Set Problem of the course.
ets . .. .
Given a finite set, how many elements are in it?
September-09-13 10:48 AM
Examples of sets
N =1{0,1,234,..}

Fully Binary Tree Natural numbers

Z int
Has a root and every node has either 2 children (left and right) or 0 err;giflgsls
children. R reals

C complex numbers
N, ={1,2,3,..,n} = [n], neN
No=0=1{}
N, ={kl|k €N, 1<k<n}={keN|1<k<n}

Set of perfect matchings in G where G is a graph.

Set of full bi t .
Constructions with Sets et ot Tl binaty trees

Cartesian Product S, T, sets. F(S,T) = set of functions from S to T
Given two sets S, T the Cartesian product
SxT={(s,0ls€S,teT} These are not sets

More generally, I
: . e The "set" of all sets
$1% S X X Sip = {(s1,52, -, 51) | 5i € Sy, E=1. k) This is not a set. Suppose it were set. Call it S.

Pow.er set Form the subsety = {A|A € Sand A ¢ A}
If S is a set, then
Isyey?

?’(S) = set of all subsets of S Supposey €y = y € Sandy & y
is a set (axiom) Supposey ¢ y.yESandy¢y=>y€y
e "Set" of all finite sets
e "Set" of all trees
e "Set" of all graphs
o Why? Because trees/graphs have underlying vertex sets.

Union, Difference, Intersection
If A, B are sets, then

AUB ={x|x € Aorx € B}
ANB ={x|x € Aand x € B}
A|B = {x|x € Aand x ¢ B}
are all set.
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Bijections & Set Operations Example
Let B be the set of full binary trees

f:BXB—B
(tit) >t Ea

September-11-13 10:33 AM

Bijection

S,T sets

f:S = T function
o fisinjectiveifforevery s,s' € S,if f(s) = f(s') thens = s’ Is this a bijection? No - but very close
o fissurjective if for every t € T, there exists s € S such that f(s) = ¢ Injection? Yes

Can figure out t; and t, uniquely from f (¢, t;)
t; = left branch
t, = right branch
Surjection?
The tree - is notin the image

e f is bijective if it is surjective and injective

Note
f is a bijection < f has an inverse f~%:T - S,
Inverse: f(f~1(t)) =t vt € Tand f(f(s)) =sVs €S

When you see "bijection” think "two ways of thinking about the same thing". }(Ealr; E(erB(e{fj} >B

Equicardinal y.
If there is a bijection f:S = T, we say S and T are equicardinal and write S 2 T.
2 is an equivalence relation.

Proof of Theorem 1

In HW Al proved N, 2 Ny & n=m

If G 2 Ny and G 2 N, then since 2 is an equivalence relation, N,, &
N, son = m. - G has only one cardinality.

Finite
We say S is a finite set if S 2 N,, for somen € N
We say n is the cardinality of S and write # Proof of Theorem 2
n=1S| = #S Suppose G 2 Ny, H 2 Ny, andG 2 H
Then N, 2 N, = n = m so G and H have the same cardinality.
Theorem 1

A finite set has only one cardinality. Proof of Proposition 1

Theorem 2 #S=ZI=; Z 1:2( Z 1>=Z#f—1(t)
Sef~1(t) teT \sef-1(t)

€S teT
Two sets are equicardinal < they have the same cardinality. ° -
Proof of Proposition 2
Statement Let f:SXT —T
If § is finite, we can express #S = Y51 £(s t.) -t
If f:S - T isany function,t € T Foreacht € T.f~1(t) = {(s.t)|s €St =2 S
Write f1({t}) = {s €5 | f(s) = t} JTO={E0lses =
Common practice: drop annoying brackets and write this as f~1(t) for f~1({t}) #(SxT) = Z #7H) = Z #S = #5- Z 1= (#S) - (#T)
(Required: Feel guilty) ter ter teT
Proposition 1 Example
If S, T finite sets What is #(F (N, Np)) = n™
f:S = T any function Define a function
_ & F (N, Ny) = Ny X Ny X -+ X Ny,
— 1
#5=) 470 £ (FQ), f@), e f )

¢ is a bijection

. — m _ ,,m
Proposition 2 « HF (N, N) = #(No)™ =
If S, T are finite sets

#(S,T) = (#S) - (#T)

More generally,

#(S; X Sy X - X Sp) = (#51) X (#S,) X -+ X (#Sy)

This means we can associate functions with sets of tuples (the values of
the function)

Proposition

If X,Y are finite sets
#F(X,Y) = (#Y)*X
Proof

See notes (like example)
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Set Operations Continued
September-13-13 10:32 AM

Power Set
P(V) = set of subsets of V

Proposition 1
If V is a finite set,
#P(V) = 2#

Notation
Let Ay, ..., A,y be finite sets
Foreach S € N,,, S # @ define

AS = ﬂAl

i€es

Theorem (Principle of Inclusion-Exclusion)

#(A; UA, U UA,) =
@+SCNm,

Proof in Notes

(—1)#1 #4
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Proof of Proposition 1
fSePWV)ScV)
then we can represent it by its characteristic function:

xs:V - {0,1}
_fo ifves
=11 ifves

Note: S = y5*(1)

Thus we have
PW)=2FW,{0,1})

[ | Check details
S Xs

#P(V) = #F(V,{0,1}) = 2*V

Putting this together with the bijection between functions and tuples,
Subsets of N,;, 2 binary string of length m

Example
m=5
{1,3} » 10100

Proposition
HXUY)=#X+4#Y —#(XNY)

HXUYUZ) =#X +#Y +#Z—#(XnY) —#(X N2 —#¥ N2 +#XNYN2)

Proof
Draw pictures

Example
A{1,3.‘ﬂ = A1 n A3 n A4_

Example of Principle of Inclusion-Exclusion
m=3, A =XA,=Y,A3=2

) (-D* 1 A (1" 144
{13 1 X +#X

{2} 1 Y +#Y

{3} 1 yA +#Z

1,2} -1 xny —#(X NY)
{1,3} -1 XnzZ —#XnNn2)
{2,3} -1 Yynz —#Y nZ)
{1,23} 1 Xnynz +#XNYNZ)

Note the similarityto 1 — (1 — y1)(1 — y2)(1 — y3)
=Y1+Y2+ Y3 —Y1Y2 —Y1Y3 — Y2¥3 + Y1Y2Y3

More generally, let y; ..., ¥y, be variables.
IfSS Ny, S+

letyS = Hyi (if you like, y? = 1)
ies
Then

1=y -3) -y =1-] [a-p= ) n#ys
i=1

P+SSNm

Interpretation
Suppose 44,.., 4, € X
Pick an element x € X at random.
Lety; = Prob[X € 4;] fori=1,..,m
_ 4l
X1
Assume that the events x € A, x € A4,, ..., x € A, are mutually independent.

Mutual independences means that
sl 1AL _ s
1~ L L

In I-E formula
LHS |4, U U4l

—= = Prob[x € A; orx € A, or ...orx € Ay,,]
x| IX] ! : "

=1—Prob[x ¢ A;andx € Ay and ... andx € A, ] =1—- (1 —y)A —y2) .. (1 — yp)

RHS o1 sl _ -
TS D, CORTIEES S (s

@£SCNm @#SSNm
How to use it: Think of A, ..., A, as all the bad things that could happen.

Example
If n € N, the Euler totient of n is
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$(n) = #{k € N, | ged(k,n) = 1}
eg ¢(6) = #{1,5} =2

. C C; C; . . .
Write n = p;'p,* - p* < prime factorization

Bad things: prime factor in common

Let A; = {k € N,, | p; divides k}

Then A; UA, U U A, = {k € N,, | gcd(k,n) = 1}
¢Mm)=n—#(A, VA, U-—-UAy)

Now use Inclusion-Exclusion Formula

For S S Ny, beEA & (1_[ pi> divides b
i€$
(e.g. b € A1 N A, & py1p, divides b)
n 1
— =pn- il
l_lfi L 4D
Lety; = ;then |[Agl =n-yS
So By I-E
|A; U - U Ayl =Tl~< Z

P+£SCNy,

|As| =

(—1)'5"1y5) =n(1-A-yDA=y2)..(1 = yn))



Permutations Informal Proof of Theorem |S,,| = n!
To specify an element a, a, ...a, € S,, there are n ways to choose a,. For each of
September-16-13 10:33 AM
these there are n — 1 ways to choose a, and so on.
Advantages of this informal proof
¢ Easy to understand
¢ Short and sweet

Permutation
A permutation of length n is a bijection 0: N, = N,,.
The set of all permutations of length n is denoted S,,

Occasionally denoted &, Disadvantages

¢ Hard to tell if there are any holes in the reasoning.

¢ Does not appeal to proven facts (e.g. chapter 1)

e Doesn't give an algorithm for listing all permutations.
¢ By defining a more formal proof get extra info.

Word Notation (a.k.a. one line notation)
Express o as a;a,a; ... a, where a; = o (i)
Don't use brackets in word notation. If necessary, use square brackets.

Example: 25143 is word notation for the permutation o: N5 — N5 Strong Induction CONSPIRACY
c)=2 a(2)=5 o0B)=1 @ =4 o(5)=5 Goal: Proof P(k), for k = 1,2,3, ...
Basecase: Prove P(1)
Theorem Inductive Hypothesis: Assume P(1), ..., P(k — 1)
IS, = n! Inductive Step: Deduce P(k) from the inductive hypothesis.

There is no need for the base case if your inductive step can deduce P(1) from the

Permutation
inductive hypothesis of nothing.

Let X be a finite set. A permutation of X is a bijection 0: X = X

Let Sy be the set of all permutations of X. Proof of Theorem |S,| = n!

Let Q, = Ny X Npy_q X Npy_p X =+ X Ny X Ny
then |Q,| = n!
We'll prove that S, 2 Q,
by giving maps I,,:S,, = Q,
Jn:Qn = Sy
and prove that they are mutually inverse.

Corollary
If |X| = n, then |[Sy| = n!

Function: I,: S;, = Qp,
Input: a,a,---a, €S,
repeat with i from 1 to n:
let ri=|{jEN|i<an andai>aj}|
end
Output: (; + 1,1, +1,...,1, + 1)

Example:

c=3157642

I;(6) =(3,1,3,4,3,2,1)

We need to check that I,,(¢) € Q, forallo € S,

An element of Q,, is a integer tuple (hy, ..., h,) suchthat 1 <h;<n—-i+1

Soweneedtoshowthatl1 <1+n<n—-i+1©0<n<n-i
¢ 1; € N because 1; is the cardinality of a set. Hencer; > 0
e n=|jeN|i<j<nanda; >a}
{ieNlJi<j<nandg;>aq}JcS{jeN|i<j<n}
Since|{j eEN|i<j<n}l=n—i n<n-i

Function J,,: Q,, = S,

Input: (hy,.., hy,) € Q,
repeat for i from 1 to h

let b; be the (h)™ smallest element of N,\{by,..,bi_1}
end repeat
Output: b1 b, ...b,

Note
e by#bjforanyj <i
e Hence |[(N, \ {by, ... i1 Dl =n—-i+1
e Since1l < h; <n—i+ 1,thereisan (h)™ smallest element.
¢ Also, this shows b, b, ...b,, € S,, since we've listed the elements of N,, in some
order.

Example
J7(5,1,3,4,2,1,1)=5147326

Finally Prove
1) Jo(In(@)) =g forallg €S,

2) In(]‘n(p)) =pforallp € @,

Proof of 1

Leto=a,..a, €S,

()= +1,..,1m+1)

LetJ,(ry +1,..,1,+ 1) = bib, ...b,

We must show that a; = b; forall i

By definition,7; = [{f EN|i <j <nanda; > aj}|

& a; is the (r; + 1)™ smallest element of {a;, @j4q, ..., @n}
Now proceed by strong induction

Induction hypothesis.
Assume a, = by,a, = by, ...,a;_1 = b;_1

CO 330 Page 5



CO 330 Page 6

Induction step:

Np \ {by, .., bi_1} = Np \ {ay, .., a1} = {ay, iy, o, an}
(Since {ay, ..., a,} = N, by definition of a permutation)
+~ by definition of

b; = (r; + 1)™ smallest element of {a;, @; 41, ..., @n}

~ a; = b; as required.

Proof of 2
Homework
This completes the proof. m

We're using the fact that a function f: X — Y is a bijection
< ithasaninverse g:Y -» Xst.g(f(x)) =xvx € Xand f(g(y)) =y Vy €Y
Recommended exercise: prove this.

