
Optimization
Given a set S (the feasible region) and a function      (the objective function)  solve 
             or              
Note:                              

Linear Programming
        where                 
                

Integer Linear Programming Problems
                          

Convex Optimization
             
    is convex, meaning                             
 convex

Remarks
Consider an optimization problem              

    1.
 is linear2.

We can assume without much loss of generality that 

                               

 is convex3.

Now, the function is linear so the optimum lies on an edge of the set, so can replace  by its convex 
hull. Therefore, can assume that

A two player game.1.
Given       

Rose chooses a row  and Colin independently chooses a column  then Colin pays row     

Example

   
   
  

 

If Rose chooses 2 she gets   , if she chooses she gets    

If she chooses the two rows with equal probability, she expects      
   

 
    

    

 
      

 

 
 

Rose wants to solve 

   
    

   
        

      

 

   

               

 

    

            

Equivalently: Maximize  subject to 

        

 

   

              

                   
This is a linear program

Weighted bipartite matching2.
Problem:
Given  jobs,  workers and a "utility"    for worker  to complete job  . Find an assignment 

maximizing the total utility (i.e. the sum of the utilities) 

Formulation
Maximize 

        

 

   

 

   

subject to

    

 

   

              

    

 

   

            

                       

This is an integer programming formulation. 

3D  Modelling3.
Problem
Given              is the utility of job  being completed by worker  on machine  , find 

an "assignment" of maximum total utility. 

Formulation 
Maximize 

           

 

   

 

   

 

   

subject to

    

 

   

 

   

              

Examples

Diophantine Equation
A Diophantine equation is an equation             
where  is a polynomial with integer coefficients. 

Problem (Hilbert's 10th)
Can we decide whether or not there exist             
such that             (given  )? 
No. Not even if we fix    

Optimization Intro
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Remark
The 3D Matching Problem is NP-hard and hence integer linear programming is NP-hard. 

Diophantine Equations4.

    

 
 
 

 
         
                          

          

          
       

Not that    has optimal value = 0 if and only if there are non-negative integers such that 
        

Problem (Hilbert's 10th)
Can we decide whether or not there exist             such that             (given 
 )? 
No. Not even if we fix    

Formulation

   

 
 
 

 
 

                  
 

 

   

                        

This has optimal value  iff p has an integer root. 

Distance from Feasibility5.
Problem
Given                     , how far is  from the feasible region            ?

Formulation

   

 
 
 

 
 
                 

 

 

   

               

This is a convex optimization problem
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Remark
Matrices do not have ordered rows and columns.       ,  is a field and    
are finite sets. 

Fundamental Theorem of Linear Algebra

There exists     such that     1.

There exists     such that        and      2.

For            , exactly one of the following holds:

Solutions to Linear Systems
      with          and let     

Let   denote the    column of  and for          , let            We 

call  a basis if      and  is non-singular.

    a)
        b)

Note that if  is a basis, then there is a unique solution to 

Since we are left with a square invertible matrix when removing the  's 

We call this the basic solution for  

It is the unique solution to               

Support
The support of     is                 

Theorem
For            , if     has a solution, then it has a solution whose 
  pp    h                 

Note that     can be solved in              arithmetic operations. Is this 
efficient? What about the size of the solution? 

The size of a solution
For    , define                                            

     
 

 
                   

Permutation Definition of Determinant

                    

 

   

 

    

Crammer's Rule
For a matrix equation 
    
the solution is 

   
       

      
               

  is the matrix formed by replacing the   h column of A by the column vector  .

Proof of Theorem
Let            and let  be the size of the largest entry in  or b
Suppose that  is non-singular

                                                       

Now consider       
By Crammers' Rule each entry of           a determinant of a 
submatrix of A, and hence, has size              

So each entry of  has size                       

This is polynomially bounded in the size of     

Additionally, Gaussian Elimination can be performed carefully (by 
triangularizing without scaling) such that all intermediate values are 
small.

Linear Algebra Review
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Theorem (Farkas' Lemma; Theorem 2.7)
Let       and     . 

There exists     such that     (1)
There exists     such that            and       (2)

Exactly one of the following hold.

Variable Elimination (Fourier-Motzkin) 
Removing a variable from a system of linear inequalities

Rewrite the inequalities as 
(1.1)                      

(1.2)                      

(1.3)                     
            partition        

Note that there is a solution if and only if there exist          
satisfying      such that 
   
    

                   
    

               

Equivalently
(2.1)                                        

(2.2)                       

Not that this is a system of linear inequalities in    variables. 

Other Forms of Farkas' Lemma
Theorem (2)
Let       and     

There exists     such that         (1)
There exists     such that               (2)

Exactly one of the following hold:

Theorem (3)
Let             

There exists     such that         (1)
There exists     such that                     (2)

Exactly one of the following hold

Proof: Exercise

Geometry
Suppose                 

Define                                     
Problem: is                 
Equivalently, does           have a solution?
By the theorem
        xor                    
there exists     such that       and       

Equivalently, 
                             

Equivalently,
          are contained in the half-space             but  is 
not. 

Equivalently, 
                          but               

Theorem
               iff there is a hyperplane separating  from the cone.

Separating Hyperplane Theorem
Let     be a closed convex set and     . If    then there is a 
hyperplane separating b from S.
Prove later

Proof of Theorem
Easy part: (1) and (2) cannot both hold.
If      and    then         
But if        h        

It remains to prove that if (1)  does not hold then (2) does. 
Restatement 
Let     

   be linear for          
Define                             

If                  has no solution, then there exists     
 such that

     

 

   

  

Where             

Proceed by Induction:
   is a trivial base case: LHS is 0
Assume that Farkas' Lemma holds for systems with    variables. 

Break it down into equations with    variables: (2.1) and (2.2)
Assuming that     has no solution, so (2.1) and (2.2) don't either.

Then by the inductive assumption, there exist     
     and     

  such that 

                    

 

    

 

    

 

    

For          we define

   

 
 
 
 

 
 
 

    

 

    

       

    

 

    

      

        

Now,

             

                     

                      

                

Now    and

     

 

   

       

 

    

        

 

    

       

 

    

        

 

    

      

 

    

                         

 

    

 

 

    

      

 

    

             

 

    

 

    

      

 

    

  

As required.
This proves Farkas' Lemma

Proof of Theorem (2) 
        can be rewritten as 
                

         
 
  
  

           
 
  
 

 

So (1) is equivalent to 
(1') There exists     such that       

By the Farkas' Lemma, this is equivalent to:

          
                 

                 
(2') There do not exist            such that 

That is, 
  

     
          

     
                

That is
       

             
                

So        

Note to Self
Proof works in reverse:
Assume 2 is false so there does not exist  such that                 
Which means         do not exist, and by Farkas' Lemma, there must be a solution to 
      

A solution to       provides a solution to         .  

