =  (    ) (   1) = (   1)(  ) =       (   1)

Probably not, but we can't show how.
Are there any odd perfect numbers?

Mersenne Number
A number of the from    1 is called a Mersenne number.

Mersenne Prime
A prime of the from    1 is called a Mersenne Prime
⇒ n is prime

However, if p is prime then    1 is not necessarily prime

Conjecture
There are infinitely many Mersenne Primes

*** In homework, this alone makes no sense ***
For example, if e is odd, p is prime (n is odd)
 (  ) = 1           =     
but   does not divide 2n,
at most one exponent of   or  =   

  …  
  can be odd.

*** end of nonsense ***

Identify an multiplicative function, want to know when  ( ) =  ( )

You need only show that      =      for all prime powers   

Theorem
For any n, 

  ( ) =  

 

 | 

Proof
Since  is multiplicative, so is 

 ( ) =   ( )

 

 | 

     =    ( )

 

 |  

=  (1)   ( )         = 1    1                        

=    
∎ 

Question:
If we have 

Theorem
Let n be an even number. Then n is perfect if and 
only if  =     (   1) for some prime p such 
that    1 is also prime.

Mersenne Prime
A prime of the from    1 is called a Mersenne 
Prime
⇒ n is prime

Theorem
For any n, 

  ( ) =  

 

 | 

Perfect Numbers
October-27-10 12:33 PM
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If we have 

 ( ) =   ( )

 

     

Can you tell what g is? Yes
Ex.

  ( )

 

     

=  

Gives us a formula for φ 
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g(n) is NOT the function denoting the number of divisors of n, it is a placeholder function

If 

 ( ) =   ( )

 

     

Then can we get a nice expression for g(n)?

The simplest multiplicative function is

 ( ) =   
1     = 1
0     > 1

Find a g such that

 ( ) =   ( )

 

     

If p is a prime, then  ( ) = 0
So we need  ( ) =  1 since

  ( )

 

     

=  (1)   ( ) = 1   ( ) = 0 =  ( )

So  ( ) =  1      (1) = 1

  ( )

 

     
 

=  (1)   ( )   (  ) = 1  1  0 = 0

So  (  ) = 0

So g is given on prime powers by 

 (  ) =   

1     = 0
 1     = 1
0     > 1

Mobius Function
This is called the Mobius function, and is denoted by  

 ( ) =   
0      | 

( 1) ,  =           

Lemma
 is multiplicative

Proof
Let  ,  ∈ ℕ and gcd(m, n) = 1.
If   |   then   | or   | 
So that  (  ) = 0 =  ( ) ( )

Now suppose that m and n are square free and write  =   …  and  =   …  

Since gcd( ,  ) = 1,   ≠   for any  ∈ {1,  , … ,         ∈ {1,  , … ,   

 (  ) = ( 1)   = ( 1) ( 1) =  ( ) ( )

Theorem

 ( ) =   ( )

 

     

Proof
 = 1 is obvious.  ( ) =  (1) = 1
If  =         ≥ 1,           = 0       ( ) = 1  1  0  0    0 = 0 

     
 

Mobius Inversion
If g is a multiplicative function and

    ( ) =   ( )

 

     

,       ( ) =   ( )  
 

 
   

 

     

Proof
Assume 

 ( ) =   ( )

 

     

Then

   
 

 
=     

 

 
 
 

 

  

=    ( )

 

   

=     

 

 
 
 

 

  

 

  

Characteristic / Identify Function

 ( ) =  
1     = 1
0     > 1

Mobius Function

 ( ) =   
0      | 

( 1) ,  =           

if n is the product of s distinct primes

Lemma
 is multiplicative

Theorem

 ( ) =   ( )

 

     

Mobius Inversion
If g is a multiplicative function and

 ( ) =   ( )

 

     

,     

  ( ) =   ( )  
 

 
   

 

     

*don't need to know below this line*

Prime Number Theorem

lim
    

 ( )

 
 

log       
       = 1

Riemann Hypothesis
For any ε > 0

lim
   

 
(  ( ) 

   )

 
 
     

            = 0

Mobius Inversion
October-29-10 12:35 PM
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  ( )  
 

 
   =   ( )

 
  ( )

 

    
 
 
    

 

 

     

=   ( ) ( )

 

      

=   ( )
 

  ( )

 

    
 
 
    

 

 

( | )

 

     

=   ( )

 

( | )

  
 

 
   =  ( )

∎

Example
We have

 =   ( )

 

     

,   

 ( ) =   ( )  
 

 
  

 

     

If  =   

 ( ) =   ( )
  

 
   

 

      

=        1 = (  1)(  1)

Example

 ( ) =  1

 

     

   

1 =   ( )  
 

 
   

 

     

Why is  interesting?

Prime Number Theorem
Not proving here PMATH 740 level

lim
    

 ( )

 
 

log  
     

       = 1

This is equivalent to 

lim
   

 
  ( ) 

   

 
          = 0

Riemann Hypothesis
For any ε > 0

lim
   

 
(  ( ) 

   )

 
 
     

            = 0

(Worth $1000000 if solved)
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Definition of a Polynomial
If R is a commutative ring, then let R[x] be the set of polynomials with coefficients in R. 

 ( ) =                        =     
 

 

   

,   ∈  

Consider them not as functions but as objects

Note also polynomials always have positive degrees since  ≥ 0

R[x] as a Ring
Adding and multiplying polynomials:

    
 

 

 

     
 

 

 

=  (     ) 
 

 

 

     
 

 

 

      
 

 

 

 =        

 

     

 

 

 

  

Can check that R[x] is also a commutative right, with 0 and 1 being the constant polynomials 0 and 1

The degree of a polynomial

    
 

 

   

Is the largest d such that   ≠ 0. The zero polynomial has degree   

Note
If F is a field, and  ( ),  ( ) ∈  [ ]
Then deg(  ) = deg( )  deg( )

Example of a ring where this doesn't work:
 = ℤ 

 ( ) = 3   1 <- Degree 2
  ( ) =       <- Degee 5
 ( ) ( ) =     3        =     3     <- Degree 5

Why does it work in a field?
        (   

   ) =      
      

If the coefficients are in a field, F and   ≠ 0,   ≠ 0, then     ≠ 0

Claim
Let F be a field, and  ( ) ∈  [ ] be a unit. Then f(x) is constant. 

Proof
If  ( ) ∈  [ ] with fg = 1, then
deg( )  deg(g) = deg(fg) = 0
 ≠ 0      ≠ 0,   deg( ) , deg( ) ≥ 0
So deg( ) = deg( ) = 0

Algebra with Polynomials
If F is a field, then algebra in F[x] is a lot like algebra in ℤ 
We really need F to be a field, or things are not like ℤ 

Example
In ℤ, if   = 1, then a ± 1. If F is a field then this is true in F[x]

Case when not a field: If f(x) ∈  ℤ [ ] then (  ( )  1) =    ( ) 
 

   ( )  1 = 1

Lemma: Division on Polynomials 
Let F be a field, and f(x), g(x) ∈ F[x] (non-zero). Then there are polynomials q(x) and r(x) such that 
 ( ) =  ( ) ( )   ( ) and deg( ) < deg( ) . Furthermore, q(x) and r(x) are unique. 

Proof
We can assume that deg( ) ≥ deg ( ), otherwise q = 0 , r = g works.

Proceed by induction on the degree of g.
Base Case:
If deg(g) = 0, then either deg(g) < deg(f) (done!) or else f(x) and g(x) are both constant. 
If  ( ) =   ,  ( ) =         

 ( ) =
  

  
    ( )  0

Induction Step:
Assume that for any   ( ) ∈  [ ] with deg(  ) < deg ( ) we can write 
  ( ) =   ( ) ( )    ( ), deg(  ) < deg ( )
Write  ( ) =      [                        ]
and  ( ) =    

  [                 ],   ≠ 0
deg(g)≥ deg(f) so d ≥ e

       =    
  

  
      

Definition of a Polynomial
If R is a commutative ring, then let R[x] be the set 
of polynomials with coefficients in R. 