Proof of Corollary

We'll show that Sy 2 S,

Since |X| = n, there exists a bijection f: X — N,,. For ¢ € Sy defined
a(d)=focgof L:N, >N,

-1
a0 Sx3x LN,

Since a (o) is a composition of bijections, it is a bijection. - a(g) € S,
In other words: a: Sy = S,

Similarly define §: S, - Sy by B(t) = f Lotof

You can check that @ and £ are mutually inverse. m

See also the bit about F(X,Y) in Ch. 1.



Subsets

September-18-13 10:50 AM

Theorem

n n!
IB(n, k)| = (k) ICE]
Definition

If X is finite set, define
B(X, k) = set of all k-element subsets of X

Corollary
If |X| = n then |B(X, k)| = (Z)

Proof
See notes for details of B(X, k) 2 B(n, k)

Binomial Theorem
Forn e N

1+x0)"= z (Z)nk

k=0

Derangement
A permutation of o € S, is called a derangement if o (i) #
iforalli=1,..,n

Let D, € S, denote the set of all derangements of length n.
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Let B(n, k) = set of all k-element subsets of N,,

e.g.
B(4,2) = {{1,2},{1,3}, {1,4}, {2,3}, (2,4}, (3.4}}
abuse notation = {12,13,14,23,24,34}

Proof of Theorem

We will show that

B, k) X S X Sp_ie 2 Sn

this shows that

1B, k)1 - Ik] - [Sn_k] = I,

which gives use the result since |S,,| = m!

Strategy to show |X| = |Y]|
1. definef:X ->Y
2. defineg:Y - X
3. showthat f(g(y)) =y Vy €Y
4. showthat g(f(x)) =x vx € X

Step 1

To do this, construct bijections

Useful subroutine:

Let R, be the set of sequence of pairwise distinct positive integers a, ..., a,, (of length m)

Eg 152€R3 121€¢R;

Function: Py,: Ry, = Si

Inputay, ..., apy,

repeat with { from 1 to m
let b= [{j € Nn|ai 2 o}

end repeat

Output: b1 b; ... by

Pu(52946)=31524
Note: if 8 = P;(ay, ..., @) then a; is the b(i)™ smallest element of {ay, ..., a,,}

Function: W, ;1 S, = B(n, k) X S X Sy
Input: a;a; ...a,
Let A={aq,ay,..,a;}
B = Py(ay,az, ..., ar)
Y = Pur(@rs1, -, Qn)
Output: (4, 8,7)

Example
¥, ,(3671452)=({1,36,7},2341,231)

Step 2

Function @, ;.2 B(n, k) X Sy X Sp— = Sy
Input: (4, B,v)

SortAass; < sp <+ < S

sort Np\Adast; <t < <th_p
repeat with i from 1 to k

let ¢ = Sp(i)

end repeat

repeat with j from 1 to n—k
Tt Cyj =ty

end repeat

Example
®;,=0({1,3,67},2341,231)
s1=1,5,=3,53=6,5,=7
ti =2t =4,t3=5

c1=5,=3
c; =53=6
c3=84=7
c,=5=1
C5=t2=4
Ce=1t3=5
cr=t; =2
Final steps
show:

D Ppk ("Pn,k(d)) =0VoES,
2) Wk (<I>nk(A.B. y)) =(4,8,7) Y(4,B,y) € B(n, k) X Si X Sp_

Proof of 1

Leto = a;a; ...a

Let Wi (o) = (4,5,7)

Let ch,k(Aa B.y) =ciczCn

We must show thata; = ¢; fori =1,...,n

In the algorithm for &, , ¢; is the B()™ smallest element of A. But as we observed, in the



CO 330 Page 8

definition of B,

a; is the B (i)™ smallest element of A since B = P,(ay, ..., ay)
wap=cifori=1,..,k

Similarly, ¢4 ; is the y ()™ smallest element of Nj,\A and so is Qe j
Sej = Cyjfork=1,..,n—k

Proof of 2
Exercise

Proof of Binomial Theorem

From the identity
A+y)A+y2)A+y) = Z yS
SSNp,
Setyl =Yy, == =X
LHS -» (1 + X)"
RHS - Z xSl
SSNy,
Since y* = nyi - nX = xSl
ieS ieS
n n n n n
ISl — ISl — k — k _ k _ Y vk
Xl = Xl = X* = X 1= X*|B(n, k)| = kX
SCNy, k=0 SeB(n,k) k=0 S€Bn,k) k=0  seB(mk) k=0 k=0

Example: Derangements

What is | D, |?

Bad things that could happen:

(1) =1002)=2,..

LetA; ={oc €S, | a(i) =i}
ThenD,, =S, \{4; UA, U---UA,}
For@ #S S N,

Ag = ﬂAi {0 €S, |o() =iVieS)

ies
eg Az =A1NA; NA3 ={0 €5, |0(1) =1,0(2) = 2,and 0(3) = 3}
If |S| = k, this means we've fixed k values of any permutation o € Ag
The remaining values are specified (and specify) a permutation of N,,\ S

ie As 2 Sy,\s = 14sl = (n = k)!
Now compute

1Dl = 1S3\ (A Udy U UA)| = nl— |4, U-UA,| = n! — Z (=151 4]

P#SSNy
n n
=nl— Z Z (—D)IS-1Ag| = nt — Z Z (D —k)!
k=1 seBnk) k=1 5€Bnk)
n n n (_1)](
_ k-1 _ k-1 nmo_ .. _ ]
=nl— Z(—D (n—k)! 1=nl— Z(—l) m-0t(p) = =n Z =
k=1 seBnk) k=1 k=0
Note
=Dk 1
k' e
k=0
Soif nislarge, lD—',‘l ~1
n: e

Proof of Binomial Theorem
From the identity

A+yDA+y) A +y)= Z ys

SCNy,
Sety1 =y, ==y, =X
LHS - (1 + X)"
RHS - Z x1s!
SCN,
Since y* = nyi - nX = x/sl
i€s i€s
n n n n n
IS| — IS| — k _ Kk _ k _ Y vk
XISl = XISl = Xe=)x 1= ) X¥B(n k)| = o)X
SSN, k=0 seB(n,k) k=0 SeB(n,k) k=0  seB(nk) k=0 k=0



Lattice Paths What is | £(a, b)l?b ,
a+ a+
September-23-13  10:34 AM |£(a, b)| = ( a ) = ( b )

A path can be represented as a sequence P = 5153 ... Sq+p

Lattice Paths where s; € {E, N}
i ’ .

Fora,b € N, let L(a, b) be the set of all lattice paths from (0, 0) to (a, b) in P € L(a,b) & a of its steps are E and b of its steps are N.
the plane Z X Z which consist of steps either Gives a bijection £(a, b) = B(a + b, b) since
east: (x,y) > (x +1,y) or 5182 - Sa+p P {i € Ngyp | 5; = N}
north: (x,y) - (x,y + 1)
. Example
Notation: Coproduct Prove that for a.b € N
b b ’
b
A; means U A; where Ay, ..., Ap are pairwise disjoint. (a +1+ b) _ Z (a +1)
=0 =0 b )
Set Partition LHS = |£(a + b, b)|
Let X be a finite set. (a +f) = 1£@a, )|
A set partition of X is a finite set I = {Bj, ..., By} such that j /- 2l
e p+B,SX fori=1,..,k (a,b) (a+1,b)
] BinB]-=(D fori;tj
¢ BiU-UBr=X
Stirling Numbers of The Second Kind
a.k.a Stirling Subset Numbers
Let I1(n, k) be the set of all set partitions of N, into k subsets.
S(n, k) = |(n, k)|
S(n, k) is a Stirling number of the second kind. (0,0) (a,0)
o II(n, k) is a set of sets of sets. Any path from (0, 0) to (a + 1, b) is a path from (0, 0) to (a, j) followed by
e Elements of € I1(n, k) are set partitions. EN®~J = ENN - N for some unique j € {0,1, ..., b}
¢ Elements B € m are subsets of N, We have a bijection
b
Recursion Property of Stirling Numbers L(a+1,b) 2 ]_[L(a.j) x {ENP7T}
5(0,0) = 1 (The empty set is a set partition of @ so I1(0,0) = {@} ) j=0

S(0,k)=0fork>1

S(n,0)=0forn>1 LHS = |£L(a+ 1,b)| = = RHS

b
[ [ e (o3

Smk)=Smn—1,k—1)+kS(n—1,k) j=0
- ny_(m-1 n—1 Example
Reminiscent of (k)_( k )+(k—1) n 2 5
Prove forn € N, Z(k) =(nn)
k=0
RHS = |L(n, n)| ()
nn
1]
(k,n—k)
(2]

(0,0)
Each path passes through exactly one of the points (k,n — k) for some k.
n

]_[L(k,n — 1) X Lln—k k) 2 Lin,n)
i=0

Example Set Partition

{{1,3,6},{2,4},{5},{7}}

is a set partition of N; into 4 subsets (k = 4)

Proof of Recursion Properties of Stirling Numbers
'(n, k) € (n, k)

I'(n, k) = {m € (n, k) | {n} € 1}

i.e. {n} appears in Il

n appears alone in a subset in II.

LetI"' (n, k) = (n, k) \ '(n, k)

Claim: II'(n, k) 2 I(n — 1, k)

m e\ {{n}}

pu{{n}} «u

This shows that [II'(n, k)| = S(n — 1,k)

Example
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{€23,{1,3.43}, {(3}.{1.2,4}}, {4}, {1.2,3}}

' (4.2) = {{{4},(1,23}}}
1" (4,2) = {rest}

1(42) = {{{1, 2}, {343}, {{1,3},{2,43}, {14}, {2,3}}, {{1},{2,3,4]},}

Lasttimewesaw [I'(n, k) 2 I(n — 1,k — 1)
Alsoll""(n, k) » I(n — 1,k)

= {B\{n}|Ben}
eg (n=7) m={{1,3,7},{2456}} » {{1,3},{2,456}}

The preimage of any u € I1(n — 1, k) under this map has exactly k elements.
(there are k ways we can put n back into one of the subsets)
IN"(n k)| =k-0n—1,k)|=k-S(n—1,k)

Since we had I(n, k) = I'(n, k) U "' (n, k)
Snk)=Sn—1,k—1)+kS(n—1,k)



Polynomial Identities Proof _ _ N

September-25-13  10:50 AM For any polynomial f(y), if f(y) # 0, then f(y) has only finitely many roots S.
Let f(y) =p(y) —q ()

If p(n) = q(n) for infinitely many n = f(n) = 0

Theorem ~ f(y) must be the zero polynomial. m
Let p(y) and q(y) be polynomials. If there are infinitely many
natural numbers n € N such that p(n) = q(n), then p(y) = q(y) as Example
polynomials. With the formula
(y) _yo-DO=-2 - -k+1D
k k!

(Z) is a polynomial of degree k in y (k € N is constant)

Consider
b

(y+1+b)=2(y4_-]) forb €N
b ” i
j=0
Last time we proved thisis trueify =a € N
LHS: polynomial in y
RHS: sum of b + 1 polys = polynomial
This is true as a polynomial identity.

[ ] See exercise 3.9 for something that looks similar but doesn't work this way

Multivariable Version (Example)
If p(y1, ..., Ym) and q(y4, ..., ¥im) polynomials in m variables and

p(ny, Ny, s M) = p(ny, oo, M)
for (nq, ..., Ny) € S X -+ X S, where S; € N infinite for all i. Then p = g
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Generating Functions Example
You have two ordinary 6-sided dice. (Assume distinguishable)

September-25-13 11:08 AM How many ways to roll a 9?
Mathematically

A die roll is modelled as an element of Ng
Determine |{(a, b) € N¢ X Ng | a + b = 9}|
More generally, |[{(a,b) € N¢ X Ng | a + b = n}|

Notation

Leta = (a1, ay, ..., ) € NT

If x = (x4, ..., x,-) is a sequence of (pairwise commuting)
indeterminates. We write

X% = x;hxgz _,,xgr To solve, consider
Ifa=(ay,..,a)€EN", B=(B,..,5) EN" Z xath
a+pB = (a;+B,a+Bo ., ar +Br) (@bYENLxNg

We get x™ for every a + b = n. Our answer is therefore the coefficient of x™ in this.