Proof of Theorem (3)
        can be rewritten as
         

Let     
 
  

 and      
 
 

Then (1) is equivalent to 
(1'') There exists     such that       

Systems of Inequalities
September-14-12 2:59 PM
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(1'') There exists     such that       

By the Farkas' Lemma, this is equivalent to:

           
             

(2'') There do not exist         such that

Set     then have                
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Example

    

 
  
 

  
            

           
        
        
        
       

The maximum   satisfies         and         so    

 
 

 
  

  

 
   

 
and the optimal value is 

  

 
   

Problem
How in general can we prove that a given solution is optimal?
Equivalently, how can we generate upper-bounds on the value?

Answer
Take linear combinations of the constraints.

          
           
           

           
So each objective function has objective value   
Note that to prove that   is optimal we shall only use inequalities that 
  satisfies with equality:
           
          

          
  

 
   

So   is optimal.

Remark
The problem of determining the best bound on the objective function 
via linear combination of constraints is a linear programming problem.

            

             

              

       

Take the linear combination:
                                       

       

We want
                                   

  ^
(objective function)

So we want             and            

The dual of (P) is

  

                    

          
           
           

              

Linear Program
A linear program (or LP) is a problem of the form            
  or              
where       ,     ,     .

Note
                            

Remark
The problem of determining the best bound on the objective 
function via linear combination of constraints is a linear 
programming problem.

Linear Programming
September-19-12 2:55 PM
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By construction, if  is feasible for    and  is feasible for    then 
              

Note that for     
 

 
  

  

 
   

 
and        

 

 
   

 

 
  we get equality. 

Unboundedness
Example

   

 
 
 

 
               

          
       

         
       

Let     
 
 
 and    

 
 
 

Then      is feasible for all    and has objective value     so 
   is unbounded.

Note that the half-line            is contained in the feasible 
region and      

In general, this is not always possible for unbounded sets
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That theorem is not vacuous:
Consider

       
        

 

 
  

              

Proof of Lemma 1
There exists     such that     and      
We may assume that      since otherwise (2) holds with    or     .
Let           . Then         is feasible and             ■ 

Proof of Lemma 2
Suppose that           and               where      and   and   are 
feasible.                and       we have                .
However,           so      so   is an extreme point.

Conversely, suppose that           . Then there exists     such that      and 
   . For small    ,                          
So   is not an extreme point.

Proof of Claim (Exercise)
Let  be any convex set containing          . 

Let                  such that      
 
     and    

 
          

Induct on  to show that

   
     

 
   

   
 
   

          

   :        
Assume       then 

   
     

 
   

   
 
   

         
    

   
    

   
 
   

             
  

   
 
   

          

by convexity of S.

Therefore,       so                .

Example of Theorem

     
       

         
       

     
       

         
       

 
 
 
   

 
 
   

 
 
 

              

Proof of Theorem
Let      and let       be the subsystem of     that   satisfies with equality. 

If Theorem did not hold, then take   to be the largest counter-example

If     satisfies more of the constraints with equality than   , then there exist     
and      such that         . 

1.

  is not an extreme point. (Otherwise            2.

We may assume that:

By    ,           (Lemma 2) so there exists     such that      and    .

Since               
By possibly replacing  with   we may assume that   has a negative entry.

Case 1
    (So    ) 
Choose                   
Since   has a negative entry, this is well defined.

Let          
Now   satisfies more of the inequalities     with equality than   
So by (1), there exists     and     such that 

Theorem
"Fundamental Theorem of Linear Programming"

infeasible, (1)
unbounded, or(2)
has an optimal solution.(3)

Every LP is either

Lemma 1
Consider an LP
                
                

Suppose that   is a feasible solution with       

(P) has a feasible solution   with       and      , or(1)
there exists     such that     and      (2)
(here (P) is unbounded)

If the column   is a linear combination of the other columns, then 
either 

As far as I can tell, this is not a xor.

Lemma 2
Let       be the subsystem of     that   satisfies with equality. 
Then   is an extreme point of             if and only if 
          

Consequence
Note that there are only finitely many extreme points of    
        
For each subsystem       of     with           there is at 
most one solution to       

Geometry
Let            . 
We say that  is a convex combination of        if there exist 
         such that
             

              
We define the convex hull of          , denoted              to 
be the set of all convex combinations of        . 

Claim
             is the smallest convex set that contains       

Theorem
Let       with          , and let     .
Let              
Let              
and let  be the convex hull of the extreme points of  . 
For each    there exist    and    such that      

Note
For each    and    ,      

Corollary 1
Consider the LP
                
where       with          ,     and     . 

   is infeasible1)
There is an extreme point of            that is optimal for 
   , or

2)

There is a feasible half-line           with      .3)
(Hence    is unbounded)

Either

Corollary 2
Consider the LP
                
where                 

If    feasible and bounded, then    has an optimal solution. 

Corollary 3 (Unboundedness Theorem)
Consider the LP:
                
Then    is unbounded if and only if there is a feasible half-line 
            with      . 

Theorems of LP
September-21-12 3:02 PM
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Since   has a negative entry, this is well defined.

Let          
Now   satisfies more of the inequalities     with equality than   
So by (1), there exists     and     such that 
        

Hence 
                     
Note that      and         as required.

Case 2
not Case 1
(That is,   has both positive and negative entries).
Let                     and                    
Note that these are well defined and positive
Let                    

Note that   and   satisfy more constraints with equality than   , there exist        
and        such that         and         

       
  

     
         

  
     
         

  
     
              

  
     
             

 
 

     
          

     
   

 

     
          

     
  

Since  and  are convex
 

     
           

     
         

 

     
          

     
     

■ 

Proof of Corollary 1
Assume that    is feasible. Let  be the maximum objective value of an extreme point of 
           

(otherwise   satisfies (2))
We may assume that there is a feasible solution   with      

By the Theorem, we can write         where 

              and   is in the convex hull of the extreme points of          
   . Note that       

Hence       and       is feasible for all    . So    is satisfied. 

Proof of Corollary 2
By Lemma 1 we may assume that          
(   is feasible and bounded so if          then can reduce problem to one in one 
fewer dimension)

Then Corollary 2 follows from the theorem.

Proof of Corollary 3
 Easy
 By lemma 1, we may assume that          
(Suppose          , then either get the ray automatically, or can induct with one 
fewer column in  ) 

Now the result is an immediate corollary of Corollary 1. 

Corollary 3 (Unboundedness Theorem)
Consider the LP:
                
Then    is unbounded if and only if there is a feasible half-line 
            with      . 
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Polytope
A set of the form            is called a polyhedron. 
A bounded polyhedron is a polytope. 

Corollary 4
Every polytope is the convex hull of its extreme points.

Proof
Let              

Corollary 5
For           ,              is a polytope. 

Valid Inequality
We call an inequality      valid for              if 
      for each          

Lemma 1
If      is not contained in              , then there is a valid 
inequality such that       

(See Homework Problems page)

Corollary 6
A set     is a polytope if and only if it is the convex hull of a 
finite set of points. 