 ( ) =     
 

 

   

,   ∈  

R[x] as a Ring
Adding and multiplying polynomials:

    
 

 

 

     
 

 

 

=  (     ) 
 

 

 

     
 

 

 

      
 

 

 

 =        

 

     

 

 

 

  

Note
If F is a field, and  ( ),  ( ) ∈  [ ]
Then deg(  ) = deg( )  deg( )

Constant Units
Let F be a field, and  ( ) ∈  [ ] be a unit. Then 
f(x) is constant. 

Division on Polynomials 
Let F be a field, and f(x), g(x) ∈ F[x] (non-zero). 
Then there are polynomials q(x) and r(x) such that 
 ( ) =  ( ) ( )   ( ) and deg( ) < deg( ) .
Furthermore, q(x) and r(x) are unique. 

Useful Fact:
deg(   ) ≤ max{deg( ) , deg( ) 

Other Useful Fact:
 ( ) =  ( )(   )   ( )

Corollary to the Division Algorithm
If F is a field,  ( ) ∈  [ ], and  ∈  , then  ( )=0 
iff (   )| ( )

Polynomials and Divisibility
November-01-10 12:30 PM
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      ( ) =  ( )  
  

  
    ( )    

Write out the first term 

  ( ) =          
  

  
       (   

   )

  ( ) =                  =                                = deg( )

So deg(  ) < deg( )

By the induction hypothesis, we can write
  ( ) =   ( ) ( )   ( )       ,  ∈  [ ]   deg( ) < deg( )

Since  ( ) =   ( )  
  

  
       ( ), we get

 ( ) =
  

  
        ( )   ( ) ( )   ( ) =  

  

  
          ( )  ( )   ( )    deg( ) < deg( )

So take  ( ) =
  

  
         ( )

By induction, this is true for all polynomials. ∎ 

Proof of Uniqueness
Suppose that 
 ( ) =   ( ) ( )    ( )      ( ) =   ( ) ( )    ( )
Then 0 =              so      =  (     )
Since F is a field, deg(     ) = deg( )  deg(     )
If      ≠ 0,      
deg(     ) ≥ deg( )

Useful Fact:
deg(   ) ≤ max{deg( ) , deg( ) 

but deg(  ) , deg(  ) < deg( ) ,   deg(     ) < deg( )

That is a contradiction, so   =   ,      =   
Therefore,  ( )     ( ) are unique. 

This proof also shows how to do the division algorithm using long division.

Example: 

                       
Long divide    1 into        1 and fine the quotient q(x) and remainder r(x)

       1

   3
      

         
   1 |        1

So  ( ) =          ( ) =    3 ⇒ (       1) = (   )(   1)  (   3)

Corollary to the Division Algorithm
If F is a field,  ( ) ∈  [ ], and  ∈  , then  ( )=0 iff (   )| ( )

Proof
By the division algorithm, we can write  ( ) =  ( )(   )   ( ) where 
     ( ) <    (   ) = 1,     ∈  is a constant. 

So  ( ) =  ( )(   )   =  ( )  0   =  
 ( ) =  ( )(   )   ( )

If  ( ) = 0,       ( ) =  ( )(   ),    (   )| ( )
Conversely, if  ( ) = (   ) ( )           ( ) ∈  [ ],     ( ) = (   ) ( ) = 0
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Division on a commutative ring
For any commutative ring R, we say that a divides b 
(for a, b ∈ R) if and only if b = ac for some c ∈ R, a|b.

Division on a polynomial field
If F is a field and  ( ),  ( ) ∈  [ ], then  ( )| ( )
means    ( )|   ( ) for any   ,   ∈  

GCD for Polynomials
Let F be a field,  ( ),  ( ) ∈  [ ]

d|f and d|g1.
if  ( ) ∈  [ ] with e|f and e|g then e|d2.

 =      
There exist  ( ),  ( ) ∈  [ ] with 3.

There is a polynomials  ( ) so that

Call the GCD of f and g the polynomial d which 
satisfies all of these properties and is monic. 

Monic
 ( ) ∈  [ ] is monic if 
 ( ) =                 

Example of division on polynomials
(  1)|(   1)     ℚ[ ] but also (    )|(   1)

(   1) = (    )  
1

 
     

1

 
    

1

 
   

Theorem (Euclidean Algorithm for Polynomials)
Let F be a field,  ( ),  ( ) ∈  [ ]             

d|f and d|g1.
if  ( ) ∈  [ ] with e|f and e|g then e|d2.

 =      
There exist  ( ),  ( ) ∈  [ ] with 3.

There is a polynomials  ( ) so that

d is not unique
If d has those properties then so does cd for any  ∈  ,  ≠ 0
If   is another polynomial with all of the same properties, then  ( ) =    ( ) for some non-zero 
 ∈   (       |         | )

Observation
If F is a field and  ,  ∈  [ ] then  |       | iff  =   for some c ∈ F, c ≠ 0

Proof
If  =   then g|f, and  =     , so f|g
If  |       | , deg(f)=deg(g). So  =   for some  ∈  [ ], deg(h)=0, so  =  ∈  

Proof of the Theorem (Euclidean Algorithm for Polynomials)
We can suppose that deg( ) ≥ deg ( )
Using the division algorithm, write 
 =       , deg(  ) < deg ( )
 =        , deg(  ) < deg(  )
…
Eventually,   = 0

    =        0

Then the GCD is     (made monic) (proof of 1.)

 =     |    

  |              =     

… etc. Eventually see  |       | 

 = 1                   

but     =              ,   

 = (1)                             = ( )     ( )    = ( )  ( ) .

(proof of 3.)

Now, if e|f and e|g, then  |     =  (proof of 2.)
∎ 

Example
Find the GCD of
 ( ) =             
 ( ) =    3       3  1

Step 1: write  =       ,   = 1,   =            1

            
 

 
   

  

  
  

Now write  =        

    
1 

 
         

1 

 
     1

11

  
      

11

  
   

 
1 

 
      

1 

  
      

1 

 
     

1 

  
   

          
 

 
       

 

 
  

           1|   3       3  1

So   =  
 

 
   

  

  
  ,   =

  

  
     

  

  
  

Now want to write

 
1  

11
     

  

11
   

  =        

      1

0
      1

       0     0

11

  
      

11

  
   |            1

 =
11

  
      

11

  
      gcd  ( ),  ( ) =    1

Find s and t so that      =    1

   1 =  
 

11
     

1 

11
     ( )    

 

11
     1  ( )

GCD of Polynomials
November-03-10 1:10 PM

   MATH 145 Page 41    



GCD for polynomials over F   GCD for integers

   MATH 145 Page 42    



Unique factorization for polynomials

Theorem
Any non-zero polynomial  ( ) ∈  [ ] can be written as  =    

    
       

  where a ∈ F
  ∈  [ ] are distinct, monic and irreducible, and   ≥ 1. This representation is unique (up to 
order)

Lemma
If  ,  ,  ∈  [ ] and gcd( ,  ) = 1 and  |  , then  | . 

Proof
Choose  ,  ∈  [ ] so that      = 1
 =   1 =  (     ) =        
 |       |  so  | 
∎ 

Corollary
If  is irreducible, and  |    …   , then  |  for some i

Proof (For r = 2)
Suppose that p is irreducible and  |    

gcd( ,   ) is a divisor of p(x) 
So gcd( ,   ) = 1      for some c ∈ F
If gcd( ,   ) =   , then   |       |  

If gcd( ,   ) = 1 then the previous lemma gives  |  

∎ 
For r > 2
Induct over r, either divides    or divides     …    , in which case p divides one of those

Proof of Factorization

    ( ) =       , then 
 

 
  ( ) is monic. 

So we'll assume that f(x) is monic (because we can just multiply by a at the end)
Want to show that f(x) can be written as the product of irreducible monic polynomials. 
By induction on the degree of f. 

Base Case: deg(f) = 1
Then  ( ) =    for some  ∈  
f(x) is irreducible, so can write f as a product of itself.