Ifa; < p; for all i, we'll write @ < 8. Hence x* divides xf <
aSlB hi b =ZZx‘”b:zZxaxb=<zx“)(Zxb>=(x+x2+x3+x4+x5+x6)2

a€ENg bEN Q€N bEN a€Ng bENg
2
Weight Function _(x=x
If S is a set, a function w: S —» N” is a weight function if 1—x
|w=(a)| is finite for all « € N” ¥ —x"\?
Answer: [xn] —1—:

In this setup, define the generation function of S with respect to . ,
! up ! 8 fon funct wi P Ng X Ng is out set of objects

@ tobe n = a + b is the weight of (a, b) € Ng X Ng
Y (x) = z x0()
ses Advantages
Hence x = (x4, ..., x;-) is a sequence of r pairwise commuting Encodes our answer in a way
indeterminates. [] ... (Get the rest of this from someone)
Example

A composition of n with k parts is a k-tuple (¢, ..., cx) where ¢y, ¢y, ..., ¢ are positive
integersandc; + ¢, +--+c,=n
How many compositions of n with k parts?

x€*ezt k- Answer will be coefficient of x™

(€1,mCr)EMN21)*

-y YLy :( D )( 5 )( 5 )

Cc1EN>; €Ny CkENyg c1EN21 Cc2EN21 CkENxq

=(x+x2+x3+~")k:(1fx)k

x Ak
. n — T
Answer: [x ](1 — x) =
(N31)¥ is the set of objects
n =cy + -+ ¢y is the weight of (¢cy, ¢, ..., cx) € (N = 1)¥

Weirdness: Two parameters k & n presented very differently
¢ ndisappears from the solution until the end (n is the weight)
e kstays present on every line (k is not the weight)
We'll rectify this particular situation by considering vector valued weight functions.
e No more complicated than integer valued weight functions.
¢ Cando more.

Example
LetS=N
1) Letw:S—-N, w(@) =1

Then ®g(x) = ZX“’(S) = sz =x%+xl+x2+ =
SES SEN
2) Letw:S—-N, w(@) =1
Trick question. w is not a weight function because w~(1) infinite
3) Letw:S— N2, w() =(i,1)
What is ®g(x, y)?

Dg(x,y) = Z(x,y)w(s) = Z Ayl =xy +xly + x%y + - =

SES ieN

1
1-x

1-—x

Example

Let S = (Ng)? be the set of outcomes of rolling 3 dice.
(a, b, c) means roll a on die 1, b on die 2, ¢ on die 3.
Define the weight function

w:S > N3, w((a,b,c)) = (ab,c)

What is ®g(x,y,2)?

ds(x,v,2) = z (x,y, z)m((a,b,c)) — z xaybzc — z z z xaybzc

(a,b,c)E(Ng)3 (a,b,c)E(Ng)3 a€Ng beNg ceNg
- ( > x“) ( > yb> ( > zf) = DM@
a€Ng bENg ceNg
t7

whereD(t)=t+t2+t3+t4+t5+t6=%

Back to compositions
Let S =set of all compositions
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§= U(Nzl)k
k=0
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Ordinary Generating Functions

September-30-13 10:34 AM

Proposition
Let S be a set with a weight function w: S - NV

Then (%) = Z (o1 (@)x®
aeN”
Note: w~1(a) is the set of elements in S that have weight a

Coefficient notation:
[x*]Ps(x) = lw™ ()]

However, if we write
12+ A+ =[] (A+ 2+ +y)) =1+y

P2+ +y) =1
Instead, [x2y°](x2 + y)(1 +y) =1

Weight Preserving Bijection
Let S, T be sets with wight functions
w:S - N"
v:T - N7
A function f: S — T is called a weight perserving bijection if
e fisabijection

. v(f(s)) =w(s) VSsES

Proposition 2

Let S and T be as above. There is a weight-preserving bijection f:S - T

if and only if ®% (x) = ®¥(x)

This is a generalization of
S 2 Tiff|S| = |T| for finite sets.

Sum Lemma

Let S be a set with weight function w: S - N

Suppose S = S; US, U S3 U -+ (finite or infinite)
where S; N S; = @ fori # j

Then ®¢ (x) = Z d)‘s“i x)

Product Lemma
Let S, T be sets with weight functions w: S - N",v: S - N"
Define a weight function
¢:SXT —>N"
¢(s,t) = w(s) +v(©)
@ () = G5 Pr(x)
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Proof of Proposition

(Identical to math 239)
TR TED MIDWRTLED WD WRTED I U)W
SES aeN" Sew™1(a) aeN" sew~1(a) aeN” s€Ew™1(a)
= Z x* o™ ()]
aeN”
]

This tells us that the generating function answers the question: Determine |w ™! (a)|

Proof of Proposition 2
Suppose we have a weight preserving bijection f:S - T
Then

o=y w0 = S 0Ue) = o = oy

SES tef(s)eT teT

Suppose O (x) = BH(x)
Then [x¥]®2 (x) = [x*] D} (x), Va € N"
= o M )| = lw™tW)]
Therefore there is a bijection f,: ™ 1(a) - v™1(a)
Now define amap f:S — T by saying f(s) = f,(s) fora = w(s)
Check that f is injective and surjective.
Also note: If w(s) = a thens € v~ (a) = f,(s) € v i(a)

= f(s) evili(@ = v(f(s)) = a
= V(f () = w(s)

Proof of Sum Lemma
Exercise / See notes

Proof of Product Lemma

Bgp(x) = Z X968 = Z Z xB6H = Z Z XOE+VO = Z Z X))

(s,t)ESXT SES tET SES teT SES teT
= (Z w) _ (zxw@) (Z xvm) .
SES teT SES teT
|

Example: Compositions

S = all compositions = U(Nzl)"‘
k=0

Define d((cy, ¢, -, €x)) = (c1 + *+ + ¢, k) (sum of parts, # of parts)
We use the following weight function on Ny,
Define w: Ny, = N?, w(c) = (¢, 1)
Note that ¢((C1, ...,ck)) =(c,+ -+, k)

w(cy) + -+ wleg) = (¢ + -+ ¢, k)
So product lemma applies.

By Sum Lemma

OLy) =) B ()
k=0

By Product Lemma
k k
(] — w = yx__
q)(Ngl)k(xo;Y) = (o8, 9) = (1 )

—x
. b? = X ‘ = —1—
b= 2 G5 =
Answer:

T—x
is # of compositions of n with k parts.

MLt
[xyll_( 7



Strings

October-02-13 10:32 AM

Finite Strings
Let S be a set with weight function w: S - N”
We define the set of all finite stringson S to be

S*= U sk

k=0
If o € §*, then o € S¥ for some unique k € N.If k = 0, then ¢ = € is the
empty string. k is called the length of o, denoted [(0).

We define a weight function on §*, *:5* - N”
If o = (sq, ..., Si) then w*(0) = w(sy) + - + w(sy)

Lemma

If S is a set with weight function w: S — N”, then w* is a weight function on
S*ifand only if w(s) #0Vs €S

Proposition (Finite String Lemma)

Let S be a set with weight funciton w: S - N” such that w(s) # 0 Vs € S.

. 1

Then @ (X) = ————
$ 1-0¢(x)
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Proof of Lemma

Suppose w(z) = 0 for some z € S. Then consider z* = (z,z, ..., z).
By definition, u)*(z") =w(2)+ -+ wi) =ko(z) =0.

~zF e (w)7L(0) vk

= |(w*)~1(0)] is infinite

~ " is not a weight function.

Suppose w(s) #0 Vs €S

Forany g = (ﬁlﬁ s BT) € N’ let Iﬁl =p1+Pfat+ -+ B

Since w(s) # 0, lw(o)| =1 Vs €S

“1f o = (s1,...,8¢) then |w*(o)| = lw(s)| + lw(s) + - + lw(sK )| = k
~|w*(0)] = l(0) Vo € S*

Let @ € N”. We want to show that (w*) () is finite.

Ifw* (o) = aand o = (sq, ..., S) then w(s;) < a.

That is, if we define Uy == U w™1(p) thens; €U, Vi=1,..,k
Bsa
Note that there are finitely many 8 < a and w~*(p) is finite, so U, is a finite union
of finite sets. Hence U, is finite.
Since l(0) < |w(0)| = |al
Theno € U UULU--U UL, whichisalsoa finite union of finite sets
la|
Thus we have shown that w™1(a) S U Ul
i=0
~» o~ Y(a) is finite, as required
]

Finite String Lemma
Homework

Example
The set of compositions is (N5;)*
Define weight function w: N>; = N?, w(c) = (¢, 1)
Then w*(¢q, ..., cx) = (c1 + -+ ¢, k)
1

L (x,y) = =
Nz1(x 2 1-d,,(xy) 11— 1_xy_
—x



The g-Binomial Theorem

October-02-13 11:02 AM

Inversion

Leto € S,, 0 = a;a; ...a, be a permutation of length n. An
inverstion of ¢ is a pair (i, j) with1 < i <j < nand a; > q;. Let
inv(o) = # of inversions of o.

Note
. n
Foro € §,, 0 <inv(o) < (2)
Notation
For k € N, k], is the following polynomial of g:
2 k-1 N 1-4q"
klg=1+q+q*+-+q =2qL “1q

Forn €N, [n]!y = |n]gln— 1Jq[ri1=—0 2]q -+ 12]411lq where 0]l = 1

Note
[n]!4 is a polynomial in q of degree (n — 1) + (n—2) + -+ 2+ 1+

0-22- ()

2 2

Theorem
oi(q) = Z g™ = [n]l,

OESy
Theorem

k(k+1) [n]!

Bnk(q) = Z g = g W[n_q—_k]'_

AEB(nk) q a
Note

k(k+1)

. . _ =", n! _(n
Plugining =1RHS—> 1" 2 PrespThe (k)

. n _ [n]h
Define (k)q T [kllgIn—klq

This is called the g —binomial coefficient. Also called Gaussian
polynomials.

g-Binomial Theorem

n
k(k+1)
A+g0)(1+g*x) (1 +q"x) = Z q 2 (Z) xk
q
k=0

Polynomial Degrees
[n]g pluging=1=n,

[n]!g = [nlg[n— 1] - [2]4[1]4 pluging = 1 = n!,
n [n]! . n
(), = T gy Plueina = 1= ).

degree (121) - (g) - (n ; k) =k(n—k)

Theorem 3

degreen — 1
degree (Z)

k(k+1) m
@ =a"2 (i),

Interpretations

. . n
There are other interpretations of ( k) :
q

(Stated without proof)

Theorem

Let L(a, b) be the set of lattice paths from (0, 0) to (a, b). Define the
weight function area: L(a, b) » N

area(P) = the area bounded by P and the path (0,0) — (0, b)

- (a,b)

Then &2, (q) = (

Example

a-l:b)
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Recall P(X) = set of all subsets of X

Binomial Theorem
Let w: P(N,) » N, w(S) = [S|
What is ¢§‘,’(Nn)(x) ?

Method 1
[x*] = ®$(N")(X31 =lw k)| = 1B(n, k)| = (2)

Dy (00 = z (7)xk

k=0

Method 2

We have a bijection F: P(N,,) — {0,1}"

1 ifies

0 ifigs

We have a weight function on P(N,,). Want to put one on {0,1}" to make this a weight
preserving bijection.

v:{0,1}" - N, v(ay, .., a,) = w(F(ay,..,ap)) =ay + -+ ay

n
DBy () = Bl 1 1n () = (cb{((?_ﬂ(x)) =(1+x0"
Putting these together
n

1+x)"= z (Z)x"

k=0

F(S) = (ay, ..., a,) where q; = {

Generalization
Now, change the weight function

w:P(N,) - N?, w(8) = (IS, sum(s)), where sum(S) = z s
SE€S

Example

n=7 S =1{1,3,6}

w(s) = (3,10)

Method 2 Generalization

We have a bijection F: P(N,,) - {0,1}"

F(S) = (aq, ..., a,) where q; = (1) :2 ;g

We have a weight function on P(N,,). Want to put one on {0,1}" to make this a weight

preserving bijection.

v:{0,1}" - N?

v(ay, .., ap) = w(F‘l(al, ...,an)) =(a;+a; ++ay, a, + 2a, + 3as + -+ nay)

n n
= (Z a;, ial-)
=1

=1 q
Define y;: {0,1} > Nz,nui(a) = (a,ia)
Thenv(ay, ..., a,) = Z ui(ay)
n OP ey (x,q) = CIDE’OT:}i(x, qQ) = CID?(}II}(x, q)CID?OZJ}(x. q) - d)f‘o’fl}(x, Q
=1 +qgx)(1+q%x) - (1+q"x)

Method 1 Generalization
n

(D;’)(Nn)(x’ qQ = Z xISlgsumS) = Z < z qsum(s)> xk
SCB(n.k)

SCNy k=0
LetB, ) = g™

SEB(n,k)
n
= O, (6 @) = Z Bn (@) x*
k=0
If we can figure out what By, ;. (q) is then we'll get an analogue fo the binomial theorem.