Carathéodory's Theorem
Let     be finite. Then any point in        can be written as 
a convex combination of at most    points in  . 

Proof: assignment 2 (or see MATH 245)

Theorem
Let       and     

If the system     is infeasible then it contains an infeasible 
subsystem with at most    inequalities. 

Proof: assignment 2

Equivalently
IF           are halfspaces with empty intersection (that is, 
         ), then some subcollection of at most     of 
these halfspaces has an empty intersection.

Corollary
If           are polyhedra with empty intersection, then 
some subcollection of     of these polyhedra has an empty 
intersection.

Proof
Consider all inequalities defining these polyhedra. A subset of  
   of them are infeasible, so use the at most    polyhedra 
those inequalities come from.

Helly's Theorem
If           are convex sets with empty intersection then 
then there is a subcollection of     has empty intersection. 

Proof of Corollary 4
Let              be a polytope. Since  is bounded, it does not contain a line so 
         (See assignment 1)

A      f          f   f                    y             y                                     
extreme point            ,            .                                

By the theorem, if  is not in the convex hull of its extreme points, then there exists     

that can be written as      where   is in the convex hull of the extreme points and    
           with     . 

Then             is contained in P, contradicting the statement that              ■ 

Proof of Corollary 5

     
 
                    

This is a cone (since you can scale valid inequalities by non-negative numbers)1)
  is a polyhedron since it is defined by a finite set of linear inequalities. 2)

Note that 

Now define 

     
 
           

 
 
      

 

Now   is a polytope.  Let  
  

        
  

   be the extreme points of   .

Let                             

Claim
               

Proof
All inequalities in definition of  are valid, so          so                 

Suppose that                
Then there exists                    

By Lemma 1, then there exists  
 
     such that       .

By scaling we may assume that  
 
     

By Corollary 4,            with          and  
 
      

  

         
  

   

               
            

         
      

                    ■ 

Example Proof of Carathéodory's Theorem (n=2) 
Split polygon into triangles, each point is in one of the triangles and can be written as 
combination of three points of triangle. 

In higher dimensions, pick a vertex. Project interior points to opposite face, which has 
dimension    . Induct. 

Proof of Helly's Theorem
We may assume that      
Suppose that each subcollection of    of the sets has nonempty intersection. Then there is 

a set     with      
 

   
 so that each subcollection of    of the sets contains an 

element of  . 

For          define             , a polytope (by Corollary 6)
Every    of these polytopes has non-empty intersection so

   

 

   

         

 

   

    

 

   

                  

Polytopes
September-28-12 2:43 PM
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Duality
Consider the LP

     
            
               

If     and    then         is a valid inequality for (P)

If        , then        gives you a bound on the objective value

Dual
The dual of (P) is the linear program

    
            

           
     
   

Weak Duality Theorem
If     is feasible for    and     is feasible for    , then        

Corollary 1
If    is unbounded then    is infeasible.

Corollary 2
If    is unbounded then    is infeasible. 

Corollary 3
If   is feasible for    and   is feasible for    and          , then   is optimal 
for    and   is optimal for    

Strong Duality Theorem
If    has an optimal solution   then    has an optimal solution   , and      
    .

Relationship between Primary and Dual

(P) \  (D) infeasible unbounded optimal

infeasible Yes - exercise Yes No - exercise

unbounded Yes No No

optimal No No Yes

Alternate Forms
Consider the following LPs

      
            
               

      

                  

                      

        

      
                  

                       
          

Claim

    has a feasible solution with objective value  (1)
    has a feasible solution with objective value  (2)
    has a feasible solution with objective value  (3)

For any      the following are equivalent

Standard Inequality Form
    is in standard inequality form

      

 
 
 

 
       
           
    
   

The dual of       is 

      

 
 
 

 
       
          

     
   

Standard Equality Form
    is in standard equality form

   
 

 
       
          
    
   

Proof of Weak Duality Theorem
                           

Proof of Corollary 1
Contrapositive is obvious

Proof of Strong Duality Theorem
Consider the system 

   

 
 
 

 
           

    
       

   

If      satisfy (1) then   is feasible for    ,   is feasible for (D) so by the 
weak duality theorem,          .  So   is optimal for    and   is optimal 
for    as required. 

So we may assume that    has no solution.
Multiply the rows of (1):

   

 
 
 

 
               

         

          
     

Claim
If    has no solution then there exist       y    and     satisfying 

   

 
 
 

 
             

        
         
     
     

Proof: 
Exercise (Use Farkas' Lemma)

       

 
 
 
 
     

  
   

    

    
 
 
 

        

 
 
 
 
 
 
 
  
 

 
 
 
 

Then    can be written as 

   
 
     

Since we assome no solution to    exists, by Farkas' lemma there must 
exist    such that       and        

        

 
 
 
 
  
  

  

  

  
 
 
 
 

 f                         

then 

      
         

              
   

 
 
 

                      

Let                         then 
                    
                           
                ■ 

Consider a solution           to    

Case 1:     
We can scale           so that     . Now        satisfies    — contradiction.

Case 2:     

(               is proof of infeasibility) 
Now       and     . Since    is feasible       

That is       
Moreover,      

   is bounded, so       
So             — contradicting    ■ 

Proof of Strong Duality Theorem for Standard Inequality Form
Note that   is optimal for 

     
      

            
 
  

    
 
 
 

The dual of     is 

     
      

                 
      

Duality
October-03-12 2:30 PM
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Standard Equality Form
    is in standard equality form

     

 
 
 

 
       
          
    
   

The dual of      is 

      
      

                

Theorem (Strong Duality for Standard Inequality Form)
If      has an optimal solution   then      has an optimal solution   and 
         . 

Corollary
If       has an optimal solution   then      has an optimal solution   , and 
         . 
(That is, "the dual of      is      ") 

Theorem (Strong Duality for Standard Equality Form)
If      has an optimal solution   , then      has an optimal solution   and 
         . 

Proof
Exercise

Constructing Duals

   max    min

  constraint non-neg. var.

 constraint non-pos. var

 constraint free variable

non-neg. var.             

non-pos. var.             

free variable = constraint

The dual of     is 

     
      

                 
      

By the Strong Duality Theorem,     has an optimal solution        and 
         .  Note that since     ,   is feasible for      . However,      
    , so   is optimal for      

Proof of Corollary
Note that   is optimal for 

     
         

          
       

   

which is in standard inequality form.