Induction: Suppose that the statement is true for polynomials of degree < degree(f)

 ( ) =      
 ( ) =      

If f is irreducible then we're done. If not, then  ( ) =  ( ) ( ) with deg(g), deg(h) < deg(f) say,

 ( ) =  ( ) ( ) =    ( )      ( ) = (    )(    )
 ( ) = (     )(     ) =       ,      = 1

So f can be factored into two monic polynomials. By the induction hypothesis, both   ( ) and 
    ( ) can be written as a product of monic, irreducible polynomials. 
So f(x) can be written as the product of monic, irreducible polynomials.

By induction, any monic polynomial can be written as a product of monic irreducible polynomials. 
If  ( ) ∈  [ ] is non-zero (possibly not monic) then  ( ) =    

    
  …  

   as in the theorem.

∎ 

Proof of Uniqueness
Suppose that 
   

    
  …  

  =    
    

  …  
  

with a, b ∈ F non-zero,   ,   monic and irreducible, and   ,   , ≥ 1
Multiplying out, a is the coefficient of the highest power of x in    

    
  …  

  and b is the coefficient 

of the highest power of x in    
    

  …  
  so a = b.

Now we want to show that   
    

  …  
  =   

    
  …   

  ⇒              (             )

Induction on the number of factors. Total number of factors on the left is n=           

Base Case: n = 1
   =  =   

    
  …  

  

RHS should not be the product of two or more monic irreducible polynomials, since p is irreducible. 
So RHS = q, and p = q
So we're done if n = 1

Induction: Suppose that this is true for products of fewer than n monic, irreducible polynomials. 
If     

    
  …  

  =   
    

  …  
  , then with  =          , then   is monic, irreducible, and 

  |  
    

  …  
  .

By the corollary,   |  for some j. But   is also irreducible and monic, so   =   

So   
    

  
  …  

  =   
  …  

    
…  

  

By the induction hypothesis, the polynomials on the LHS are the same as the polynomials on the 
RHS, up to order. 

By induction, the representation is unique. ∎ 

Irreducible Polynomial
A polynomial  ( ) ∈  [ ] is irreducible iff whenever
 ( ) =  ( ) ( ),  ,  ∈  [ ], then g or h is constant.
(In other words, degree of its divisors can only be 0 
or the degree of itself) 

Unique Factorization for Polynomials
Any non-zero polynomial  ( ) ∈  [ ] can be written 

as  =    
    

       
  where a ∈ F

  ∈  [ ] are distinct, monic and irreducible, and   ≥
1. This representation is unique (up to order)

Lemma
If  ,  ,  ∈  [ ] and gcd( ,  ) = 1 and  |  , then  | .

Corollary
If  is irreducible, and  |    …   , then  |  for some 
i

Factorization of Polynomials
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Elliptic Curve: Simple Explanation
Solutions to an equation of the from   =        , 
where a and b are given (in some field).

Want         ≠ 0, ensures the equation has three 
distinct roots (in the complex plane)

Example
  =    1,  = ℝ

Elliptic Curves are Groups

Addition of Points

Example: Let  :   =    1

The equation of the line is 
 =   1
(  1) =    1
      1 =    1
        = 0 =  (  1)(   )
 =  1, 0,  
  =    1 ⇒  = 3

So ( 1, 0)  (0, 1) = ( ,  3)

What about when P = Q?
The line should be the tangent line

What about when the line is vertical?
Need to add a "point" O, which is on all 
vertical lines. The reflection of O is O

(0, 1) + (0, -1) = O

Fact
This operation makes the points on the curve (along with O) into a group, with O as 
the identity. 

P+O = P for all O on C1.

So -(x, y) = (x, -y)
For every P on the curve, there is a -P such that P+(-P) = 02.

P+(Q+R)=(P+Q)+R3.

For all points P and Q,    =    (abelian group)

If P and Q have ℚ coordinates, then the line joining P and Q has rational coefficient. 
Therefore the third point must have rational coefficients. 

If P and Q have coefficients in any field F, so does P+Q

Example
On   =    1
Calculate  ( , 3)

  
  

  
   = 3  ⇒

  

  
   =

3  

  
   

At ( ,  3), the slope of the tangent line is 
  

  
  =   

Tangent line:  =     1
   1 = (    1) 

   1 =        1
         = 0 ⇒  (   ) 

So the third point of intersection is (0, 1)
So  ( ,  3) = (0,  1)
Interpret tangents as double intersections
Inflection points are interpreted as triple intersections.
(0, 1) is an inflection point
2(0, 1) = (0, -1) = -(0, 1)
3(0, 1) = -(0, 1) + (0, 1) = O

*Elliptic Curves
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When can  ( ) ∈ ℤ[ ] be factored (in ℤ[x])

Proof of Lemma
Let p be a prime, and 

 ( ) =     
 

 

   

  (  ∈ ℤ)

 ( ) =     
 

 

   

  (  ∈ ℤ)

By hypothesis, there is at least one i with  ∤   . Let   be the smallest i such that  ∤   

Similarly, let   be the least   such that  ∤   

Now, 

  =      
 

 

   

      
 

 

   

 =        

 

     

   

   

   

The coefficient of       is:

     

 

            

= (     
                      

  

=       
               

                     
   

The first term is divisible by p since   is divisible by p for every  <   
The last term is divisible by p since   is divisible by p for every  <   
   

   is not divisible by p

So the coefficient of       in f(x)g(x) is not divisible by p.
Since p was any prime, fg is primitive. ∎ 

Proof of Theorem
Let  ( ) ∈ ℤ[ ] and suppose that  =   for  ,  ∈ ℚ[ ]
deg(g), deg(h) < deg(f)

Choose M, N ∈ ℤ such that Mg(x), Nh(x) ∈ ℤ[x]

  ( ) =    ( ) for   ( ) ∈ ℤ[ ].   is primitive
Also, if m is the gcd of the coefficients of Mg(x), then 

  ( ) =    ( ) where   ( ) ∈ ℤ[ ],  = gcd                    ,   is primitive.
Similarly, 

Now,     ∈ ℤ[ ] is primitive, and   (    ) =     ( )     ( ) =   ( )  ( ) =    ( )

If d is the gcd of the coefficients of f, then mn=MNd
Since gcd of coefficients of   (    ) is m× n× 1=mn and gcd of coefficients of    ( ) is MNd
and so
      ( )  ( ) =    ( )

    ( )    ( ) =  ( )

   ( ),   ( ) ∈ ℤ[ ]
(degrees have not changed) ∎ 

Proof of Corollary

Suppose that   
 

 
  = 0. Then in ℚ[ ],    

 

 
  | ( )

So there is some integer N such that     
 

 
  ∈ ℤ[ ] is primitive and     

 

 
  | ( ) in ℤ[x]

(    ) =     
 

 
  is primitive so

(    )| ( ) in ℤ[x]
This means 
(    )(         ) =            

             =          

So   =     ⇒  |  

  =    ⇒  |  

∎ 

Example
Show that  ( ) = 3        has no rational roots.
Solution

If   
 

 
  = 0, 

 

 
 ∈ ℚ[ ] in lowest terms. Then the corollary says that

 |       |3
 =   1,        =  1,  3
 

 
  =   1,   ,  

1

3
  , 

 

3
  

None of these is a root. ∎

Primitive
A polynomials  ( ) ∈ ℤ[ ] is primitive if the gcd of the 
coefficients is 1. i.e. if there is no prime dividing all of 
the coefficients. 

Lemma (Gauss' Lemma)
If f, g ∈ ℤ[x] are primitive, then so is fg.

Theorem (Gauss)
If  ( ) ∈ ℤ[ ] and f(x) is reducible in ℚ[ ] , then  ( ) is 
reducible in ℤ[ ]

Corollary
Let 

 ( ) =     
 

 

   

∈ ℤ[ ]

and suppose that   
 

 
  = 0,    ,  ∈ ℤ, gcd( ,  ) = 1

Then  |  and  |  

Irreducible Polynomials in ℤ[x]
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Theorem (Eisenstein's Criterion)
Let  ( ) ∈ ℤ[ ],

 ( ) =     
 

 

   

,       ∈ ℤ,   ≠ 0

 ∤   1.
 |  for 0 ≤  <  2.
  ∤   3.