@) = Br(@)
SeB(n,k)

Bn,k (q) =

Note dJ%“(’}l"k)(q) =

Pluging =1, 1=|Bn k)| = (Z)

SeB(n k)

Idea: Turn material from chapter 2 into weight preserving bijections.
Start with permutations.

Example of Inversions

0=514263

The inversions of ¢ are
(1,2),(1,3),(1,4),(1,6),(3,1),(3,6),(5,6)

soinv(o) =7

Note: Inversions are pairs of indices, not pairs of elements.

Example



A48

area(P) = 13

Theorem

Fix 0 < k < n integers. Let ¢ = p© be a prime power. Let FF be the
field with q elements.

Let V be an n-dimensional vector spece over F.

Then the number of k-dimensional linear subspaces of V is (Z)
q

Theorem
Let V be an infinite dimensional vector space over R. Let ¢ € R
Suppose X,Y € L(V) satisfying YX = gXY

n

X+Y)"= Z (Z)q xkyn—k

k=1

Example YX=gXY

Fora = (ap)nen, let X, = ((xa)n)nEN = (q"an)nen
(ag,ay,az,...) » (ag,qa4,4%ay, ...

Let Ya = ((ya)n)nEN = (an+1)nEN

(ap,aq,a3,...) » (a,a;,a3, ...)
Then YX = gXY
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somv(g) =/
Note: Inversions are pairs of indices, not pairs of elements.

Example
o = 123456 has no inversions. inv(g) = 0, the minimum possible

Example

0 = 654321 has all possible inversions. inv(g) = 15 = (g)

Proof of Theorem
Recall thatwehad S, 2 Q, = Ny X Njj_q X -+ X Ny
withmaps I;: S, = @, Jn: Qn = S

Claim

IfoeS, I,()=0+nr,.,1+nr)theninv(e) =r, +nr, + - +1,

To see this, recall thatr; = |{j |li<j<nanda; > aj}| = # of inversions of the form (i,*)
where i is fixed.

Summing over all i gives the total number of inversions.

Now define weight functions g;: Nyyq—; = N, p;(h) = (h—1)
viQy - N,
v(hy, o hy)) =(hy =D+ (hy —2) + -+ (h, — 1)
= U1(h1) + Hz(hz) +t un(hn)

We just showed I,,: S, = @, is a wight perserving bijection with these weight functions.

PR (q) = ®Y, () = PR (@QPR2_ (@) ™ (q)
=Q+q+-+q"DA+qg++q"2) 1+ Q) = [nlyln— 1], [2]411],
= |n]lq

Proof of Theorem 3

Recall that we had

Sp 2B, k) X S X S
given by the maps

Wok:Sn = B, k) X S X Sy
D kB, k) X Sy X Syge = Sy

Claim
W, k(o) = (4,B,y) then
inv(o) = [Sum(A) - ]—c(i;—l)- + inv(B) + inv(y)

To see this, split the sets of inversions of ¢ into three sets:
E, = {inversions of 6 (i,j) : i< j <k}

E, = {inversionsof o (i,j) : k +1<i<j}

E; = {inversions of o (i,j) : i < k,j =k + 1}

Then inv(o) = |E;| + |E3| + |E5]

|Ey| = inv(B)

Example

n=7, k=3, 0=5142673
A={1245}, B=4132, y=231
E, is the set of inversions of

Similarly, |E;| = inv(B)

Finally, |E5| = sum(4) — E%H—)

Write o = a;a, - a,

(i,§) € E5 iff (a;, aj) € N, X Ny, isa pairsuch thata; € 4,a; ¢ Aand a; > q;

How many pairs (a,z) € N, X N,, are there witha € 4,z € N,\ Aand a > z?

Sort the elements of Aas s; < s, <+ < 5

For each s;, there are i — 1 elements of A that are smaller than s;. And there are s; — 1

elements of N,, that are smaller than i.

~ there are (s; — 1) — (i — 1) = s; — i elements of N,, \ A that are smaller than s;
k(k+1)

~total# =(s; —1) + (s, —2) + -+ + (5, — k) = sum(4) — —

This proves the claim

This shows that
DV(q) = Dp iy (@) - PRV (q) - D, (q)
where v(4) = sum(4) — k—(k;—l)

k(k+

_k(k+1)
Note @3, 1y (A) = q7 2 Pz (@)

' k() ' '
[nllg=q" 2 O @Ikl [n— K],

Rearranging:



n
k(k+1)
. HW — — k
Oy =) 0 2 (),

k=0
where w(S) = (ISI,sum(S))
Putting the two methods to get

g-Binomial Theorem
ForneN

n
k(k+1)
A+g0)(1+¢*x) (1 +q"x) = Z q 2 (7]:) xk
*=0
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Recursive Structures

October-09-13 10:37 AM

General Binomial Theorem
Fora €C x€C, |x| <1
o

1+x)*= Z (Z)xk

o= 1)@ —2) (@ —k +1)
k) = k!

Where (

Note: In(x) is not well defined for x € C

Can also use this if x is a formal indeterminant.

Proposition

a) \/1_—4—x—1—22 xn+1
n+1

b) \/_1——Tx = HZO (3

Binary Rooted Tree (BRT)

A binary rooted tree is a tree with a distinguished node ©
called the root, in which every node has at most two children,
one called left (child) and the other right. If there is only one
child, it is either left or right.

A terminal is a node with no children. (Similar to a leaf, but not
exactly the same.

Let T be the set of all BRTs. For T € T, let

n(T) = number of nodes
7(T) = number of terminals

Catalan Numbers

The numbers —— (Zn) are called the Catalan numbers.
n+i\n
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Method for Solving Generating Function Problems

1. Identify the set of objects under consideration (remove parameters). Reintroduce these

parameters as a weight function.
2. Describe S in a more formal way / find a bijection involving S.
3. Define weight functions such that
¢ bijections are weight preserving
« weight of a composite object = sum of weights of pieces.
If weight functions are already defined check that this is true.
4. Use sum and product lemmas, etc. to get an equation for generating function of S.
5. Extract required information from the generating function.

Ch. 6: Recursive Structures

Proposition

a)\/1—4§:(1—4x%:2< )( 4x)k—z< )( 1)k4kyk

Now, ifk > 1
1)\ /1 1

) - DB Gk

p k!

DEDEDCFED) e 135k
= - (=1)k2k2

1-3-5--(2k=3)-2-4--@2k=2)]_, 1 (2k—2)'
k! 2-4-6-(2k—2) T2 k12 3(k=-1)

2 (2k —2)! 20k -2
(e B Gty

1
Ifk =0, <E> (—1)k4k =1
k

Continuing,
o

1
\/T_W:Z< )( 1)k gky k_l_l_z__ Zk—Z k=1
k

k=0

Z__ Zn K+
—n+1
b) Similar. m

Question

Given a random BRT with n nodes, what is the expected number of terminals?
Equivalently, what is the average number of terminals among all BRTs with n nodes.
Random = chosen uniform at random from the set of all BRTs with n nodes.

o(T) = (A1), =(T))
To answer our question: we'll compute ®% (x, y) and get answer from here.
As a warm up, let's compute ®% (x), weight function is # of nodes.

Describe 7" in another way. Given a BRT T € T, remove the root node (© to obtain a pair of
"subtrees" (L, R) which may be either BRTs or empty.
L is rooted at the left child of ®
R is rooted at the right child off ©
This construction gives a bijection T 2 {O} X (T U {8} x (T U {B}), T » (O,L,R)
Note thatif T & (O, L,R), n(T) = n(®) + n(L) + n(R) =1 +n(L) + n(R)
So we can use the product lemma:
Dh(x) = d>?o)(x)¢'?u{m(x)CD?U{m(x) = x(OF(x) + 1)2
Let A = A(x) = ®}(x)
A=x(A+1)?> =xA? + 2xA + x
xA?+(2x—1)A+x=0
—_ — —1)2 — 452
(x 1)+J2_jx ~1)% — 4x _1+2i+21 N

1 1 1 9n
=—1+-—t— 1—22— n+l
2x T 2x ( n+1 ( )
Need "-" solution or else thls won't be a power series. The "+" solution has a = term.

— 1 N 2n\ n1 | Z 2" n+1
A<X>—‘1+5¢"§<1-Zzn—+1(n)x =1 2 (n)

n=0

> 1 1
C S G = Y e

n=1
~ #BRTs with n nodes is

A=

8

1 ony .
[x™MPR(x) = [x"A(x) = Eﬁ( r?) ifn>1

0 ifn=20
Now let's try to do this with w.
We have our bijection
T2{0}xTu{g})? Teo(OLR)

w(T) = (n(D),=(T))

n(T) =1+ n(L) +n(R)
_Jt)+1(R) ifL#+Q@orR+0

T(T)‘{ 1 ifL=R=0



Itis not true that w(T) = w(®) + w(L) + w(R) so we need to fix up the weight function.
Don’t' want to modify w(T) since that is how we get our answer.

Define weight function u: {®} - N2, u(®) = (1,0)
thenif L # @orR # @, w(T) = u(®) + w(L) + w(R)
This does not hold if L = R = @ so we remove that case from our sets.

~ we have a weight preserving bijection

TA{O} 2 {0} x (T u{OH*\{(O,8,8)}
q)u@w@w

DR, y) - By (63) = B (6,9 (P11 (19)) — BEBUS s, )
LetA = A(x,y) = ¢ (x,y)

A—xy=x(A+1)>—x

A=x(1+4)?—x+xy, —x + xy is a correction for the root behaviour

Solve this with quadratic equation

1 —2x +/(1 - 2x)% — 4x2y
2x
Note: if we put y = 1 we're supposed to get

L (x,1) = z AT = z 2D = 1 (x)

TET TET

So we need the "-" solution
1-2x+./(1-2x)2 — 4x2y
ACuy) = ( - ) y
We want to know the expected # of terminals in a tree with n nodes.
Y rer ©(T)
n(T)=n

HT €T : n(T) = n}|

=

Alx,y) = Z X(Dye(T) = Z Z yr( | xn

TET n=0 TET

n(T)=n
a
—A(x,y) = Z Z 7(T)yT M1 \ 57
dy

n=0 TET
n(T)=n
Pluginy =1
a [ee]
a—A(X,y) = Z Z o(T) \ x™
y y=1 n=0\ TEeT
n(T)=n
a
[x"] - A(x, y) = numerator
ady -
y=1
In our case,
Alx,y) = - J(=2x)2 —4x2y
oy = 2x

0 Alx,y) =
—A(x,y
ay JA =207 — 4xZy

0 x 2n
—A(X, )| :—::XZ Xn
ay " yo1 VI—dx n=0( n )

- (21?—_12)

a
[x ]@A(x,y) -

Final answer:
2n—2
()

n+1—1(21?)
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More Recursive Structures
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Plane Planted Tree

A plane planted tree is a tree with a designated node © called
the root, drawn in the plane such that each node has its children
ordered from left to right.

Rooted trees with implicit node labels.

Super-Diagonal Lattice Paths
a.k.a. Dyck Paths, Catalan Paths
Lattice paths that are always above the diagonal line.

2
There are ﬁ( nn) SDLPs from (0, 0) to (n,n)
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Why (Partial) Derivatives?
e IT WORKS
¢ Derivative has a combinatorial meaning: marking / rooting

Example
LetS ={0,1}", w:S > N?, w(c) = (# of Os, # of 1s)
1

DY (x, = =
SO =g e T T-G )
Let T be the set of all {0,1}-strings in which exactly one of the 1s is marked (circled).

7 = {1} o[z} [T]o,[1]1, 1[1] 00[1}, ..., [T]11, 1[T]1, 11[T] ...}
Weight function: ¢(¢) = (# of Os, # of 1s)

Relationship
0
Yy ¥8 ) = of (x,y)

Check this
We'll see this again in Exponential Generating functions.