The dual of    is 

    
       

                
    

By the Theorem,    has an optimal solution   and            

Note that   is clearly optimal for      ■ 

Yet Other Forms

    

 
 
 

 
              

                      

                 
         

The dual of (P) is 
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Complementary Slackness Theorem
                 
                      

Let   be feasible for    and   be feasible for    . Then          if 
and only if for each          either      or                   

Standard Inequality Form
Let   be feasible for 
                      
and   be feasible for 
                       

For each                            or      ; and1)

For each                             or      2)

Then          iff

Proof: Exercise

Standard Equality Form
Let   be feasible for 
                      
and   be feasible for
                   

Then          if and only if for each          , either 
                  or      

Proof of Complementary Slackness Theorem
Consider
                 
and its dual
                      

If   is feasible for    and   is feasible for    then 

                                                

 

   

 

 

   

                 

 

   

                     

 

   

   

Equality holds if and only if either      or        
 
      

Proof of Standard Inequality form CST
If   is feasible for      and   is feasible for      then
                                

                                 

                         
                          

If            then
                                 

                                  

Conversely, 
                         

                        
           
 

Proof of Standard Equality Form CST
Rewrite      as
                       
     pp y  h              p        y     k      h       ■ 

Complementary Slackness
October-10-12 2:31 PM
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Consider 

     
           
              

    
and its dual

     
           

               

where               and     

We can assume that          (without loss of generality)

Basic Solution
           and for          ,            
We call B a basis if      and           

There is a unique solution to1)

 
    

        

This is a basic solution for  
There is a unique     satisfying2)
         
this is the basic dual solution.

For a basis  , 

If   is the basic solution for  and     , then we call   a basic feasible 
solution.
If   is the basic dual solution for  and       , then we call   a basic dual 
feasible solution. 

Optimality Theorem
Let      be the basic solution for  and      be the basic dual solution 
for  . Then          . Moreover, if   is feasible for    and   is feasible, 
then   is optimal for    and   is optimal for    . 

     is an extreme point of                iff it is a basic 
feasible solution. (See assignment 2)

1)

     is an extreme point of             iff it is a basic dual 
feasible solution. (See assignment 1)

2)

Remarks

Claim
A feasible solution for    is a basic feasible solution iff the columns of 
          are linearly independent. 

Proof
  By   f       
   y        y     p                              ■

Simplex Method
Using the linear program definitions given at the top of the page. 

Let   be a basic feasible solution for a basis  , let   be the basic dual 
solution for  , and let                

Recall           
Note that, for any feasible  , 
                                               

We can rewrite    as

      
               
                

    

         1)
          2)
          3)

Where 

  
   so we may assume that the rows of   are indexed by the 

elements of  and that   is indexed by  . 
i)

      ii)
         

     (by the selection of   ) iii)
  is feasible for    iff     iv)

Note that 

Optimality 
If     , then   is optimal for    and   is optimal for    . 

Proof of Optimality Theorem
                                      

    
         

Note: This proof works since   and   satisfy the complementary slackness 
conditions:
If    then   

     else     

Finding a Basic Feasible Solution
Input: A feasible solution   
Output: A basic feasible solution

Step 1

If            has independent columns then STOP:  output   

Step 2

    1)
    whenever      2)

   3)

Find     such that 

Step 3
If    , replace  with   .
Let                   
Replace   with      
Repeat from step 1

Note that              decreases with each iteration, so the algorithm 
terminates, and by the claim, the solution returned is basic. 

Simplex Method
Goal
Given a basic feasible solution, solve    

Simplex Method Example

    

 
  
 

  
                 

            

           
            
            
          

Note that        is a basis
For any feasible  ,                                   
      

(Here we are eliminating the basic variables from the objective function.)

So    is equivalent to 

     

 
  
 

  
                   

            

           
            
             
          

Note that the linear systems of    and     are equivalent
Warning:    and     have different duals

The basic solution is
               

and the objective value is 14

Note that   has a positive coefficient in the objective function for     
Set      and      . Now solve for            

   

 
 
 
 
 
 
 
 
  
 
 
 

  

 
 
 
 
 

  
  
 
  

 
 
 

Take    we get

   

 
 
 
 
 
 
 
 
  
 
 
 

with objective value =   

This is basic for          

Eliminate the new basic variables from the objective function 

             
 

 
                    

 

 
     

 

 
    

Simplex Method
October-10-12 2:54 PM
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 is feasible for    iff    iv)

Optimality 
If     , then   is optimal for    and   is optimal for    . 

Iteration
Suppose that      for some  . (Note that    by ii))

  is the entering variable.

Define      by 

     
         

     
    h      

 

Note that the unique solution to 

 

      

    

            

is      , which has objective value        (in (P))

Unboundedness 
If     ,    is unbounded.
            is a feasible halfline and            

Update
Suppose that   has a negative entry (otherwise unbounded). 

Choose                    and replace   with       

By our choice of  , there exists    such that      and      
   is the leaving variable.

         is a basis. 
Replace  with          
Note that   is a basic solution for  . 
Now we repeat. 

Since the basis has changed in only two elements, it is easy to update the 
problem     

Eliminate the new basic variables from the objective function 

             
 

 
                    

 

 
     

 

 
    

For any non-negative  , we get an objective value    

Therefore,    

 
 
 
 
 
 
 
 
 
 
 
 
 

is optimal. 
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There are   
 
 

 bases•

At each iteration the objective value does not decrease•

That is, it revisits a basis○

The easiest way to avoid cycles is to pick entering variables randomly 
amongst the choices. 

○

There are examples where the Simplex Method cycles •

If the objective values does not increase in an iteration, then the solution   is 
basic for two distinct bases   and   . Hence                .

•

Termination

Nondegeneracy 
A basic solution   is nondegenerate if                
   is nondegenerate if each of its basic solutions is nondegenerate.

Note
The Simplex Method will terminate given any nondegenerate linear program and the 

number of iterations is at most  
 
 

 

Hirsch Conjecture (1957)
The distance between any two vertices in 1-skeleton of    is   
This is the graph-theory distance (how many edges you need to traverse.) 

False (Proved in 2010)

The 1-skeleton is the frame of lines between vertices that could be traversed by the 
Simplex Algorithm.

Is there a polynomial bound on the diameter of the 1-skeleton?1)

Pivoting rule is the rule for selecting an entering variable of possible 
choices.

Is there a "pivoting rule" for the simplex Method that gives a polynomial-time 
algorithm?

2)

Problems

Perturbation Method
Idea: We carefully select the leaving variable in order to avoid cycling. This is 
achieved by perturbing b.

    
      

              
    

Consider

      
      

               

    

 h        

    

     

 
     

 

here  is a variable that we think of a s a small positive real number. 

Polynomial Ordering
For polynomials     and     we write          (for arbitrarily small ε)  if the 
coefficient of the smallest degree term of          is positive.

Claim
    is nondegenerate 

Note that we can solve    using the Simplex Method since it is nondegenerate. 

Another Way to Avoid Cycling
Break ties when choosing entering and leaving variables by taking the one of 
minimum subscript.

Theorem (Bland)
The smallest subscript rule avoids cycling. 

Proof of Claim
For a basis  consider the basic solution   . We have         

    

Since each row of       is a nonzero real vector and the entries of  are 
polynomials with distinct degrees, each term of                ■ 

Termination of the Simplex Method
October-17-12 3:12 PM
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Finding a Feasible Solution

Consider

     
           
              

    

Given a feasible solution, find a basic feasible solution.1)
Given a basic feasible solution, solve    2)

We have algorithms for

How do you find a feasible solution?
We can scale so that    . 
Consider the following auxiliary problem

      
                  
                

      
 

       is a (basic) feasible solution to     , so we can solve 
    using the Simplex Method. 