If there is a prime p such that 

then f(x) is irreducible. 

Example
 ( ) =      10    
is irreducible, since
 ∤  ,  |10,  |,   ∤  

Proof of Eisenstein's Criterion
Suppose f(x) is reducible, and write

 ( ) =  ( ) ( ) =      
 

 

   

      
 

 

   

 

deg( ) , deg( ) < deg( ) ,     ,   ∈ ℤ by Gauss' Lemma

  =     (assuming m=deg(g), n = deg(h))
So  ∤   ,      ∤   

Also,   =     .
So  |            |    

Thus, exactly one of   ,   is divisible by p

We'll suppose that  |  ,  ∤   

Let   be the least value of i such that  ∤   

Look at     (  ≤  <  )

Since   <  ,  |   

   =      

 

      

=                      

               is divisible by p since  |  for  <   
but  |   so  |     

However,  ∤    and  ∤   

This is a contradiction. So  ( ) does not factor in ℚ[x]

Eisenstein's Criterion
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Algebraic Numbers
A number  ∈  is algebraic if there is some polynomial 
 ( ) ∈ ℚ[ ] such that  ( ) = 0

Transcendental
If  ∈  is not algebraic, then it is transcendental. 

Theorem 
If  ∈  is algebraic, then there is a unique monic polynomial 
 ( ) ∈ ℚ[ ] such that  ( ) = 0 and  ( )| ( ) for any non-
zero  ( ) ∈ ℚ[ ] such that  ( ) = 0

Minimal Polynomial
The polynomial in the theorem is the minimal polynomial for 
a.

Corollary
If  ∈  is the root of a polynomial  ( ) ∈ ℚ[ ], which is non-
zero and irreducible, then a is irrational - unless deg(f) = 1

Example

Despite being rational,   
   

can be described in terms of rational numbers

  
   

is the positive solution to     = 0

If  ( ) ∈ ℚ[ ], the roots of  ( ) (in  or ℝ) are somehow described in terms of ℚ 

Proof of Theorem
We know that a is the root of some non-zero polynomial. Let  ( ) be a polynomial of lowest 
degree in ℚ[ ] which is monic, and  ( ) = 0. Suppose that  ( ) = 0 for  ( ) ∈ ℚ[ ]

Write:
 ( ) =  ( ) ( )   ( ),  ,  ∈ ℚ[ ]    deg( ) < deg( )
Then 
0 =  ( ) =  ( ) ( )   ( ) ⇒ 0 =  ( ),        ( ) = 0
If r(x) is not the zero polynomial, then dividing by the leading coefficient gives a polynomial 
  ( ) ∈ ℚ[ ] which is monic, and   ( ) = 0, and deg(  ) < deg( )

But f is a polynomial of the smallest degree with these properties, so this is a contradiction.
So  ( ) = 0 and  ( ) =  ( ) ( ), in other words  ( )| ( )

If   ( ) and   ( ) both have this property.
  ( ) = 0 , so   ( )|  ( )
  ( ) = 0, so   ( )|  ( )
This means that   ( ) =    ( ) for c ∈ ℚ
But both   and   are monic, so  = 1, so   =   

And so  ( ) is unique. 
∎ 

Proof of Corollary
If a is rational, then (   )| ( ) (given that  ( ) = 0)
So f(x) is not irreducible, a contradiction. ∎ 

Example
 ( ) =     ∈ ℚ[ ] is irreducible, by the Eisenstein criterion

So if  > 1, then   
   

∉ ℚ

Example

  
   

  3
   

is algebraic but what is the (minimal) polynomial  ( ) ∈ ℚ[ ] s.t.     
   

  3
   
 = 0

 =   
   

  3
   

Find a polynomials  ( ) ∈ ℚ[ ] with  ( ) = 0

Solution
Want some                   = 0

 =   
   

  3
   

  =      
   

 3 =      
   

  = 11  
   

 9 3
   

  =  9   0  
   

   10  =   9   0  
   
  10      

   
 =  1

So  ( ) =    10   1 ∎ 

Done, but is f(x) the minimal polynomial?
If not, f(x) factors in ℤ[x]. If f(x) factors, then either it has a root in ℚ, or else it factors as 
(quadratic)(quadratic)

By Gauss Lemma Corollary, the only possible roots of f(x) in ℚ are x =   1, these are not roots 
so f(x) has no roots in ℚ.
So if it is reducible, it factors as 
 ( ) =    10   1 = (       )(       )

=    (   )   (      )   (     )    

   = 0, ⇒  =   
     = 0
      =  10
  = 1

      = 0 ⇒  =  
  = 1 ⇒  =  =  1

1  1    =  10 ⇒   = 1 ⇒  =  1 
    

=   3
   
,                    

 1  1    =  10 ⇒   =  ⇒  =    
   
,                    

So there are no solutions for factors in ℚ[x]

Algebraic Numbers
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Transcendental Number
 ∈  is transcendental iff it is not algebraic. 

Theorem (Liouville)
Suppose that  ∈ ℝ is a root of the irreducible 
polynomial  ( ) ∈ ℚ[ ]. Then there is a  > 0 such that 

   
 

 
  >

 

  
  for any rational number 

 

 
 ∈ ℚ in lowest 

terms, d= deg(f) > 1 

Examples (Without proof)
e, π, … 

How do you show that a specific number is transcendental? 

Theorem (Liouville)
Suppose that  ∈ ℝ is a root of the irreducible polynomial  ( ) ∈ ℚ[ ]. Then there is a  > 0 such 

that    
 

 
  >

 

  
  ,   = 0 for any rational number 

 

 
 ∈ ℚ in lowest terms, d= deg(f) 

For any real number a, you can find rationals 
 

 
 with    

 

 
  as small as you want.

Ex: just cut off the decimal expansion of a at some point. 

If I want    
 

 
  <  , a algebraic and irrational

 

  
   <  … <  

So           
<  

Proof
We have  ( ) ∈ ℚ[ ] of degree d > 1, irreducible,  ( ) = 0
Without loss of generality,  ( ) ∈ ℤ[ ]

So  ( ) =       …      

Want a lower bound on |   | for  ∈ ℚ
If x is not in [  1,   1] then |   | > 1

On the other hand, if x is in [  1,   1], then for some c in [  1,   1], by the mean value 
theorem we have:
 ( )   ( ) =   ( )(   )
 ( ) = 0, so
| ( )| = |  ( )|  |   |
By the extreme value theorem |  ( )| ≤   for c on this  interval, for some M.

|   | ≥
1

 
  | ( )|

Now we want a lower bound on | ( )| for  ∈ ℚ. Write  =
 

 
 ,   ,  , ∈ ℤ

  
 

 
   =   

  

  
        

    

    
         

    
 

 
   =                             

 

So     
 

 
  ∈ ℤ

    
 

 
   ≠ 0          

 

 
    ≥ 1

   
 

 
    ≥

1

  
   

So

 
 

 
     ≥

1

 
   

1

  
   

So if 
 

 
 is not in [  1,   1],    

 

 
  > 1 ≥

 

    and if a is in [  1,   1] then    
 

 
  ≥

   

     

So 

   
 

 
   ≥

min{1,     

  
           >

1
 
  min{1,    

  
            =

 

  
   

∎ 

Example of Liouville's Theorem

For p q ∈ ℚ,    
   

 
 

 
  >

 

    for some δ > 0

Constructing transcendentals, construct  ∈ ℝ with very good approximations in ℚ 

Transcendental Numbers
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Example Curve
Considering   =    1

Obvious points on this curve:
O, ( 1, 0), (0, 1), (0,  1), ( , 3), ( ,  3)

Addition of Points

O (2, -3) (0, -1) (-1, 0) (0, 1) (2, 3)

O O (2, -3) (0, -1) (-1, 0) (0, 1) (2, 3)

(2, -3) (2, -3) (0, -1) (-1, 0) (0, 1) (2, 3) O

(0, -1) (0, -1) (-1, 0) (0, 1) (2, 3) O (2, -3)

(-1, 0) (-1, 0) (0, 1) (2, 3) O (2, -3) (0, -1)

(0, 1) (0, 1) (2, 3) O (2, -3) (0, -1) (-1, 0)

(2, 3) (2, 3) O (2, -3) (0, -1) (-1, 0) (0, 1)

If labeled   ,   ,   ,   ,    in order along the table
then 
     =      (     )

Hard question
Are there more points with coordinates in ℚ? 