Example (Plane Planted Trees)
How many PPTs with n nodes?

Let U be the set of all PPTs.

Letn(T) = # of nodesfor T € U
Want to compute o (x)

Bijection: If we remove the root of a PPT we get a tuple of PPTs
uz2{0rxu*

T & (O,cq,€q e, Ck)

n(T) = (@) +nley) +n(cy) + -+ nlc)

X

) =L Dr. =P} =

1 (x) {O}(x) x) {@}(x) 100 1- o)

X

A=—— A2 - A =

-2 +x=0 i

1+vl—-4x 1 1 1
Az_—\/__:_i— 1_22__(2n)xn+1

2 272 Lin +1\n

Since we know [x°]A(x) = # of PPTs with 0 nodes = 0 it must be the "-" solution.

s A(x) = Z nLH (27:’1.) Pt

n=0

~ The # of PPTs with (n + 1) nodes is L (2n>‘ nx=1
n+i\n

Bijection between BRTs with n nodes and PPTs with n+1 nodes

Starting with BRT — create a left child for every node missing one — contract all edges to right
children — have a PPT

Super-Diagonal Lattice Path Bijections
X = all SDLPs
X2 ({N}x X x{ED*



Formal Power Series

October-23-13 10:33 AM

Commutative Ring

Algebraic operations: +, -, -

Special Elements: 0 (additive identity), 1 (multiplicative identity)

+ and - are associative, commutative, distributive
— isinverse of +

Inverses
IfRisaring,a,b € R and ab = 1 then a and b are invertible, b is
the inverse of a, b = a™1

Field
If every non-zero element of F has an inverse, R is a field.
(Also require 0 # 1)

Zero-Divisors

a,b €R, a#0,b#0

If ab = 0 then we say a and b are zero-divisors.
A zero-divisor can't be invertible.

Integral Domain
A ring with no zero-divisors is called an Integral Domain.

Mostly we'll want to have integral domains (or even fields).

CO 330 Page 22

Example Rings
Z,QR,C

Z

n
F(R,R) = functions R - R

Example Integral Domain

Z is an integral domain

Z,5 is not an integral domain since [5] - [3] = [0]
Zy, is an integral domain iff n is prime

F(R, R) is not ain integral domain.

_Jx ifx>0
f(x)‘{o ifx< 0
_)x ifx <0
g(")‘{o ifx >0

f(x)g(x) = 0. f and g are zero divisors

Every field is an integral domain

Why are integral domains good?
Integral domains have a weak form of "division"
Ifa,b#0,a= bc,Write%z c

Example

$ = 2but ; is not defined in Z

3

This does not work well if R is not an integral domain
For example, in Z;5

L1 = [2] because [6] = [3][2]

3]

Bl — [7] because [31[7] = [6]

[3]

Division is not well defined.
Division is well defined in an integral domain
Supposeab=ac=>ab—ac=0=>alb—c)=0

=>a=0o0orb=c
Ifa=0thenab=050%=g=0

Constructions

1. Ring of Polynomials

Let R be aring

R[x] = f{ap + a;x + ax? + -+ apx™ | n €N,
+, -, - defined

1, 0 are constant polynomials

x is an indeterminant

R[x] is always a commutative ring.
If R[x] is an integral domain if R is.
R[x] is never a field.
For example, x does not have an inverse in R[x]
Polynomials can be evaluated - can plugin values in R for x

. Ring of Rational Functions

Let R be an integral domain

f&)
R(x) {g(x) | f(x), g(x) € R[x], g#* O}
Subject to usual simple function rules.
Addition
fG)  h(x)  k()f() + h(x)gx)
g k() gk(x)
Multiplication

f@ @) _ feRG)

9@ k&) gk

isaf - 1) 4 86
R(x) is afield (The inverse ofg(x) 555

Evaluation: Sort of. If a € R, g(a) # 0 we can maybe make sense of

. Ring of Formal Power Series

Risaring
R[[x]] = {f(x) = ap + ayx + azx® + -+ = X2 ganx" la, ERVn €
+, - defined in the "obvious way"

e Collect all like terms

e Use distributive law

9@ =) by
o n=0

F@ =) ",
FG) + 900 = Z(an +b)x"
n=0

n=0

ag, ay, ..., Ay € R}

f@
g9(a)

N}



f()gk) = (i aixi> (i bjxf> = i a;bix't = i (i aibn_i> X"
0 j=0

o
i= i=0 j=0 n=0 \i=0

0=0+0x+ 0x? + 0x3 + -
1=1+0x+ 0x? +0x3 + -
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More Formal Power Series

October-25-13 10:33 AM

Theorem (Inverse of Formal Power Series)

flx) = Z a,x™ € R[[x]]

n=0
is invertible in R[[xj] if and only if a, is invertible in R.

Special Case
If R is a field, then f(x) is invertible if and only if a, # 0.

Index of a Formal Laurent Series
The index of f(x) € R((x)) is the smallest number n € Z such that

[x™]f(x) # 0
Denoted I(f)

Convention: I(0) = +o
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Inverse of Formal Power Series

°)

fx) = Z a,x™, when is f(x) invertible?

n=0
Suppose f(x)g(x) =1, g(x) = Xe_g bpx™
oo n

Z <Z aibn_i>x" =14 0x 4 0x% + -

n=0 \k=0

Comparing coefficients

[x°]: agby = 1 = a, must be invertible and b, = ag*

[x']: aohy +arby = 0= by = —ag'a;by = —ag'a,a5"
[x%]: agb, + a;b; + azby = 0= b, = —agt(a,b; + a,by)

n
b, = —a61 <Z aibn—i)

i=1
Once qaq is invertible, we can solve for by, by, b,, ...

Exercise
« R|[x]] is an integral domain if R is an integral domain
. R[[xj] is never a field if x € R[[xJ] is never invertible.

Constructions (Continued)
4, R((x)) Formal Laurent Series
R isaring
R((®) ={ax" + ap X1 + @,y ,x™*2 + - |7 €Z, a, ERVR =7}
Example

Z nx™ = —5x75 — 4x~* — 3x73 + - € Z((x))
n=—2s

But Z x™ is not

nez
A=+ x3+x2+x 1+ 1+x+ 22+ 23+
This thing is weird. You might try

1 x~1
A=Q+x+x2+x*+ )+ @ T +x24+x34.) = — = 07?7
1-x 1-—x1
Notice that if f(x) € F((x)) we can write f(x) = %ﬁ?where k eNand A(x) € R[[xj]

Addition and multiplication defined as with FPS. Distributive law / collect like terms

OR
A B
F0 =22 g =22 w5 e Rl
tA kB A(x)B
£00 + g = TADLELED - g = AP

o IfRisan integral domain then R((x)) is an integral domain

e IfRisafield, then R((x)) is a field.
To prove the second of these, define the index of f(x) € R((x)) to be the smallest number
n € Z such that |x™]f(x) # 0.

Example

<)

IfF(x) = Z nxt,  thenI(f) = =5
n=-5

Note that if f # 0 then x~/("f(x) € R[[x]]
If R is a field, then [x]x "N f(x) = [x'D]f(x) £ 0
~ x7 1N f(x) is invertible in R[[x]]
-1
(x”(f)f(x)) x~1(f is the inverse of f(x)

This proves that any non-zero element ofR((x)) is invertible if R is a field.

Relationships Between These Constructions
R c Rlx| < R[Ixl] = R((0)

If R is an integral domain, R[x] € R(x)

IfR is a field, R(x) € R((x))

Every element of R (x) is of the form f(ﬁ, (0, g(x) € Rlx] = f(x), g(x) € R((x))

%’3 € R((x)) because R((x)) is a field
Composition
A(x),B(x) is A(B(x)) defined?

If A(x) € R[x], A(B(x)) is defined for B(x) € R[x] or R(x) or R[[x]] or R((x))
Why? A(x) is a polynomial = involves finitely many operations (+,-, —). Partition these on B(x)
e.g. A(x) = x2, A(B(x)) = B(x)B(x) is defined.

_f@ _ f(B) !
IfA(x) € R(x), A(x) = Pt A(B(x)) 9(B) may or may not be defined

If A(x) € R|[x]], B(x) € R[[x]]
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=3}

Write A(x) = Z apx™, B(x) = Z by x™

n=0 (n=0)

ABW) = Z L(BGO) = Z By + byx + byx? + )1 = Z ap (B8 + )
n=0

Ifby # 0, [x A(B(x)) is Z(n O)a b¥ infinite sum

Declare this to be undefined

What if by = 0?

A(B(x) = Z a, (byx + byx? 4+ byx3 + = i (i b; xl>

(n=0) n=0
= Z a, <Z bjlxh) (Z bjzxf2> <Z b; x1">
n=0 J1=1 J2=1 Jn=1
Restart
Alx) = Z a,x™, B(x) = Z b, x™
n=0
Assume by =0, B(x) = Zj 1b]x1

Alx) = ag + Z a,xk
k=1

A(B() = ao + i @, Bk = ay + i ax <§: bjlxh)(i X
=
2(2
=1

Jz) < Z bjkxjk>
Jk=1

n
Z b, 1112 1 x

o jk21
11+ “+jk=n
The coefficient on each x™ is a finite sum. This nasty expression therefore defines A(B(x))

— j14jottik =

=1j1j2,m]k21 =

Exercise

If R is a field, A(x) € R((x)), B(x) € R[|x]], 1x°]B(x) =0, B(x) # 0

Then A(B(x)) is defined in R((x)).

Hint: Write A(x) = —x!(4 (x"(A)A(x)) use composition for R(x) and R[[x]]

Properties
A (x) + A, (x) = A3(x) = A, (B(x) + 4,(B(x)) = A;(B(x))
A (DA, (x) = A5(x) = 4,(B())4,(B(x)) = 4;(B())



Special Series & LIFT

October-28-13 10:44 AM

Exponential Series
Define

- 1
exp(x) = Zaxn € Q[[x]]
n=0

Also written e*

Logarithm Series
Define

NEER y P
k=1

Binomial Series

Recall that
-1D.(y- 1
(%) _yo-1 n(!y n+ )e bl

(1+07 =) ()5 e Qbyli]

n=0

Qly] [[x]] is the ring of formal power series in x with coefficients in Q[y]
Since polynomials can be evaluated, this implies

Q=Y (¢)er el

n=0
foranya € C

Lagrange Implicit Function Theorem (LIFT)
Simplified Version
Memorize This

Let K be a commutative ring that contains Q. Let G (u) € lK[[u]] be a formal power

series.
a) There is aunique FPS W(x) € lK[[x]]
W(x) = xG(W(x))
b) [x°TW(x) = 0and
[x"W(x) = % [u™ 16w, forn>1

However, we are only going to prove it in the case where G (u) is invertible.
If G(u) is invertible, W(x) # 0

Remark
If we have a FPS equation in multiple variables, we may be able to use LIFT by

treating one variable as the "active” variable, and the other as constants. This may or

may not be a choice.
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What does this mean?
e These FPS are inspired by Taylor series for functions
* Doesn't make sense to compare theories of FPS to Taylor series directly.
e But they satisfy the same identities

Example
exp(x +¥) = exp(x) exp(y) € Q[[x]][[¥]]
Note, Q[[x]][[¥1] = @[¥1][[x]] = @[[x ¥1]

Proof
_ = n_ = M\ k,n—k _ = L kyn—k
LHS_Z e +y) ‘anz(k>"y _Zn' k' (n—k)! y
n=0 n=0 k=0 n=0 k=0
i L ynk
= K m=k)n
n=0k=0f' ( wk)' n
X j e O xiyn—i
= (S 2)(52) - 5 5« 55 veanen -
il = J! S it ait(n -0t
Example

1+20)YA+x)?=0+x)¥*7 € Q[y,z][[x]]
Proof, see notes

Example

(o8(:=5)) =1

explog 1-x/) 1-x
log(exp(x)) = x

Note make sense of this, note that

eXP(X)=ﬁ' u=(1_‘3xp1(x))'log<1—(1—1 3 )>:x

Example LIFT

BRTs

T = all BRTs

w(T) = (n(T), (D))

How many BRTs with n nodes?

Let A = A(x) = ®}(x)

We saw that A = x(1 + 4)?