1)

Since              ,     is bounded so the simplex 
method will terminate with an optimal solution        

2)

If     then   is a feasible solution to    3)
If   is feasible for    then       is an optimal solution for     4)

Note that 

Hence the optimal value for     is zero iff    has a feasible solution. 

Remark
If       is a (basic?) feasible solution for     then   is a basic feasible 
solution for    . 

Information Returned by SM
If has optimal solution, it will give you the solution and the feasible dual 
solution.

If unbounded if will find an unbounded ray. 

Recall: Farkas' Lemma

        1)
           2)

Exactly one of the following has a solution

The dual of     

      

      

               
     

If     is infeasible and   is an optimum solution to     then       so 
  satisfies            

Note: this gives  a (more) constructive proof of the Farkas' Lemma

The dual basic solution to the optimal value of     is a proof that    is 
infeasible if that is the case. 

Information Returned by SM
If has optimal solution, it will give you the solution and the 
feasible dual solution.

If unbounded if will find an unbounded ray. 

The dual basic solution to the optimal value of     is a 
proof that    is infeasible if that is the case. 

Feasibility
October-19-12 2:35 PM
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Geometry
Convex Hull and Cone
For           , define
                  

       
                   

                  
       

          

If                then there is a hyperplane separating  from the convex hull              1)
If                then there is a hyperplane separating  from the convex hull              2)

Separating Hyperplane Theorem (Farkas Lemma)

Polyhedral Theory
Polyhedron:            
Polytope: bounded polyhedron
Polyhedral cone:            

Lemma 1

 has no extreme point1)
 contains a line2)
         3)

For  a polyhedron               , the following are equivalent:

Lemma 2
Characterization of extreme points:
For     , let       be the subsystem of     satisfied by  with equality.
Then  is an extreme point iff           
  Th           y f      y    y         p     

Theorem A
    is a polytope iff it is the convex hull of a finite set of points in   

Theorem B
If  is a polyhedral cone, then there is a finite set     such that          

Remark
The converse is true (Exercise; use Theorem A)

For         , define
                     

Theorem C
Let  be the set of extreme points of              . 
If  does not contain a line, then                      

Remark

                 1)
We used that  does not contain a line, but can easily account for lines by having       where       is 
a line.
Note we can scale that
     for each    2)
If    does not contain a line then there are unique minimal sets       satisfying    and    .
 is the set of extreme points.
 is the set of extreme rays. (Take a plane through the cone and look at the extreme points) 
  Ev  y p  yh       h                                         y             p                    y  

B       Th          f            such that

Carathéodory's Theorem
Helly's Theorem

Applications

Linear Programming

     
      

              

                

Fundamental Theorem
   is either infeasible, unbounded or has an optimal solution. 

Infeasibility Theorem (Farkas Lemma)
   is infeasible iff there exists     satisfying                  

Unboundedness Theorem

   is feasible, and•
there exists     satisfying             . •

   is unbounded iff

Midterm Review
October-22-12 2:33 PM
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Dual
The dual of    is 

    
      

               
    

Weak Duality Theorem
If   is feasible for    and   is feasible for    then          . 

Strong Duality Theorem
   has an optimal solution iff    has an optimal solution. 
Moreover, if   is optimal for    and   is optimal for    , then 
         

Application of Duality
Theorem
If   is an extreme point of the polyhedron 
             , then there is a halfspace  such that         

Exercise
Let   be an extreme point of              , 
where       and     .
Show that, if      then there exists     such that   s an optimal solution
to             and       .

Do you need    to be integer valued?

Proof of Strong Duality Theorem
Ideally we would like      with          .
That is, we want     and     satisfying

   

 
 
 

 
             

         

          
     

Suppose no such    exist. 

By the Farkas Lemma, there exist           and     satisfying

   

 
 
 

 
           

      
       
     
     

Claim:    
Proof: Otherwise we can scale to get    and then      satisfy    , 
              ■ 

 satisfies             or 1)
 satisfies                  2)

Either:

In case 1,    is infeasible or unbounded and    infeasible
In case 2,    is infeasible or unbounded and    is infeasible
In either case, neither    nor    has an optimal solution. 

Proof of Polyhedron-Point-Halfspace Theorem
Since   is an extreme point, there exists a partition                

of the inequalities      such that        ,           and   is 
   . (  may satisfy some of         with equality.)

Let 
          
          

        
   

              

Now consider the LP:

    
      

                

         

and its dual

     
                 

                          
      

Let     and     
Now   is feasible for    , and      is feasible for    with
                       

So   is optimal for    and        is optimal for    .

Consider another optimal solution   for    . Note that     , so by the 
complementary slackness conditions,        . However   is 
invertible, so      . Hence   is the unique optimal solution and 
          ■ 
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Integer Program
An integer program is a problem of the form

      
      

              

     

Linear Programming Relaxation
Drop the integer constraint.
The linear programming relaxation is 

      
      

              

Notation
We denote by        and        to be optimal values of      and     
respectively. 

For infeasible problems we define        and for unbounded problems we 
define      .

Note that the                since the optimal solution for     is feasible 
for     

                   
If  is the set of feasible solutions to     then, 

equality is "rare".

Integral
A polyhedron is integral if its extreme points are integral. (That is, all entries are 
integers).

Lemma (1)
If              is integral,          , and     has an optimal 
solution, then                

Totally Unimodular Matrices
A matrix is totally unimodular (TU) iff each of its square submatrices has 
determinant 0, 1, or -1. 
In particular, the entries are 0, 1, -1

Theorem
Let            be TU and     then              is integral.

Modifying TU Matrices

  is TU(1)
     (2)
If   is obtained from  by scaling a row or column by -1, then   is TU(3)
      is TU(4)

Let            be TU. then

                  •
                  •
                     h           •

  F       , the following polyhedra are integral

Lemma (2)
Let            . If each column of A contains at most 1 and at most one    
then A is a TU. 

Proof of Lemma (1)
       is attained at an extreme point. 

Proof of Theorem
Let      be an extreme point of  . Then by Assignment 1, there is a 
subsystem       of     such that        

  is    and           

Now            . By Crammer's rule,       is integral and hence so is   .

Proof that   is Integral
  can be rewritten as 

       
 
  
  

    
 
  
 

  

By applying (1), (2), and (4)  
 
  
  

 is unimodular

so by the theorem,   is integral. 

Proof of Lemma (2)
Suppose otherwise and consider a counterexample            with 
    as small as possible. 
Thus    and                
By minimality, each column contains has two nonzero entries (otherwise 
expanding the determinant at that column would give a smaller matrix with the 
same property.  
The two nonzero entries have to be 1 and -1, but then the rows sum to zero and 
hence,                         ■ 

Integer Programming
October-26-12 2:33 PM
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Graph Example

Graph       
Finite vertex set:            
               is a set of unordered pairs of vertices, called edges.