Could consider elliptic curves over any field, Eg ℤ (        ≠ 0    ℤ )

Eg.   =    1 over ℤ 

Solutions: O, (0, 1), (0, -1), (2, 3), (2, -3), (4, 0)
These are the "same" six points, and add in the same way.

  =    1    ℤ 

Solutions: O, (0, 1), (0, -1), (1, 3), (1, -3), (2, 3), (2, -3), (3, 0), (4, 3), (4, -3), (5, 0), (-1, 0)
12 points on   =    1    ℤ 

If we take any points that work over integers, than you have the same closed group of 6 points. But 
look at other points.

Try to add (5, 0) + (5, 0)
"slope of the tangent line"

=
3  

  
   

which is a vertical line so
( , 0)  ( , 0) =  

(1, 3)  (1, 3)
slope of tangent line:

3

  3
    =

1

 
  =  

So the equation of the tangent line:   3 =  (  1)
 =    1
  =    1
   1 = (   1) = 1       1 =       1
        = 0 =  (  1) = 0
So  = 0,  =  1

So (1, 3)  (1, 3) = (0, 1)

Use in Cryptography
What can elliptic curves over finite fields be used for?

With an elliptic curve C over a finite field, can use the Diffie-Hellman key exchange.

Alice and Bob select a prime p, and elliptic curve C over ℤ , and a point Q on C.1.

Alice choses a, and makes aQ public.2.
Bob choses b, and makes bQ public (a, b ≥   are integers)3.
Common secret: abQ4.

Alice and Bob want to agree on a common secret. 

For a 3rd person to get the key, they need to solve the. ECDLP (Elliptic Curve Discrete Log 
Problem):
Given an elliptic curve C over ℤ a point Q, and the point aQ, find a.

Elliptic curves over ℤ have approximately p points on them, so for p large, this is hard. 

*Elliptic Curves Cont.
November-15-10 4:38 PM

   MATH 145 Page 49    



Want to use Liouville's Theorem to show that certain numbers are transcendental
Need to construct a number with very good rational approximations

Ex
Let

 =  10   

 

   

Then a is transcendental

 =
1

10
    

1

10 
    

1

10 
    

1

10  
     

1

10   
      

1

10   
       

 = 0.1100010000000000000000010000 …00000010000

Point: the partial sums are rational numbers that are extremely close to a

Let

  

  
   =  10   

 

   

∈ ℚ

  = 10  

  =  10     

 

   

  

  
  =  10   

 

   

=
1

10
   

  

  
  =  10   

 

   

=
1

10
    

1

100
   =

11

100
   

  

  
  =  10   

 

   

=
1

10
    

1

100
    

1

1000000
        =

11001

1000000
        

   
  

  
    =   10   

 

   

  10   

 

   

 =  10   

 

     

= 10 (   )  10 (   )   <   10 (   ) 

So

   
  

  
    <   10 (   ) 

  = 10  

   
  

  
    <   10   

 (   )
=    

 (   )

Now, suppose that a is algebraic. So 
 ( ) = 0 for some irreducible  ( ) ∈ ℚ[ ] of degree d ≥  
a is not rational since the decimal expansion never halts or repeats

By Liouville's Theorem, there is a δ > 0 such that 

   
 

 
   >

 

  
   

for all 
 

 
 ∈ ℚ

So…
 

  
 

   <    
  

  
    <

 

  
       

So 
   

   <    
 

As soon as n ≥ d, we get 10  =   ≤   
     <

 

 
           ≥  

But 
 

 
 is constant, while 10  is unbounded, so this is impossible.

Therefore, a is transcendental. ∎ 

Can use this to show that 

     

 

   

is transcendental for any integer b≥  
Or

     

 

   

Lots of transcendental numbers. 

       are transcendental

Transcendentals With Liouville
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Modular Arithmetic for Integers
If a, b, m ∈ ℤ, m≥ 1 then 
    (     )   |(   )

Modular Arithmetic for Polynomials
If F is a field, and g, h, f ∈ F[x], f ≠ 0, then

    (     ) iff  |(   )

Theorem
If       (     ) and      (     )
  ,   ,   ,   ,  ∈  [ ],  ≠ 0
Then

            (     )
          (     )

Congruence Classes for Polynomials
Define the congruence class of g mod f to be 
[ ] = { ∈  [ ]              (     ) 

[ ]  [ ] = [   ]
[ ][ ] = [  ]

Theorem
The set of congruence classes (mod f) under the operations is 
a commutative ring. 0 = [0], 1 = [1]

Observation
Working modulo f, deg(f) ≥ 1, every congruence class has a 
representative g with deg(g) < deg(f)

Notation
If F is a field, and f(x) ∈ F[x] has degree ≥ 1 then,
F[x]/(f) is the ring of congruence classes (mod f)

Examples
     1    (       1)

since     =  (   1)
     (       1)

With congruence classes:
Mod    1
[  ] = [ ]
[   1] = [ ]

    (     )         •
g   h (mod f)      (     ) for all g, h•
    (     )        (     ) ⇒     (     )•

Congruence Class Properties

[ ] = [ ]       (     )

Define:
[ ]  [ ] = [   ]

Operations on the Congruence Classes

Fact:
If       (     ) and       (     ) then             (     )
So the definition for addition of congruence classes is well defined. No matter what representatives 
are chosen for [g] and [h], [g+h] will always be the same.

Define:
[g][h] = [gh]

Fact: 
If       (     )         (     )               (     ) so multiplication is well-defined.

So all of the properties of the congruence classes follow from the properties of the polynomials, so 
the congruence class under + and × is a commutative ring.

Example
F = ℚ, 
 ( ) ∈ ℚ[ ]      1
[  1][  1] = [(  1)(  1)] = [   1] = [  ]

Observation
Working modulo f, deg(g) ≥ 1, every congruence class has a representative g with deg(g) < deg(f)

Proof
If  ( ) ∈  [ ], deg(f) ≥ 1 and  ( ) ∈  [ ], we can write  ( ) =  ( ) ( )   ( ), deg( ) < deg( )
    (     ), [ ] = [ ]

Example
 = ℤ ,  ( ) =    1
F[x]/(f) = ℤ /(   1)

Every congruence class has a representative of degree less than 2.
Polynomials in ℤ [ ] with degree < 2:
0, 1,  ,  ,   1,    ,   ,    1,     

The only congruence classes are [0], [1], [ ], [ ], [  1], [   ], [  ], [   1], [    ]

So ℤ [ ] (   1) = {[0], [1], [ ], [ ], [  1], [   ], [  ], [   1], [    ] 
Is this a field? Does every non-zero element have a multiplicative inverse?

[1][1] = [1]
[ ][ ] = [ ] = [1]
[ ][  ] = [   ] = [   ] = [       1] = [1]
[  1][   ] = [   3   ] = [1]
[   1][    ] = [ ][ ][  1][   ] = [1][1] = [1]

ℤ [ ] (   1) is a field with 9 elements.
This is the first example of a finite field where the number of elements is not prime. 

Arithmetic Modulo a Polynomial
November-17-10 1:09 PM
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What are the finite fields?

Ones we know: ℤ , ℤ [ ] (   1)

Proof of Theorem
Suppose f(x) is not irreducible, then  ( ) =  ( ) ( ) with  ( ),  ( ) ∈  [ ], 

[ ], [ ] ≠ 0 since  ∤  ,  
But [ ][ ] = [  ] = [ ] = 0

   ( ) ,    ( ) <   g( )

If [g] had a multiplicative inverse, then [ ]  [ ][ ] = [0] ⇒ [ ] = [0], a contradiction.
Therefore  [ ] ( ) is not a field.