Solve using LIFT. Have G (u) = (1 + u)?

n = n— 7!_1 n— n_]' 2 = 1 2
# A = 6w = —@r A +w = )= —— ()

What is the average number of terminals among all BRTs with n nodes?
To do this, we had weight function w: T - N?, w(T) = (n(T),T(T))
Let A = A(x,y) = @£ (x,y)
Saw before A — xy = x(1 + A)?2 —x (*)
Need to compute [x"] aiA(x,y)|
y y=
Rewrite (x) as A = x((1 +4)2 —1+y)
This is the right form to use LIFT. Here, K = Q[y]
Gw=>0+uw?—-1+y=y+2u+u?e€ H([[u]] = Q[y][[u]]

~B1AGE ) = S IGE) = SR (P - 1+ )"
[x"] %A(x, y) =~ 1] % (@ +w2—1+7)"
= %[u"‘l]n((l +u)? -1+ y)n_l = (A +w?-1+ y)n_1

= (A +w? =1+ 1) = (1 + w2

9
[x"] EEA(X’ y)

=)
The average number of terminals is
r2))
1)



Formal Derivative & Integrals

October-30-13 10:56 AM

Formal Derivatives and Integrals

oo

Iff(x) € Z ax™ € R((x))
n=I(f)

1. Formal derivative:
o

d
[@=f@= ) naant
n=I(f)
2. Formal Integral. Assume Q € R and [x~1]f(x) =0

— 9n_ . n+1
Jroom= o
nzI(f)

ne-1
n # —1since [ x~*dxisnotaFLS

3. Formal Residue

lx~1f (x)

Everything you would expect to be true about formal derivatives/integrals is true.

¢ Formal derivative is R-linear
Product Rule

Quotient rule (when defined)
Chain Rule

Fundamental Theorem of Calculus

ff’(x)dx =f(x)+C, (in fact, € = —[x°]f (x))
o Integration by parts
| rg @ix = g0 - [ Fr@g@ax +c

True when LHS is defined (= RHS is defined)
¢ Change of Variables (Substitution Rule)

ff(g(x))g’(x)dx =F(g))+C

where F(x) = [ f(x)dx
when defined.

Properties of Formal Residue
The formal residue also behaves like a definite integral.
¢ Fundamental Theorem of Calculus
[x7f' () =0
e Integration By Parts
[x71f (g’ () = =[x~ If" (g ()
¢ Change of Variables
If f(x) € R((x)), g € R|[x]], [x°]g(x) = 0, [x'@|g(x) must be invertible.

Then [x~*1f(g(x))g’ (x) = 1([x~1f ()
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Proof of Properties of Formal Residue

Let f(x) = Z ax™,  f'(x) = Z na,x™ 1
n2I(f) n21f)
e [xYf' () = 0ap =0
d
« - (F0g(0) =0
(" Dg@) + fx)g' (X)) =0
o Leta, =[y"If ()
h») =f(y) —a_y™?
“ly R =0
LetHO) = [hO)dy,  H'G) = h0)

Letk(x) = x'@g(x) € R|[x]]

RHS = 1(g)[y M 1f(¥) = I(g)a_,
LHS = [x*1f(g(x))g' (x) = [x"11(h(g(®)) + a_;g(x)™1)g' (x)

=[x (H'(900)g' @) + a1 9079’ ()

d )
= - H(g@) + [x‘l]a_l‘;(_(x)?
4 1@
= O 1 CRO)
=0+l o, B
oy @Ok (x) + X9k (x)
= ben @ k)
k’
- 1o (10 + 1 5) = i)
Sincem S FPS -0
k(x)



LIFT Proof & Comp. Inv.

10:48 AM

Lemma
Let A(x),B(x) € R[[x]] with [x°]A(x) = [x°]B(x) =0
Assume [x]B(x) is invertible in R. If A(B(x)) = 0 then A = 0

Theorem
f eRr[lxl], g eR|[ul]
Suppose [x°]f(x) = 0= g(f(x)) is defined.
If g(f(x)) = x then the following are true
) [wlgw =0
[ulg@) - [x]f(x) =1
i) flgw)=u
iii) Byi), G(u) = ﬁu) € R[[ul] is defined.
Then f(x) is a solution to the LIFT equation: f = xG(f)

Compositional Inverse
If g(f(x)) = x we say that f is the compositional inverse of g.

Notes
i) gives necessary conditions for the compositional inverse of g to
exist if the constant term is 0.
ii) = isalso the composition inverse of f
iii) can use LIFT to solve for the compositional inverse of g.

Corollary
If G (u) is invertible then the LIFT equation W = xG (W) can be
. u
rewritten as W (Hu_)) =u
General Statement of LIFT
e Kisaringcontaining Q
o F(u),G(u)e ]K[[u]]
i) There is a unique FPS W (x) = ]K[[x]] such that
W(x) = xG(W(x))

i) [x°]F(W(x)) = F(0)
MIF(W(x)) = % [u* 1 F' (w)Gc)™, n=1

Notes
o The special case given before is F(u) = w. This is the common way
to use LIFT
o In our proof, we'll assume G () is invertible.
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[] Proof of Lemma (Compositional Inverse)

Exercise. Check that [x!W]A(B(x)) # 0if A # 0

Proof of Theorem
i) Note that for any FPS A(x),
[x°]A(x) = A(0)
[x]A(x) = A'(0)
[u’lgw) = g(0) = g(f(0)) = O using f(0) = 0and g(f(x)) = x
9(f(0)) =x
gF®)f'=1
g'Of' (=1
ii) LetA(w) = f(g(u)) —-u
A(f@) = f(g(f()) = FG) = fFG) = () = 0
Since [x]f(x) is invertible (by 1), by the lemma, A = 0

Note: Here we used composition is associative. Have not proved

this but it is true
iii) Check that f = xG(f)
RHS = xG(f(x)) = x;{T(g—)) = xl% = f(x) = LHS

Proof of Corollary
u

Both equations say that W (x) is the compositional inverse of )

Proving LIFT
Strategy for proving LIFT: use Formal residues and change of variables
u

G(u)

Proof of General Statement of LIFT

i) Write G(u) = Z a,u™, W(x) = Z by x™
n=0

W) = x6(W))

w =0, GW())=0
“by=0

Now compute coefficients
™MW (x) = [x"]xG(W () = [x"~1]6 (W (x))

n-1

bn = Z Z akbh "'b—jk

Jittjg=n—1
RHS involves by, ..., b, 1

This lets us solve for by, by, b, ... recursively
= W (x) exists and is unique.

ii) Turn into a formal residue:
= MF(W() = [x Ux ™1 F(W (%)
Let f(x) = x‘"‘lF(W(x))
= [x"F(W () = [x 1 (x)

Let g(u) = %
Note
°o I(g=1

7?0 W(g(u)) = u (Proved above)
Change of variables:

= 1f () = @ W 1F(g(w)g' ()

= [u g F (W(gw) ) g' @) = [w g " Fwg' ()
d

= g0 (F ) = ] 3 (~ 960 P

= e (G0 M) = [ g )

? Last step is integration by parts

1o - -nps _1 - u n ’
g = S (es) P

_ [ u G F'(w) = 1 [ur ]G F' (u)
n n
n



LIFT Examples

November-04-13

10:48 AM
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Example

Let P be the set of all PPTs. For T € P, let w(T) = (n(T), d(T)) where

d(T) = deg(®) = degree of the root
n(T) = # of nodes
Compute % (x,y)

Solution
Use the bijection ? 2 {O} x P*, T © (0,¢q, ..., Cx)
This is not weight-preserving for w.
We have n(T) = n(®) + n(cy) + -+ nlcy), d(T) =k
Define the weight functions:

v:P - N?, v(c) = (n(c),1)

w{O}->N%,  uw(©)=(1,0)
2 w(T) = p(®) +v(cy) + -+ vicy)

. — HH .
h q’;”(-’ﬂy) - ¢{o}(x:y) 1

- oY (x,y) - 1_ q);(x,y)
To compute ®% (x, y) we need to know ®% (x, y). But, notice

Y(x,y) = Z Dyl =y Z 2D = ol (x)
tepP TeP
We already know ®}(x) = A where 4 = ﬁ
~ We want to compute
DL (x,y) =x ! here 4 = al
pOYV=T W “1-2a
This is exactly what LIFT lets us do:

Here K = Q[y], G(w) = 1%; , Flu) = ﬁi

[+ DR (x, y) =[x+ xc -

L _pm
. 1—yA(x,y) Tz yA(x,y)
= E[u"‘l]F’(u)G(u)”

Note: F'(u) = %F(u)
n w _.1 n- Y — ——l“
[P (x,y) = n[u '] (1—uy)? (1—u)

[e9]

n

j=0

=~ frily (Z(k + 1)ykuk> (Z ("t uf) = %:Z:(k +Dyer (21

Also, [x]®8(x,y) =0

o n-1

0P (x,y) = Z Z % (k+1) (Znn—_kk—_lz) yk+1yn+1

n=0 k=0

= [x"1F(A(x, y))

k-2
k-1

)



Integer Partitions Example Integer Partitions

Example 1
10:33 AM A=5542
nA)=5+5+4+2=10
Integer Partition k() =4

An integer partition is a tuple 1 = (14, A, ..., A) of positive integer such

that4; > 4, = - = 4, > 0.
n(A) == A1 + A3 + -+ + A is the size of 1. (old notation, |A])
k() := k is the length of A H
The Ferrers diagram, F) of A had A; boxes in row i (left-justified) d(l) =3
d(A) =# of boxes on main diagonal of F, = # {i: 4; > i} Example 2
Let Y denote the set of all parititons. ll)(14)1 T 5
Let p(n) denote the number of partitions of size n. 211
31
Theorem 22
=] [ *
n) =[x —_—
P | 11—
. =t Example FPS Limits
equivalently, lim ™
=4 o im x™ =
n n 1 n-oo
Oy (x) = z p()x™ = Hm Why? Because ifk > n+ 1, [x*]x* =0
n=0 j=1
k
Note Ap(x) = Z anx"
RHS is an infinite product of FPS. We haven't defined what this means yet. n=0 -
Note
For a sequence of integers to have a limit, it must be eventually constant. Then ,152, A () = Z anx"
n=0
L Why? If k > n then [x"]A(x) = a,
FPS Limit Note: This is how we defined infinite sums in calculus.
Let A1(x), A2 (%), A3(x), ... € R[[X]]
s Example
We say that ’lim A(x) = Z apx™ P ©
n=0 2 4 8)... — 2j-1
if there is a function ¢: N - N such that [x"]4, (x) = a, Yk = ¢(n) A+ + 20 +2(A +x7) H (1 tx )
=
Note: Clallrr.w 1 o n
In practice, often ¢(n) = n. This is equal to ;— = Y37 1x
To prove this, note that for k > n,
Sum and Product Limits k St 5 St
More generally, if By (x), B, (%), ..., € R[[x]] [x"] 1_[ (1 +x ) = [x"] (1 +x+x7+ -t x ) =1
o k i=1
define Z Bj(x) = lim Z B;(x)
=t k=i Proof of Theorem (Idea)
© k Main Idea
and l_[ B; (x) = klim nBj(x) Think of 5542 as (0, 1, 0, 1, 2) meaning 0 parts of size 1, 1 part of size 2, etc.
j=1 j=1

Let M be the set of all nonnegative integer sequences: p = (1,1, 73, ... ) such thatr; # 0
What does this mean? only for finitely many i.
o (oo}

1_[3]'(%) = Z bpx™ Example
j=1 n=1

(3,1,5,0,1,0,0,0,0,0,0,..) € M

means theri isa function ¢: N — N such that Convention: Drop infinitely many Os at the end of the notation.
Write (11,73, ..., 1) ifrj =0vj>1
b= [ [ 8,00 vk = p(m) =p=(3150,1)
=1

Let l(p) = max{j : r; # 0}, 1({0,0,0,...)) =0
Multiplicity Sequence P U # 0]

For a partition 1 € Y, let m(d) = (m;(A), m,(A), mz(Q), ...) Proof of Proposition
where m;(4) = |{i : 4; = j} [ ] Exercise
Proposition Proof of Theorem (Actual Proof)

Let M be the set of all nonnegative integer sequences: p = (r1,73,73, ...) We must show that
such that r; # 0 only for finitely many i. L
P = )
The functions 2 -~ m(4) is a bijection Y 2 M ~ 1-x/
Furthermore, if A(A4, ..., Ax) € Y corresponds to m(1) = e = (11, ...,1;)
then (Ib?l(x) — z XA = z X121 43734 <Z xrl)(z x2T2> (Z x3r3>
a) k(D =r+r+-+n €y pEM = 73N
b) n(A) =r +2r, +3r3+-+1In

S 52 i) (2 (=) ()= T 1 )

d) d) =max{j: j<r +141+ 41} i1
Theorem Need to justify .
= 1
1 T +21 431+ —
q)’glnlk)(x'y) = Z xWye® = 1_[ = inQ[[y1][[x1] Z xm - l_[ 1—x
ey j=1 1=xly pEM j=1
not in Q[[x]][[¥]] Let k = n. We'll show that .
[x"] Z XTI 43T ] 1_[ 1 i
L 11 —x/
PEM j=1

CO 330 Page 30



CO 330 Page 31

oo
Z (xj)ri = [x"] Z P12tk

Jj= ri=0 (11,72, T i) ENK
= |{(r1, v Te) ENK iy 4 21 + 313 4 kg = n}|
LHS = [{p = (1,19, . ) EM i1y + 215 + 313 + - = n}
Ifp=m()andr + 2r, +3r3 + - =nthenn(d) =n
kzn=n@)=21(p) =141 =Tg42="-=0
~ LHS = |{(r1, v Te) ENK iy 421 + o+ ki = n}|

k
RHS = [x"]
1

Once we know the general method we can do all sorts of variations.