Incidence Matrix

  

         
 
 
 
 

 

    
    
    
    

 

The row sum for the    row of  is the number of edges of  incident with the 
vertex  and is denoted       . 

Note that A is not TU:

    
   
   
   

    

Proof of Theorem
Let      be a bipartition of  and let  be the incidence matrix of  . Let   be 
obtained from  by scaling the rows indexed by  by   . By Lemma (2),   is TU and 
hence so is  ■ 

Proof of Theorem (r-regular perfect matching)

Let  be an r-regular bipartite graph and let    
 

 
    

 

 
  

 
.

Note that        . Let   be an extreme point. Since  is bipartite,      is 
integral, so      . Hence   pp            p  f        h     ■

Proof of König's Theorem
Let  be the incidence matrix of a bipartite graph       .
Consider 

     
      

              
    

The dual is 

     

      

               
    

Both are feasible, with    and    
Hence there exist optimal solutions for    and    . 
Let   be an optimal extreme point for    and   be an optimal extreme point for    .
Since  is totally unimodular,   and   are integral.

Note that   and   are      -valued. 
Let      pp       and      pp       .
  is a matching and   is a cover and                    (by strong duality)
Therefore,   is a maximum matching and   is minimum cover, and they have the 
             

Incidence Matrix
Vertices on rows, edges on columns. 1 if that edge is 
incident on that vertex, 0 otherwise. 

Bipartite Graph
A graph        is bipartite with bipartition      if 
     is a partition of  and each edge has an end in  and 
an end in  . 

Theorem
The incidence matrix of a bipartite graph is TU.

Remark
Suppose that         and     . ( is the incidence 
matrix of  and     ) 
Then   is the number of edges in   pp      that vertex  
is incident with. 

Matching
   is a matching of  if each vertex is incident to at 
most one edge in  
A perfect matching is a matching that saturates all 

vertices. So if   is a perfect matching then      
 

 
    

Matching Polyhedra
Let  be the incidence matrix of  . Define
                    

                     

              and                1)
For         ,       iff   pp      is a matching.2)
For                 iff   pp      is a perfect 
matching. 

3)

For bipartite  ,  is TU so     and      are 
integral polyhedra. 

4)

Note that

Let     be the set of all         such that   pp      is 
a matching.

Theorem (Summary)
If  is bipartite, then
                          

r-Regular
A graph is r-regular if each of its vertices has degree  . 

Theorem
For    , every r-regular bipartite graph has a perfect 
matching. 

Cover
   is a cover of  if each edge of  is incident with a 
vertex in C. 

Note that if  is a matching and  then        . 

König's Theorem
In a bipartite graph, the maximum size of a matching is 
equal to the minimum size of a cover. 

Graph Theory
October-29-12 2:32 PM
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Minimum-Cost Perfect Matching
Problem
Given a bipartite graph        and     , find a perfect matching  
minimizing    

 
   

             

 

    

  y     

We will assume that G has a perfect matching.
(Either find one with an un-weighted algorithm or throw in very high 
weight edges) 

Min-Cost Matching
Let  be the incidence matrix of  and consider

    
      

              
    

and its dual

     
       

               

        

 

   

    

Since  is TU, (and has at least one perfect matching), there is a perfect 
matching   with             

Let      and          (that is               for       )
We call these reduced costs. 
Note that     iff   is feasible for    

Define       to be the subgraph of  with vertex set     and edge set 
           

Complementary Slackness
If  is a perfect matching and   is a feasible solution for    then 
          iff             

                                
   

by complementary slackness, for                 so 

           

Claim
If   is a feasible solution for (D) and M is a perfect matching of       , 
then M is a min-cost perfect matching.

Because  and   satisfy complementary slackness conditions.

Algorithm
Let      be a partition of G. We may assume that        . since 
otherwise G has no perfect matching.

Let      for each    a.
Let                     for    b.

Find a feasible   for    0.

If       has a prefect matching  , stop. Output  1.
Find a feasible solution   for (D) with            . Replace   
with   and goto 1. 

2.

Overview

Neighbour Set
If       , the neighbour set of  , denoted      is the set of vertices 
         such that there exists    such that        

Hall's Theorem
Let  be a bipartite graph with bipartition      where        . Then  
has a prefect matching iff for each               .

Example

                
Claim

  is a maximum matching

Suppose

       
                     h  

      h      

Then for any perfect matching  ,             so finding a min cost perfect 
matching with respect to   is the same as finding a min cost perfect matching with 
respect to  . 

Define
              for each        
(In drawing, red are    and green are new edge weights. At this point   is specified 
without explanation.) 

For any perfect matching  , 
                       
Note that     and         , so   is a min cost perfect matching with respect to   and 

hence also  . 

Example

Min-Cost Matching
October-31-12 2:51 PM
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Note that       has no perfect matching since                   

Change   as shown. For small  ,   remains feasible and we get          
We can take    . Repeat from step 1 

Proof of Hall's Theorem
  O v    
 
If  has no perfect matching then  has no matching of size    . So, by König's Theorem, there 
is a vertex cover C with        . 

(There are no edges between  and    ) 
Let      . Note that, since  is a cover,         

Moreover,                             as required  
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Min Cost Perfect Matching
Let        be a bipartite graph with bipartition      and let     

Assume        

    
      

              
    

and its dual

     
       

               

Lemma
If      is a feasible solution for (D) and       has a perfect matching  . Then  is a min cost perfect matching.

Hall's Theorem
Let  be a bipartite graph with bipartition      where        . Then  has a prefect matching iff           for a each    . 

Assumption
We have an efficient algorithm for Hall's Theorem.
That is, we can find either a perfect matching or a set    with            . 
See MATH 239/249

Algorithm
Let      be a feasible solution for    and suppose that       has no perfect matching 
Then there exists    such that                 

      
   

          

                  

      h      

Note that, for small      is feasible and has objective value 
                                     

                                      

How large can we make   

This is well defined unless                 

But then            and hence  has no perfect matching. 

If     and      then we get      .1)
(So we keep an integral dual solution)
There is a way to chose  so that the number of iterations is at most        (independent of  )2)
See CO 450

See CO 450.a.
We need additional constraints for       odd. For each cut, the number of edges across the cut is    b.
This has exponentially many constraints, but is still solvable in polynomial time so long as the constraints are given 
implicitly (only generated when needed). 

c.

The min cost perfect matching problem can be solved in polynomial time, even for non bipartite graphs.3)

Remarks

Algorithm for Min-Cost Perfect Matching
November-05-12 2:33 PM

   CO 255 Page 24    



Directed Graph
A directed graph is a pair      where  is a finite set and  is a set of ordered 
pairs of distinct vertices.
 is the vertex set and  is the edge set. 
For       ,  is the tail and  is the head of e. 