Suppose  ( ) is irreducible, then for any [ ] ≠ 0, so  ∤  . The only divisors of f are 1 and f so:
gcd( ,  ) = 1
So we can choose polynomials  ,  ∈  [ ] with      = 1
By Bezout's Identity for Polynomials
[1] = [     ] = [  ] = [ ][ ]
So [ ]  = [ ] Since [ ] ≠ 0 was any element of  [ ] ( ), this is a field
∎ 

Example
   1 is irreducible in ℚ[x], so ℚ[ ] (   1) is a field
Can think of ℚ as being in this field since for every rational q ∈ ℚ ,  ∈ ℚ[ ] (   1)

If [  ] = [  ],   ,   ∈ ℚ then (   1)|(     )
  =   as rational numbers
So the function   [ ] is injective (one-to-one)

This field also contains a square root of -1
[ ] = [  ] = [ 1]

so [ ] is   1
    

This field is "the same" as ℚ[ ]

Finite Fields

Already done1.
We can define a function  ( ) = [ ] from F to  [ ] ( )2.
By definition,  (   ) =  ( )   ( ) and  (  ) =  ( ) ( )
and g is one-to-one because if
 ( ) =  ( ),      [ ] = [ ] so  ( )|(   ). This is impossible unless b=a
So g(a) take every F to a unique  [ ] ( )
 ([ ]) = [ ( )] = 0,    [ ] is a root of f(x) ∎ 3.

Proof of 2nd Theorem

Proof of Proposition
Every congruence class contains a unique polynomial  ( ) with deg( ) ≤   1
If   ( ),   ( ) have degree ≤ d-1 then if [  ] = [  ], we have  |(     ) then deg( ) > deg(     )

So this is only possible if   =   
The congruence classes are in one-to-one correspondence with the polynomials of degree ≤ d-1
The number of polynomials in ℤ [ ] with degree ≤ d-1 is the number of sequences 

  ,   ,   , …     ∈ ℤ 

So there are   choices. ∎ 

Proof of Fermat's Little Theorem for Finite Fields
Define      by  ( ) =   
 (0) = 0
f is one-to-one because if  ( ) =  ( ), then
  =   ⇒  (   ) = 0 ⇒     (   ) =    0 ⇒    = 0 ⇒  =  
f is onto, since for any  ∈  ,    (    ) =  
So

  

 

 ∈ 
   

=   ( )

 

 ∈ 
   

=    

 

 ∈ 
   

=       

 

 ∈ 
   

  

 

 ∈ 
   

≠ 0

So 1 =     ∎ 

Proof of Corollary
For each  ∈  , either a = 0 so     = 0  0 = 0
Or  ≠ 0,    
    =  (     1) =   0 = 0
So 

 (   )

 

 ∈ 

|    

But both have the same degree n so 

    

 

 ∈ 

=               ∈  

Theorem
If F is a field, and  ( ) ∈  [ ] and deg( ) ≥ 1 then  
 [ ] ( ) is a field if and only if  ( ) is irreducible.

Theorem

Is a field1.
Contains a copy of F2.
Contains a root of f(x)3.

Let F be a field, and  ( ) ∈  [ ] an irreducible 
polynomial of degree ≥ 1. Then  [ ] ( )

Proposition
Let p be a prime and  ( ) ∈ ℤ an irreducible 

polynomial of degree d ≥ 1
Then ℤ [ ] ( ) is a field with   elements.

Theorem 
Fermat's Little Theorem for Finite Fields
If F is a field with n (<  ) elements, and  ∈  is 
non-zero then     = 1

Corollary
If F is a finite field with n elements, then (    )
factors as:

 (   )

 

 ∈ 

Finite Fields
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  (   )

 

 ∈ 

= (    )          ∈  

So c = 1 and

    =  (   )

 

 ∈ 

∎ 
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 > 0, ℤ   
   
 ⊆  

   ,            

closed under addition•
closed under additive inverses•
0, 1, ∈ S•

S is a subring if 

ℤ   
   
 =       

   
,  ,  ∈ ℤ 

      
   
        

   
 = (   )  (   )  

   
∈ ℤ   

   
 

      
   
       

   
 = (      )  (     )  

   
∈ ℤ   

   
 

      
   
         

   
 = 0,        

   
 ∈ ℤ   

   
 

 0  0  
   
 ,  1  0  

   
 ∈ ℤ[ ]

The Gaussian integers are ℤ   1
     = ℤ[ ] = {    ,  ,  , ∈ ℤ)

N is the norm function

          
  ℤ[ ]  ℤ 

Units of ℤ[ ]
 (ℤ[ ]) = { ∈ ℤ[ ]    ∈ ℤ[ ]             = 1 
1 =  (  ) =  ( ) ( ) ⇒  ( ) = 1
 =     

⇒  =  1,  = 0
⇒  = 0,  =  1

     = 1

So
 (ℤ[ ]) = { 1,  1,   ,    

Lemma
 ,  ∈ ℤ[ ],  ≠ 0
Then there are elements  ,  ∈ ℤ[ ] such that  =     , 0 ≤  ( ) <  ( )
 

 
  =

      

      
         

      

      
        

So 
 

 
 ∈ ℚ[ ]

 

 
  =     ,  ,  ∈ ℚ

Pick  ,  ∈ ℤ, |   | ≤
 

 
 , |   | ≤

 

 
 

Let  =     ∈ ℤ[ ]

Verify 0 ≤  ( ) <  ( )

 ( ) =  (    ) =      (    ) 

 =  (    )

 ( ) =    (         ) =  ( ) (   )  (   )  ≤
 ( )

 
     <  ( )

Theorem (Euclidean Algorithm)
 ,  ∈ ℤ[ ],  ≠ 0 ≠  
⇒    ∈ ℤ[ ],  | ,  | 
  ,              =      = gcd( ,  )

 =       , 0 ≤  (  ) <  ( )
 =        
  =        ,        strictly decreasing ⊆ ℤ ≥ 0

⇒                  =        0 ⇒  =   
  =        ,   ,   ∈ ℤ[ ]

 =      
 |    ,  |    ⇒  |    ⇒  | ,  | 
 | ,  | ⇒  |     =  

Exercise
Find gcd(  1     ,      9 )

Lemma
p prime in ℤ   1

     ,  |  ⇒  |      | 

Theorem: Unique Factorization
 ∈ ℤ[ ],  ≠ 0
 =   ,   =    …  ,   ∈  ,   …  are prime

* Gaussian Integers ℤ   1
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 =   ,   =    …  ,   ∈  ,   …  are prime
⇒  =  ,                                                (           ) ( )
for 1 ≤  ≤  

Are 2, 3 and 5 primes in ℤ[ ] 
 = (1   )(1   )
 = (1    )(1    )
3 is prime
 (  ) =  (3) = 9
 ( ) = 3
     = 3,           
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Characteristic 
The characteristic of a field is the smallest m > 0 such that 
1 1 … 1=0
m times
or 0 if there is no such m.

Lemma
Let F be a field of characteristic m ≠ 0. Then m is prime.
(If you think F = {0} is a field, then characteristic 1 is also 
possible, but for us F = {0} is not a field.)

Theorem

p ≠ 0 is prime1.
  =    for some d ≥ 12.

Let F be a finite field of characteristic p.

The Characteristic of a (finite) field.
Every field F contains a multiplicative identity "1".
1, 1 1, 1 1 1, …
If F is finite, eventually this sequence repeats. So for some m ≠ n 
1 1 1 … 1=1 1 … 1
m times n times
1 1 … 1=0
m-n times

Example
ℚ has characteristic 0

m times
because 1  1  1    1    (     )

m = p is the smallest integer m > 0 such that m   0 mod p

ℤ has characteristic p

Proof of Lemma
Suppose  =   , 1 <  ,  <  
(1  1    1)(1  1    1) = 1  1    1 = 0
    j times      k times           j*k = m times
So either
(1  1    1) = 0    (1  1    1) = 0
        j times           k times

But j, k < m and m was the smallest number of "1"s whose sum was 0
Contradiction, so m is prime. ∎ 

So every finite field has some prime characteristic p. We'll relate these to ℤ . You can think of 

ℤ as being inside any field of characteristic p.