Proof of Theorem

(I)é/n'k)(x, y) = Z xn(l)yk(l) — Z xT1H2TZ BTy Ty

A€Y PEM
= D Y = ) ) Y G ) )
PEM r1EN 126N r3€EN

- —xJ
j=11 xJy
]



Integer Partitions Cont.

November-11-13 10:51 AM

Partition with Distinct Parts

A partition A is said to have distinct parts if m;(1) € {0,1} forallj € 1,2,3, ...

Also called "strict” partitions.

Let D € Y be the set of all partitions with distinct parts.

Theorem
0400y = Jo+ o)
j=1

Notation

Not in course notes

If ¢(2) is a statement about 4, let Y (5 be the set of all partitions A € Y for which

¢(A) is true.
Do same thing with D

Conjugate of a Partition

For A € Y the conjugate of 4, denoted 1 is the partition whose Ferrers diagram is

the transpose of Fj

Example

A=6631, A=433222
Note

n() = n(1)

k) =X,

A1 = k(A)

d@) = d(4)

Shifted Diagram

The sifted diagram of A € D is the Ferrers diagram, with i*" row shifted i — 1 rows

right.
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Example Partitions with Distinct Parts

7542€0D,

75542¢D

Proof of Theorem

(Dq()n,k)(x' y) = Z XNk =

Z XTI 22 T AT T
A€D PEM
1i€{0,1}
vi
D Y @ Y @ = A )+ N+ )

r1€{0,1} 12€{0,1} r3€{0,1}

Example of Notation

Ya, <1 is the set of all partitions 4 such that A, < L.
!

1
L k)
e Y=t q)'yllsl - 1_[ 1—xly

j=1

* Yn= q,(n 2 L@ = (1 —1xy) (1 —1x2y) (1 - il‘ly) (1 —1xly)

e Dyat g;kzl(x y) = 1_[(1 +xy)

o Dy Ib("k) (o) =x yl—[(l +x7y)

Exercise: Check these

Some Tricks
Example

How may partitions of n with k parts.
Method 1

vl = o o] [ =g

Method 2
Consider Yy )=k < exactly k parts.
Want to compute [x"]d)@km:k(x)

k

1
_ _ Lk
¢8k(l}=k(x) - q)IZAl:k(x) =< 1_[ (1 - xf)

j=1

Combining methods 1 and 2:

0 0 k

[ -2+ J2)
—_—= x - |y
— ) —xJ

j=11 xJy j=11 x

k=0

Example
How many partitions of n with k distinct parts.

Method 1

[xnyk](b(bn.k)(x’ y) = 1—[(1 + xfy)
j=1

Method 2
Consider Dy )=k
Want [x”]’:b%km:k (x)

Example Shifted Diagram
A=7542

Ifk(A) =n

. k(k
First k columns have (ke

EY)

boxes, call this shape A,

The remaining columns form the Ferrers diagram of a partition with < k parts.
The conjugate of this has A; < k.

Get a bijection
D=k 2 (B} X Yn, <k

k(k+1) k
Py () =X 7 1_[(1 xJ)

j=1




Exponential Generating Functions

November-15-13 10:43 AM

Class of Structures
A class of structures (or species) A is a rule that assigns to each
finite set X another finite set Ay, called the set of A-structures on
X.
There are conditions:

1) IfX2Y then Ay 2 Ay

2) Technical, we won't need them in this course.

In general there will be some pictorial way to visualize an A-
structure on X where the elements of X are labels in the picture.
The technical conditions (2) basically say that the bijection Ay 2
Ay comes from relabelling.

Note that if |X| = n then Ay 2 Ay,

Notation

Since it is cumbersome to write Ay, we usually write

Ay = Ay,

If we know |A,,| for all n, we know |Ay/| for any finite set X.

Exponential Generating Function
The exponential generating function for A is the FPS

AM—ZMM

Hence, 1f |X| =n, then |Ay| = n! [x"]A(x)

Cyclic Permutation
A permutation is cyclic if its diagram has one component.

Cy is the set of all cyclic permutations of X
(Note Cx S Sy for all finite sets X)
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Example: Trees
As mentioned on day 1, there is no set of trees.

However, we have the species of trees T assigns to each finite set X the set T of all trees

with vertex set X.

Note
Not rooted

Example
Tam={1-2-31-3-23-2-1}
Tuse ={(5-6-75-7—-66-5-7}
Note {1,2,3} 2 {4,5,6} and Tj1 2 33 @ Tis6,7}

Some Basic Examples
Permutations. (S)
For a finite set X, Sy is the set of all bijections o: X — X (permutations of X)
Sp = Sy, = {0: Ny = Ny, : 0 a bijection }
Sl =n!vneN
~ the exponentlal generatmg functlon is

ﬂﬂ—ZBl—:EIL__Zn_

Pictorial Representation
Eg X ={1,3,579,11}

o(1)=3

BI 1§23 7
o(5)=9 Q
o(7)=7

o(9) =11
o(11) =5 \
&= ||
>

Example Cyclic Permutation
X ={13,5,79,11} |

? o—f?"\_,o -
T l
(R
q

eyl = {(n— D ifn>1

0 ifn=0
~ EGF is
- x™ - x™ o ™ 1
= = =) =
€t Zchl n! Z(n D! n! Z n ]0g<1 —x)
n=0 n=1 n=1

Example: Sets €
For any finite set X, £y = {X}
|Exl = 1Vx

~ EGF is

Em=2w|

n=

Z 1-— =-exp(x)

Note
E(x) = exp(X),
E(cX)) =5

S(x) = %, C(x) =log (%)

Informally:
A permutation is a set of cyclic permutations.



Sum, Product, & Difference of Classes
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Analogs of basic operations on sets: U,\,X, (-)*

Class Equivalence
If A and B are classes of structures we'll say A and B are equivalent (written
A = B) if, for everry finite set X, Ay 2 By.
¢ Numerical equivalence: (just this) [Ax| = |By|
¢ Natural equivalence: an additional condition (informally, can use the same
pictorial representation)

Sum of Classes
Suppose AWM, AP, .. is a finite or infinite list of classes.
First, suppose :ﬁl}((l), A&”, ... are pairwise disjoint for every finite set X.
(e AP N AP = pvi=))
Definethe sum B = AD @ A @ -+, By = cﬂg(l) U cﬂ)(?) (U
i.e. a B-structure on X is an AM-structure, or a A(?-structure, or-...
If AM, AP, ... are not pairwise disjoint, make them disjoint by replacing A%
by {i} x cﬂ)((i) (Equivalent)
By = ({1} x AP u ({2} x c,q,(f’) U

Note

We require that By be finite, so only finitely many ﬂg(i) may be non-empty for all
X.

EGFs

fB=ADDAD D -
then |By| = |:/1§(1)| + |ﬂ§(2)| F o

EGF for B is
B(x) = AD(x) + A®(x) + ---

Difference of Classes

Suppose A, B are classes and Ay € By for all X. Then we say A is a subclass of
B and we define the class B \ A

(B\A)x =Bx \ Ax

EGF for B \ A is B(x) — A(x)

Product of Classes

Superposition of Classes

A, B classes. The superposition is denoted A&B and defined as
(A&B)y = Ay X By

Note: [(A&B)x| = |Axl| - |Bxl

but this does not produce a nice EGF formula for A&B.

Product of Classes
A, B classes. Define A * B as follows:

(A*B)x = U (As X Bxys)

=4
In other words, an (A * B)-structure on X is a pair («, ) where a is an A-
structure on a subset S € X and f is a B-structure on its complement X \ S.

If|X] =n,
n n
n
(A Bl = D 1Al [Brs| = Y. D 1AlIBael = ) (i) 14kl 1Bsl
sex Ic=0 SEBIX,k) k=0
S n!
FICEs] [ Al 1B

=i

Rewrite:

(A Bl = Z (mu%)(wsn_krﬁ)

o k=0 © n
YRR EWI AR [CEr R

n=0 k=0

R xk © xl

= (Dl Dorma -
k=0 =0

~ EGF for A * B is A(x)B(x)

Note

* is essentailly associative:
(A*B)xC=Ax*(B*C)
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Example: k-sets ()
€0y = {{x} if1X] = k

@ otherwise

_J1 if|Xl=k
€l = {0 otherwise

EGF
k

Ex(x) = %

Sum Example

E=EDEDED ED

Note

If |X| = k, then an E-structure on X is an &, structure, or an &; structure, or an
&,-structure, or ...

but there are no &; structures on X for indicies i # k.

~ an E-structure on X is an & structure on X.

x?2 X3
E(x) = Eg(x) + E;(x) + E(x) + - =1+x +7+§
Example

Cisasubclass of S.
S\ C is the class of non-cyclic permutations.

Example Product of Classes: € * £

(E+E)y = U £+ Exys = U{(s,x \$)} = {(S,X \ S),where S € X}
ScXx SeX
So (€ * €) is all the ways of partitionning a set into 2 subsets.

Whatis € * € * E7

Technically should have brackets. Either € * (E* E) or (E* ) * €

Take a set X, splititinto 2 parts, then split one of the parts into 2 parts.
Equivalent to splitting into 3 parts.

(ExExE)={(AB,C)where AUBUC=XandANB=ANnC=BnC =@}

Species of Singletons
LetX =&,
If A is a class, what is X * A?

@ x e = | s x s
ScX
But Xs =@ if S| # 1
e P [ PR E e | (G R v

SEX SEX
(X * A)y is all ways to pick out an element of X and put an A-structure on
everything else.



Powers and Rooted Structures
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Powers (k-tuples of structures)
If A isany class, k € N

ko [A AR x Ak times) ik =1
&o ifk=0

Notice: AX x Al = AKF!

Egx A=A

EGF for A* is A(x)*

Connected

A class of structures A is said to be connected if Ay = @

Sequences/Tuples of Structures
If A is connected,

A=A"DA DA’ DA D -
EGF:

A+ A + A% + A(x)3 + - 1

T1-4(

Connectivity condition is necessary to make this defined, or could have
infinitely many A% nonzero.

Rooted Structures

If A is a class, define A° the class of rooted A-structures
Ay = Ay X X

i.e. to make an A°-structure on X: but an A-structure on X and pick an
element of X to call the root.

Note

This is not the same as X * A

Remark

A= AKX * E)

[Ax| = |Ax] - 1X]

~ |Ax| = n|Axl

)

x™ d
A = Z Rl = = x——AG)

n=0

Assumption
From now on, we'll need the following assumption:

If X # Y are two finite sets then Ay N Ay = @
If not, we can fix it by replacing Ay — {X} X Ay
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Interpretation
Class of structures <> Ways of doing to aset

& — leave alone

S — make a permutation

&y — filter: has k elements = accept, otherwise reject

X * A (where X = &)
* means split into 2 sets
Then X filters first set — can only have 1 element.
A does whatever to second set.