Incidence Matrix
Like incidence matrix for undirected graph but now            where 

     
    f   h      

    f          

    h      

Since  has one 1 and one -1 in each column, A is totally unimodular. 

For       , we define 
                       
O T                     

Suppose that     
Then                          for each    

Notation
If     ,    ,         

 
   

Inflow
  f                     O T      

(s,t)-flow
Let  and  be distinct vertices in a directed graph        and let     

 be 
edge capacities.     is an      flow if   f         for each          
 is feasible if      
The value of x is   f       

Problem
Find a feasible      -flow of maximum value. 
This is a linear program

     
     f       

            f                   

      
Note that if the edge capacities are integer then this is an integer linear program.

(s,t)-cut
An      -cut is a partition      of     with    and    , the capacity of 
     is
                  O T    

Claim
If  is a feasible      -flow and      is an      -cut, then   f              

Max-Flow Min-Cut Theorem
The maximum value of a feasible      -flow is equal to the min capacity of an 
     -cut.

(s,t)-flows

The red edge labels give an edge flow of 3
The blue cut allows a maximum of 3 across it from s to t
Therefore 3 is optimal 

Proof of Claim

  f           f       

 

   

   f                   O T    

                

  

Proof of Max-Flow Min-Cut Theorem
We may assume that    
Let   be obtained from  by adding a new edge     and defining    

 (or sum of all other capacities plus 1) 
Let     be given by

    
      
     

Now the maximum value of a feasible      -flow is given by 

    

 
 
 

 
        

                  

        
 

     

The dual of (P) is 

     
      

                 
    

Note that  is TU so   
  
  

 is TU. So

  
 
 
    

  
  

  
 
 
   

 
 
  

is an integral polyhedron. 

(See assignment 5)

Moreover, since  
 
 
 is      -valued, each extreme point is      -valued. 

Hence there is an optimal solution        to    that is       valued. 

Since        is (0,1) valued. 
Note that   is in two constraints:
              and      
So since                           

Deleted from following lecture:

Note that, for any    ,           is an optimal solution for    , so we 
may assume that      .
Let              and              

For each        ,    occurs in only two constraints                
      

Moreover,     so                      

Claim 1
     is an      -cut
Proof
     is clearly a partition and     (since      ). 
Consider     . Since     ,      so                   
Then      and    as required.

Claim 2
If     ,    and    then      

Proof
                       since      and      

Directed Graphs
November-05-12 3:06 PM
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By claim 2, 
                              v      f   f             -flow
However, 
           v      f   f              f   
 y  h                  
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Decision Problems
A decision problem is a yes/no question on a countable set of 
instances; the "size" of an instance is the length of a binary 
encoding. 

Polynomial-Time
An algorithm is polynomial time if its running time is bounded 
by a polynomial in the size of the input. P is the set of all 
decision problems that can be shown to be polynomial time. 

Claim
LP feasibility is in NP

Exercise
Show that IP is in NP

Find a rational half-line

Nondeterministic Polynomial time

for each yes-instance  of  there is a certificate  such 
that           , and  accepts      

1)

for each instance  of  and any  with           ,  
rejects      . 

2)

A decision problem  is in NP if there is a polynomial time 
algorithm  and a polynomial  such that 

If           , then  is in co-NP

Claim
LP feasibility is in co-NP

    1)
        2)
          3)

Major Conjectures

Polynomial Time Reduction
We say that   reduces to   if there is a polynomial time 
algorithm A such that for each instance   of   , A generates an 
instance   of   such that   is a yes instance of   iff   is a yes 
instance of   . 

NP-Completeness
A problem     is NP-Complete if every problem in NP 
reduces to it. 

Theorem (Cook)
IP feasibility is NP-complete
(Cook used "3-SAT") 

Formalism
Let          (can fix any finite alphabet with      ) 
A* denotes the set of finite words in A

Problem
A problem is any subset of  A* (these are the yes-instances). 

Given        we say that  contains   iff 
      . 
We say that   is obtained from  by replacing   by   if   
    and        
(not we are only replace on instance). 

Algorithm
An algorithm is a sequence
      

           
  

Start:  
Step 1: For        if  contains   , then replace the first 
instance of   with    . Repeat from Step 1.
Step 2: Stop

An algorithm solves a problem  if  is the set of instances on 
which the algorithm terminates. 

LP Feasibility Problems
Instance:            

Question: Does there exist     such that     ? 

IP Feasibility
Instance:            

Question: Does there exist     such that     

Bipartite Matching Problem
Instance:  bipartite,     

Question: Does  have a matching of size   ?

Clique Problem
Instance: A graph  ,     

Question: Does  contain a set of  pairwise adjacent vertices? 

Give the matching•
Bipartite matching problem1)

Give the clique•
Clique problem2)

Give a solution, whose size is small•
LP feasibility problems3)

Examples of NP problems

Proof of Claim: LP feasibility is in NP
Consider              
Suppose that     

(by changing variables. This does not change the size of the solution)
We may assume without loss of generality that     

By adding some inequalities we may assume that     
 

Now  has an extreme point   .
there is a subsystem       of     such that   is    ,           and        

Now   is the unique solution to       and we have shown that
         p  y                   

  

Example
Bipartite Matching is in co-NP
Show a vertex cover of size   

Proof of Claim: LP feasibility  co-NP
By the Farkas Lemma, 
      is infeasible, iff                   is feasible. 
Th   "       "  OT    f         y                  f    f         y  f                  

Example
Consider the clique problem on an instance          
Construct an instance  of IP feasibility

 
  
 

  
 

   

 

   

  

                        
     
         

This reduces the Clique Problem to IP feasibility. 

Sketch of Proof of Cook's Theorem
Consider a problem     .
Let    be the requisite algorithm and polynomial. 
Start with input  ,  certificate  , and empty memory
Algorithm to verify (I, C) runs in polynomial time with polynomial memory. 
Consider all bits in memory at each time step. Each unknown one is a      variable. 
Linear inequalities are used to describe feasible transitions according to the model of 
computation, and to describe the accepting state. 

Now this is a IP feasibility problem. 

Exercise
Write an algorithm for checking      on given integers      . 

Complexity Theory
November-09-12 2:57 PM
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An algorithm is polynomial-time if there is a polynomial P 
such that for each instance I on which the algorithm 

terminates, the algorithm termination in              steps. 
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"in theory" we can reduce to the case that     is linear and  is convex1)
By rewriting as

       
 
 
    

    
 

       

and can replace   
    
 

      by its convex hull

Small problems can be nontrivial2)
e.g.

 
                                  

                  

        

Recall that

Note that               may not be attained even if    and     is bounded below. 
Eg.           

Proof of Theorem
Let     and         . 
Now   B        is compact and nonempty. By the corollary to B-W Theorem, there is a nearest 
point      B        to  . Clearly   is a nearest point in  to z. 

  

Let     be a nonempty, closed, convex set and let     . Prove that there is a unique 
nearest point in  to  . 