Ex: ℤ [ ] (   1) "contains" ℤ : {[0], [1], [ ] 

"1" = 1
"2" = 1+1
"3" = 1+1+1
"p 1" = 1    1 (  1      )
"p" = 0

If F has characteristic p ≠ 0, then

Proof of Theorem
1. is already done
2. 
Construct a finite sequence   , …   ∈  as follows: 
  = 1
If  = {1,  , 3, …  1, 0 , then stop.
In this case, every element of F has the form     , for some   ∈ {0, 1,  , … ,   1 

If this is not true, choose some   which cannot be written in the form     for   ∈
{0, 1,  , … ,   1 
If every element of F can be written in the from          ,   = {0, 1, … ,   1  then stop. 
Otherwise, choose   not of this form.
Eventually we get   ,   , …   ∈  
such that everything in F has the form 

     

 

   

,   = {0, 1, … ,   1 

And for each j,   cannot be represented in the form      
   
   

In fact, the representation of an element of F in the form

     

 

   

 

is unique.
If not, then there are some   ∈ {0, 1,  , … ,   1 and   ∈ {0, 1,  , … ,   1 such that 

     =      

 

   

 

   

With   ≠   for at least one i.
Let j be the largest value so that   ≠   

Then 

 (     )  

 

   

= 0

 (     )  

 

   

= 0

          =  (     )  

   

   

Since        ≠ 0, there is some  ∈ {1,  , … ,    such that 

           = 1

Then multiplying both sides by b,

  =         

   

   

,        ∈ 0, 1,… ,   1

Characteristic of Finite Fields
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  =   (     )  

   

   

,  (      ) ∈ {0, 1, … ,   1 

This is impossible, by construction. 

So if

     

 

   

=      

 

   

then   =    ∀ 

So every element of F can be written in one and only one way as

     

 

   

,    ∈ {0, 1,  , … ,   1 

So the number of elements in F is the same as the number of different sequences:
  , …  with   ∈ {0, 1,  , … ,   1 
So 
  =   

∎ 

If F is a finite field, then #F is a prime power. 
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Theorem - Primitive Roots
If F is a finite field with n elements, then there is some 
 ∈  , a ≠ 0 such that
 = {0,  ,   ,   , …      
a is a "primitive root" for the field F

Order
If a ∈ F, a ≠ 0, define the order of a by
   ( ) = min{ ≥ 1    = 1 

If 1 ≤  ,  ≤    ( ),      ≠       
  ≠   

Example - Primitive roots
If  = ℤ 

2 is a primitive root
  =  ,   =  ,   = 3,   = 1

Proof of Order statement
If  >  , then 
  =   ⇒     = 1
But    ≥ 1 and    <    ( ) = min{ ≥ 1:   = 1 

So   =   causes a contradiction, so   ≠   

So { ,   ,   , … ,     ( ) 
are all distinct

a is a primitive root   ord(a) = n-1
(ord(a) ≤ n-1 by Fermat's little theorem)

Proof of Primitive Roots Theorem
Let  ( ) =                              

First, notice that    1 = 0 iff    ( )| 

This is true because if  =    ( )   then    1 =     ( )   1 =      ( ) 
 

 1 = 1  1 = 0

Now assume    1 = 0
We can find integers s, t such that gcd(   ( ),  ) =       ( )     

    (   ( ), ) =       ( )    =      ( ) 
 
     

 
= 1

By definition,    ( ) ≤ gcd(   ( ),  ) ≤    ( )
  gcd(   ( ),  ) =    ( ) ⇒    ( )| 

Things with order dividing d    roots of    1

How many roots does    1 have in F? When  |  1

Every non-zero element of F satisfies
     1 = 0
So      1 = 0 has n -1 roots in F

   1|     1
For any m,
   1 = (  1)(            1)
If   1 =   ,     

  of roots is ≤ d(m-1)

     1 =     1    (   )    (   )    1 

     1 has exactly n-1 roots

exactly d, since ≤ d and ≥ d

  =               1  (         ≤     )

There are exactly d elements of F with order dividing d (if d | n-1)

This means that for all d|n-1

  ( ) =  

 

     

Claim:
For each  |  1,  ( ) =  ( )
We know that for any d,

  ( )

 

     

=  

Proof
 (1) = 1,      
   1 = 0   = 1
 (1) = 1, so it's true that  (1) =  ( )

Now, assume that 
 ( ) =  ( ) for all  |(  1) with e < d.
Then

  ( )

 

     

=  =   ( )

 

     

 ( )    ( )

 

 | 
   

=  ( )    ( )

 

     
   

=  

By the induction hypothesis:

  ( )

 

     
   

=   ( )

 

     
   

    ( ) =  ( ) ∀ d|n-1
So there are  (  1) ≥ 1 elements of order n-1 ∎

(In fact,    1 is usually almost as big as n-1)

Primitive Roots
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(In fact,  (  1) is usually almost as big as n-1)
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Isomorphism
If   and   are fields, then an isomorphism is a 
function

f is a bijection1.
 (   ) =  ( )   ( ) ∀ ,  2.
 (  ) =  ( ) ( )
 (0) = 0
 (1) = 1

 :     

Isomorphic
We say that   and   are iff there exists an 
isomorphism  :      

Isomorphism as an Equivalence Relation

for any field F, F is isomorphic to itself (the 
isomorphism is f(x) = x)

1.

if  :      is an isomorphism, then 
   :     is an isomorphism. So the 
property is symmetric. 

2.

If   and   are isomorphic, and   and   are 
isomorphic, then   and   are isomorphic.

3.

Isomorphism is an equivalence relation so:

Example
  = ℤ 

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

If   is isomorphic to ℤ that means that   = { ,   
 =  (0)
 =  (1)

+ a b

a a b

b b a

× a b

a a a

a a b

"Isomorphic"  = same fields, but elements have different names

Every finite field has   elements, for some prime p and some d ≥ 1

Claim:
If    =    , then   and   are isomorphic.

Example:
Let   = ℚ[ ] = {      ,  ∈ ℚ 

And let   = ℚ[ ] (   1)
Then   and   are isomorphic
Define  :      as follows:
 ([ ]) =  ( )
Is this well defined? THIS IS MADNESS
No… THIS IS ALGEBRA 

  ( ) =   ( )  (   1) ( )
If [  ] = [  ] then, by definition,

So   ( ) =   ( )  (   1) ( ) =   ( )
So it is well defined

Every congruence class has a representative of degree ≤ 1
Every element of ℚ[ ] (   1) is of the form [    ], for  ,  ∈ ℚ
 ([    ]) =     ,     :      

This also shows that f is onto since for any     ∈   ,     =  ([    ])
Also, f is one-to-one. Suppose that  ([  ]) =  ([  ])
Then   ( ) =   ( ), so i is a root of   ( )    ( ). 
Since    1 is irreducible and    1 = 0, we must have
   1|  ( )    ( )
So [  ] = [  ]
f is one-to-one and onto

 ([    ]  [    ]) =  ([(   )  (   ) ]) = (   )  (   ) 
 ([    ])   ([    ]) =          = (   )  (   ) 
 ([    ]) ([    ]) = (    )(    ) =    (     )      = (     )  (     ) 
 ([    ][    ]) =  ([(    )(    )]) =  ([   (     )    ])
[    ] = [   ] because    1|       
 ([    ][    ]) =  ([(     )  (     ) ]) = (     )  (     ) 

So   and   are isomorphic

  : things of the form [a bx] with a, b ∈ ℚ and [ ] =  1
  : things of the form a+bi with  ,  ∈ ℚ and   =  1

Uniqueness of Fields
We're going to show that, up to this equivalence relation of isomorphism, there is exactly one field 
with   elements, for each prime p and d ≥ 1

Isomorphism of Fields
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ℤ[ ] = {       ,  ∈ ℤ 

 (    ) =      

Theorem

  1(     )1.
   1  0 (     ) has a solution2.
  ,  ∈ ℤ,  ∤  ,  ∤  /  |     3.
 =      4.
 = (    )(    )    ℤ[ ]5.