Example
gk =F(,Ny)
eg £ 2 F(X,Ny)

1 ifaes
(S'X\S)"f:““’{z ifaeXx\S

Example Connected Classes of Structures

o Connected graphs (taking connectivity to mean 1 component)

o T -trees
e C - cyclic permutations
o Effork=>1
= kO™ o x"
EGF: exp(x)* = x** = (kx) = Z kme—
n! n!
n=0

=0
|(£")n| = k™, consistent with |F (N, )|

* £ =E\&E=6EDEDED
Class of nonempty sets

Example: Class of Linear Orderings

L=X"

Ly = {1, %2, e, x0) | {1, 00, X0} = X, % # x;j fori #j}
- All possible orderings of the elements of X

EGF for £

1 _ 1
1-X(x) 1-—x
Same as EGF for §
Remark

L and § have the same EGF = numerically equivalent.
However, they are not naturally equivalent.

Pictures for §: Elements in disjoint cycles
Pictures for £L: A list of elements

You can't convert form one to the other as-is, requires an additional ordering of the

elements of X to interpreta cycle as a list or vice versa.

Example Rooted Structures
T* = class of rooted trees.
Draw a tree then circle one node.

T** = class of dobuley rooted trees.

Draw a tree then circle one node and draw a box around another. They may be the

same nodes.



Sets of Structures
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k-Sets of Structures

If A is a connected class define £ [A] as follows:
EclAly = {{og, ., i} | (ay, ..., ap) € AF}

(Error in notes, they omit connected)

Take an A¥-structure and forget the order.

Therefore, an £ [A] structure on X is a k-set {a,,.., a, } where a; €
Ag, and {S, ..., Sy } is a set partition of X.

1
|l ALyl = ||

Sets of Structures

If A is a connected class, define £[A] the class of sets of A-
structures as

E[A] = &[A] ® &, [A] © E[A] D -

Make a k-set of A structures for some k € N

EGF for E[A] is

o

k
Z % = exp(4(x))

k=0
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Recall A = A x A x A * -+ x A, k times

AL =1(ay, .., )

a; is a A-structure on a subset S; € X
SiU-US, =X
SiNS;=0,i+#]j

Pictures

fegne2

Draw an A structure in each circle

ExlAl
1 3
Draw an A structure in each circle
Examples
. &lX1=¢&,
o &lX]
= Take set

= partition it into k subsets
= Ensure each of those subsets has exactly one element
o &
= Make sure any set has k elements.
E1[A] = A for any A
&,1&,1, = {{12,34},{13,24},{14,23}} where ij means {i, j}
ENE ], =0 forn =4
More generally, £, [E€,] is
The set of perfect matchings on the .
complete graph with vertex set X IFIX] = 2k
(4] if |X| # 2k

ExlElx =

k-sets of 2-sets

k

# of perfect matchings in Ky, is (2k)! [x%¥] % (’;—T) = (k—zll;"—?(—l

€ |€51] set partitions with k elements

Recall S(n, k) = # of set partitions of n-element set into k subsets.
S(n, k) = 1€ [Exq]nl

EGF for &, [€5,] = %(exp(x) - 1)k

= S(n k) =n! [x"];l—| (exp(x) — 1)*

(This was in as.signment 2)

Example Sets of Structures

Ptn is the class of set partitions.

Ptny = {r : 7 is a set parition of X}

Ptn = &[&€,4]

EGF: exp(exp(x) — 1)

Total # of set partitions of an n-element subset is
n! [x"] exp(exp(x) — 1)

&[T s the class of forrests
£[C] = S, Permutations are sets of cycles.

1 1
e (o8 (=) = =

Recall, C(x) = log( ) S(x) = L

1
1-x 1-x

So we have proved the combinatorial identity exp (log (1—;)) = —%—

Let G be the class of graphs. Let § be the class of connected graphs.

élgl=¢ B }
EGF for G: G(x) = Z|gn|’;_r!l => z(g)fl_?
n=0

n=0

EGF for G: G(x) =227
exp(6(0) = 6@

n!

G(x) =log(G) = log(

||M8

203) _>

Don't forget log(A(x)) = log (@) = —log (Tflc(xﬁ)

Let J be the class of (single undirected) 2-regular graphs.
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i.e. every component is a cycle.
= J = E|H| where H is the class of connected 2-regular graphs (cycles).
Hy = H, = H, = @ since a cycle consists of at least 3 vertices

(n—
|3, =

(n — 1)! is number of directed cycles, 2 is the number of ways to direct an undirected
cycle.

1!
forn >3

EGFfor}[is
(n—l)‘x Iex™ 1 1 x?2
Hx )—Z =22 =)
n=3
EGFfOl‘J]S

oy (hd)
Jx) = exp(H(x)) exp ( (log (1 x) x—x )) N

T* = class of rooted trees

E[T*]= class of forrests in which every tree is rooted.

Claim: X *E[T*]1 =T

Description of X * E[T*]: pick a special vertex 'square' and put and E[7*] structure on
everything else.

Bijection: Connect the special vertex 'square’ to the root vertices of all the trees in
E[T]. Call 'square' the new root, then we have a single rooted tree.

Let T*(x) be the EGF for T°.

xexp(T'(x)) =T(x)

This ist the right form to use G (u) = exp(u)

k n—
BT () = e exp(u)” = [T = = 1]Zn e
nn—l
= n!

~if |X|] = n, the number of rooted trees with vertex set X is n™1.
=~ The number of trees with vertex set X is n"*=2



Composition of Classes
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Composition of Classes
If A, B are classes and A is connected, define B[A]

Blaly = | © x5

§eelAlx

A B[A] structure on X is a pair (¢, 8) where
e ¢isan E[A] structure on X, hence ¢ = {ay, ..., ai} where each «; is an A-
structure on a subset S; € X, and {Sy, ..., Sk} are a set partition of X
e fBisaB-structureon ¢.
o What does this mean? ¢ is a set of A-structures, so we have a B-
structure where each label is an A-structure, and the A-structures
taken together make up a E[A] structure on X.

Pictorially
To draw a B[A] structure:
¢ Draw an unlabelled B-structure where labelled objects are replaced by
BIG circles.
e Inside

Theorem
The EGF for B[A] is B(A(x))
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Example
A C[T] structure on Ny,

Examples
o Consistent with our earlier definitions of £[A] and & [A]
o XKk[A] = AK
o L[A] = A", L=X"
e F: class of endofunctions
Fy =FX,X)
Claim: F = S[T°]
An F-structure on Ny:

70 Lo g

a 7

Equivalent §[T*]-structure:

c!f‘ y

Proof of Theorem

Blall =| ] x| = U U @xz= Z DR
€Al k=0 §€ETAlR =0 geéiTAln
Z Exl Al - 1]
Note: EGF for
x” A(x)"
EklAl = Z|5k nlor = 0
EGF for B[c/l] is
(o] [ee] xn
BlA] = ZIB[cﬂ]nl —-=ZZ|ek[cA]n Bl
= n=0k= '

oo

= i Bk|(2|ek[ﬂ]n :

Zw A _ paco)

Example
Last time I showed you F = S[T°]

n

x
EGF for F: F(x) = Z n”~—,
i n!



1
EGF for S: S(x) = 1—_;

xn
EGFfor7°:T*(x) = z n"1 =
~ n!

Get a curious identity:

n
Z x 1
nn.—z_

n! 5

X7
. — n-1,2_
n=0 1 Zn=1n Tl

Example: E, D T = L[T"]
Proof by picture: An L[T°] structure on Ng

O~

A T structure on Ng

6\/"8 te /7

U

v (9
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Mixed Generating Functions
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Mixed = part ordinary, part exponential

Weight Function on Class of Structures
An N7-valued weight function w on a class of structures A is a rule that assigns
to each finite set X a weight function wy: Ay — N7 satisfying the condition:
e IfX 2 Y then there is a weight perserving bijection Ay 2 Ay
ie.if |X| = |Y|, then q>f;’l§ ») = d>f2‘;(y)

Mixed Generating Function
Given an a weight function w on A, define the mixed generating function:
xn
Ay)=" )y =
n=0c€A,
Abuse of Notation
Often drop the X from wy and just write w(-) since (often? always?) w can be
described without reference to X.

Two ways to think about this:
1) Asa generalization of EGF:

Alx,y) = Z oL () 3;_'
n=0

2) Asageneralization of OGF.
For all @ € N*, define A4
c/l)l(‘lj ={o € Ax: w(o) =a}
A% is a class, because Ay 2 Ay is weight preserving bijection =
A 2 Al v

)= 3 ( 3kt 5 ) = 3 e ]

n=0 \a@eN" aeN”
- Z @ Alal(x)
aeN”
Theorem

If w is an N-valued weight function on 4 and X is a finite set, |[X]| = n.
Then the average value of w taken over all Ax-structures is

g Acey)|
-
[x"]A(x)

Proof

[ | Exercise
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Examples
¢ A weight function on G:
wx(G) = number of components for G, for G € Gy
o A weight function on 7:
wx (T) = number of leaves of T, for T € T
e A weight function on Ptn
wx () = |m| = number of subsets in 7 for © € Ptny
¢ A weight function on F:
wx(@)={veXlp(w)=v}l, ¢eFy
* A weight function on S:
wy (o) = number of cycles of g, o € Sy
What do these have in common? wy can be read off from the picture, ignoring
labels.

Example
For the class Ptn of set partitions, define the weight function w(r) = |r|
Compute the mixed generating function
x’I'L
Ptn(x,y) = z Z yom—
n=0 GEPtN, n
Solution
Let Ptnl*] be the class of set partitions with k subsets.
As we saw before, Ptnlkl = &, [€.,]
exp(x) — 1k
- Pl () = %_2_
y*(exp(x) — 1"

o = exp(y(exp(x) — 1))

~ Ptn(x,y) = Z y* P!kl (x) =
k=0 k=0



Jacobi Triple Product Tree Comparison

All the followed have the same tree structure, but contain different extra information.
Binary Rooted Trees
Each child is labelled left or right.

December-02-13 10:31 AM

Jacobi Triple Product Formula Plane Planted Trees where each node has < 2 children
0 o Children of nodes are ordered. Same as BRT if 0 or 2 children, but if there is only 1 node
Z xhyh = 1_[(1 + 227 1y) (1 + 2271y~ 1) (1 — x%) then it is just '1st' not left or right.

h=-—o Jj=1

(Labelled) Rooted Trees with at most 2 children for each node
No left/right or order. Just a tree with no additional information. (Has labels, but this
does not change things.)

Commonalities
¢ Root
¢ Concept of children
e Atmost 2 children

Proof of Jacobi Triple Product Formula

Rewrite
2 1 - o
5 o T = [Jarwmta ey
h=—0 j=1 j=1
Let F the the set of all subsets A S Z,qq (traditionally Z +§ = { s —g, —i%%; })
such that:

e There are finitely many negative odd integers in A
¢ There are finitely many positive odd integers not in A

Example
A={-11,-7,-3,3,11,13,15,17,19,21, ...}

Includes -3, -7, -11, excludes 1, 5, 7,9
We'll biject F with two different sets.

Method 1
Pairs of finite sets of odd positive integers
ForA€F, leta ={jlj € Zoaq, j >0,j € A}, B={—jlj € Zeaa j <O, j €A}

Example
For A given above, « = {1,5,7,9}and g = {5,7,11}

Define Energy(a, 8) = sum(a) + sum(p)
Charge(a, B) = |a| — |B]

Z xenerey(@,B) charge(e) — <Z xsum(a)y|a|> (Z csum(B) (y—l)uﬂ)
B

ofB «
Think of @, B as parititons with distinct parts, only odd parts
o

= 1_[(1 +x271y) (1 + 221y~

j=1

Method 2

Charged Partitions = Lattice path of a certain type = partition of a number
Start a lattice path at (0, k) where 2k + 1 is the smallest number of A.

Fori € N,

E if2(k+D)+1€4
leto; =
o {N otherwise
Example

For A given above, k = —6

Get a Ferrers diagram bounded by the extension of this ray to the left of the y-axis, and
the path.

Let A be the associated partition. Let h € Z be the number such that (0, k) is the upper

left corner.

Not hard to see you can get all possible partitions and all possible numbers. 4 & Z X Y
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Claim

IfA o (o, )

Then energy(a, B) = 2|A| + h?, charge(a,f) = h
Proof

By induction on energy(«a, 8)

Base case: A = {2k + 1,2k + 3,2k + 5, ...}
Induction Step

It follows that

RHS = Z xenergy(a,ﬁ)ycharge(a,ﬁ) — z th(A)+h2 + yh — (Z xhzyh> (Z x2h(7\)>

ap (a,B) hez AEY
= LHS
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