Let p be an odd prime integer. TFAE (the following are 
equivalent)

Wilson's Theorem
p prime, then (  1)   1 (     )

Theorem

The elements of prime order: the primes ± 1±i of 
norm 2 and x such that N(x)=p, p prime in ℤ,   
1 (     )

1.

The elements ±p, ± ip , p prime integer and   
3 (     )

2.

The primes in ℤ[ ] are:

Proof of Theorem
1⇒ 
   :     1 (     )
 = 1    ,  = (  ) 
(  ) = (  1) =  1 (     )

(   ) =   (   1   )

  

   

= (  )( (   1))(3(    ) … (  (   1    ))

  (   1   )

  

   

    

  

   

     

  

   

 ( 1)  = [(  ) ] 

 ⇒3 
   /    1  0 (     ) Let m = 1 then  |     

3⇒ 
 |     = (    )(    )
Suppose p is prime in ℤ[ ] ⇒  |    or  |    
Claim  | and  | 
 (    ) =     ⇒   =  ,   =  

Then p is not prime in ℤ[ ]
  ∈ ℤ[ ], x is not a unit, not p. x|p
⇒  ( )| ( ) =   ⇒  ( ) =  
 =     ⇒  ( ) =      =  
    
 ⇒1 
  = 0, 1 (     )

 =        
0
1
 

(     )

But p is odd so     0,   (     )

N(x) is prime ⇒ x is prime1.
For N(x) to be prime,  ≠  ∈ ℤ or  ≠   ∈  ℤ
⇒  =     ,  ,   are not both even

 =  ( ) =      ⇒     
1
 

(     )

  1 (     )
    (     ) ⇒  ( ) =  ⇒  =   1   
Suppose p ∈ ℤ, prime   3 (     )2.
Suppose p is not prime in ℤ[ ] ⇒   =   
  =  ( ) =  ( ) ( ) ⇒  ( ),  ( ) =  =      

So     3 (     ) a contradiction
⇒ p is prime in ℤ[ ] and so are its associates -p, ± ip

Proof of Theorem

And the primes from (1) and (2) are the only ones in ℤ[ ]
Let  =      prime in ℤ[ ]
⇒   =     primes as well

 ( ) =    either prime in ℤ   1 or not prime in ℤ 
   =   
   is the product of  two primes and ℤ[ ] has unique factorization so 
p and q are prime
x = up ⇒   =    
  =   
For u, v units
   =   ⇒  =       ⇒  =  
 =        =    

Want to see that   3 (     )
If   1 (     ) ⇒                        ℤ[ ]
    0 (     )       
      (     ) =        1

*Prime Gaussian Integers
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Theorem 6.2
Let F be a finite field with   elements.
For some polynomials ℚ[ ] ∈ ℤ [ ], with 

deg(q) = d, F is isomorphic to ℤ [ ] ( )

Corollary
If   and   are finite fields, and    =    , 
then   and   are isomorphic.

Proof
F has a primitive root a ∈ F, so

 =  0,   ,   ,   , … ,       

also know that F contains a "copy" of ℤ , {0, 1,  , … ,   1 ⊆  

We know that a ∈ F is a root of    
  = 0 (even,    

 1)

So there is some  ( ) ∈ ℤ [ ] with  ( )|   
  and  ( ) = 0

 ( ) monic and irreducible

(q is a monic factor of    
  such that a is a root of q)

ℤ [ ] ( ) is a field

Define a function  : ℤ [ ] ( )   by  ([ ]) =  ( )

This is well defined because if [  ] = [  ],   ( )    ( ) =  ( ) ( ) for some  ( ) ∈ ℤ [ ]

     ( ) =   ( )   ( ) ( ), but  ( ) = 0 so   ( ) =   ( )
So  ([  ]) =  ([  ]) and f is well-defined.

It's also true that f is one-to-one. Suppose that  ([  ]) =  ([  ])
Then   ( ) =   ( ), so   ( )    ( ) = 0
So   ( )    ( ) ∈ ℤ [ ] has a root at x = a, so  ( )|  ( )    ( )

That means [  ] = [  ]
We've shown that  : ℤ [ ] ( )   is one-to-one

Why is f onto?
 ([0]) = 0
Also, for any integer k≥ 1
       =   

 =  0,   ,   , … ,       ,             

Check addition and multiplication
 ([  ]  [  ]) =  ([     ]) = (     )( ) =   ( )    ( )
 ([  ])   ([  ]) =   ( )    ( )
So  ([  ]  [  ]) =  ([  ])   ([  ]) for any [  ], [  ] ∈ ℤ [ ]  

 ([  ][  ]) =  ([     ]) = (     )( ) =   ( )    ( )
 ([  ])   ([  ]) =   ( )    ( )
So  ([  ][  ]) =  ([  ])   ([  ]) for any [  ], [  ] ∈ ℤ [ ]  

 ([0]) = 0,  ([1]) = 1

So  : ℤ [ ]     is an isomorphism

F has   elements and ℤ [ ] ( ) has     ( ) elements

So the isomorphism between       ℤ [ ] ( ) is one-to-one and onto so deg( ) =  

∎ 

Proof of Corollary
We know that there is some prime p and some  ≥ 1 with
   =    =   

  is isomorphic to ℤ [ ] ( ) for some monic, irreducible  ( ) ∈ ℤ [ ] dividing    
  ,

deg( ) =  

Write    
  =  ( ) ( ) in ℤ [ ]

Now, every element of   is a root of    
  , so this has   roots in   

deg( ) =     , so h(x) has no more than     roots in   

So  ( ) at least  ≥ 1 roots in   

Define  : ℤ [ ] ( )    by  ([ ]) =  ( ), where b is a root of  ( ) in   

All of the steps to show that f is well-defined, one-to-one, and that addition and multiplication work 
are the same.

Need to show that f is onto. 
 : ℤ[ ] ( )    is one-to-one, and the two sets have the same number of elements so f is onto. 

Therefore, f is an isomorphism and it follows that ℤ [ ] ( ),   ,   are all isomorphic.

∎ 

Uniqueness of Fields
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Summary
If F is a finite field, then #F  =   for some 
prime p, and some integer d ≥ 1

If #F =   then F can be constructed as 
ℤ [ ] ( ) for some irreducible  ( ) ∈ ℤ [ ]

Any two finite fields of the same size are 
isomorphic. 

Need to know that there is at least one field of size   for each p and each d. 

True, but no time to prove - in the notes

Then for every p prime and every d ≥ 1, there is a unique (up to isomorphism) field with   

elements. Then the field with   elements is written as     or       

If deg( ) =  and  ∈ ℤ [ ] is irreducible, then ℤ [ ] ( ) is a field with   elements.

Need to show that ℤ [ ] contains irreducible polynomials of every degree.

It is not obvious, for example, in ℝ[ ] it is not true that there are irreducible polynomials of every 
degree. There are none of degree 3, for example. 

Application of Finite Fields - Cryptography
Diffie-Hellman Key Exchange
Diffie- Hellman key exchange can be done with any finite field. 
Alice and Bob want to generate a common secret.

Alice and Bob choose a finite field F and an element g ∈ F (preferably a primitive root)
Alice chooses a, and publishes   

Bob chooses b, and publishes   

Both know    

What makes it hard for other people to find    ?

Given g and h in a finite field, solve  =   for a, if possible. 
Finite Field Discrete Logarithm Problem (FFDLP):

FFDLP is thought to be hard.

It's easy to write computer programs to do computation in    •
More choices•

But why bother with finite fields when integers modulo a prime work?

* ElGamal Public Key
Alice want to create a public key
Alice chooses a finite field F, and a primitive root  ∈  and some k ≥ 1. She computes  =   and 
publishes F, a, and b. Alice can easily compute   through successive squaring. 

If Bob wants to send the message  ∈  , Bob chooses r ≥ 1 and sends   =   and   =    

Alice computes   
    =           =  

For Eve to find k, Eve needs to solve the FFDLP

Finite Fields and Cryptography
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