1)

Let         and let              2)
Prove that  is the nearest point in  to  iff              

Exercises

Proof of Separating Hyperplane Theorem
 Trivial
 Suppose that    . We may assume that    
So, by the previous theorem, there is a nearest point   to  in  . 
Let       and       
Now                              

Let    and let               Since    ,   is the nearest point in  to  . Now, by Exercise 2,  
               
That is,      

Exercise
Let     be a closed convex set and let     be in the boundary. 
Prove that there exists     such that   is the nearest point in  to  . 

Proof Sketch of Theorem (3)
Take    such that   is the nearest point in  to  . Let       .
                      h  p   f  f  h    p        Hyp  p     Th        

Nonlinear Optimization Problem
                   
          

Inf / Sup
  f              

        
            

  p               
        

            

Compactness
A set     is closed if for each convergent sequence

                      
   

      

For     ,    define
B                       

 is bounded if there exists    such that   
B        

S is compact if  is closed and bounded. 

Bolzano-Weierstrass Theorem
If     is a compact set, then any sequence of points 
in  contains a convergent subsequence.

Corollary (Weierstrass)
If     is nonempty and compact and      is 
continuous, then there exists    minimizing  . 

Nearest Point
Let     and     . 
We call     a nearest point to  if             
for all    

Theorem
If     is nonempty and closed and     , then 
there exists a nearest point in  to  . 

Separating Hyperplane Theorem
Let     be a closed convex set and     . 
Then    iff there exists     and    such that 
     for all    and       

Boundary of a Set
A point    is in the interior of  if there exists    
such that B          
The interior, denoted       is the set of all interior 
points. 
The boundary is the set         . 

Theorem (3)
Let     be a closed convex set and let     be on 
the boundary. Then there exists a nonzero     such 
that   minimizes          

Nonlinear Optimization
November-16-12 2:32 PM
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Certifying Optimality
Problem: How can we prove that     minimizes          ? 

Answer: In general, we can't.
Nonlinear programming is undecidable. 

Proof of Cost Splitting Theorem
                        

       
       

       
        

              

       
                  

         

       
                   

             
        

        
  

Remark
Cost splitting is not always possible

Example

   B     
 
 
        B     

 
 
    

          
 
 
       

   
 
 
 

  minimizes          

  minimizes            iff     
  
 

      

  minimizes           iff     
 
 
     

So        for any      

Proof of Theorem
 Cost splitting Theorem
  Suppose that   is optimal for    . 
Now rewrite    as 

 
       

            
            

The dual is 

     
              

                       
          

Let   be optimal for    .
By the complementary slackness conditions, for             we have 
     . So                    q          

Cost Splitting Theorem
(Sufficient condition for Optimality)
Let                           let     , and let     . 
If there exist           such that          and such 
that   minimizes each    

        for        then  

minimizes          

Cost Splitting for Linear Programming
Let             and          
Now let              

      
Consider the linear program
                      
Let    H    H 

Problem
Do there exist           such that          and such 
that   minimizes each of    

          

Let          

    or;I)
    

                   f            II)

Now    minimizes    
        iff 

Define                
       

These give the "tight constraints"
We want to find           such that 

       

 

   

Theorem
  is optimal for (P) iff               
That is, for LP the cost splitting theorem is necessary and sufficient.

Strong Cost Splitting Theorem
(Necessary and Sufficient Conditions for optimality in convex 
optimization)
Let            be closed convex sets with              
 . 
Let     and           

Then   minimizes                iff there exists 
          such that          and   minimizes each of 
    

                

Let         be a convex set.         iff there exists 
a hyperplane               with    

1)

Let  be the affine subspace spanned by        and let 
             . If     then we don't need the condition 
that               . 

2)

If     we can take the orthogonal projection of  onto   .
Using    it is a straightforward exercise to deduce the Strong 
Duality Theorem from the Strong Cost Splitting Theorem. 

3)

Remarks

Closed Sets
Note that the intersection of closed sets is closed. 
Hence, if     , there is a unique minimal closed set containing  . 
This set is denoted            

Certifying Optimality
November-19-12 2:40 PM
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Strong Cost Splitting Theorem
(Necessary and Sufficient Conditions for optimality in convex optimization)
Let            be closed convex sets with               . 
Let     and           

Then   minimizes                iff there exists           such that 
         and   minimizes each of     

                

Lemma 1
If         are convex and             then 
                                      

Tangent Cone
        and     ,                                  

If  is convex, then        is a closed convex cone.1)
This definition is nonstandard but agrees with the usual definition on 
convex sets. 

2)

Remarks

Theorem 2
Let         be closed convex sets with             and let         . 
Then                              

Note
We need the condition             
Consider the example of the two balls. 

Convex Cones
Separating Hyperplane Theorem for Cones
Let     be a nonempty closed convex cone and     .  If    then there 
exists     such that            and      . 

Duality for Cones
For       define                    
                     

If    , then   is the set of all     such that1)
 minimizes          
In other words,   is the set of all directions that are minimized by  over  
If  is a cone, then   is called the dual of  . 2)

Remarks

Lemma 3
For any     ,   is a closed convex cone.

Lemma 4
Let     and let  be the smallest closed convex cone containing  . Then     
 

Duality Theorem For Cones
If     is a closed convex cone, then      

Normal Cone
Let     and     . 
                             

         iff   minimizes          .1)
                   2)

Note that:

Lemma 5
Let     be a convex set and      Then
                

Sum of Sets
For          , let
                     

Exercise
Let         be convex cones. Prove that      is the smallest convex cone 
containing   and   

Remark
There exist closed sets         such that      is closed

Lemma 6
If          are compact, then      is compact.

Proof of Lemma 1
Exercise

Example of Tangent Cone

  B     
 
 
         

  
 

 

           B     
 
 
    

     B     
 
 
        

 
 
              

             B     
 
 
                  

Proof of Theorem 2
We can translate   and   so that     .

                             
(Consider scaling points in one set into the other)

Now since   and   are convex and        

Since             ,                         

So by Lemma 1, 
                                                           

                                                      

  

Proof of Separating Hyperplane Theorem for Cones
By the Separating Hyperplane Theorem, there exists     and    
such that      and      . 
We may assume that     f         
Note that    so    

We may assume that    (otherwise we're done)

There exists     with      
 

 
 

However, since  is a cone      and          - contradiction  

Proof of Lemma 3
For each    , let                  
So     a closed convex cone. Now

        

 

   

which is also a closed convex cone.  

Proof of Lemma 4
By definition,      and, by Lemma 3,    is a closed convex cone.
So      

Suppose that      , then      and let          
By the separating Hyperplane Theorem, there exists     such that 
     for all    and      . 
Since         

But               -                   

Proof of Duality Theorem for Cones
Immediate by Lemma 4

Proof of Lemma 5
             
By definition,

           and                          

By Lemma 4

                      
 

By the duality theorem,                     

Example of Remark
                
              
                 

Proof of Lemma 6
See assignment 6

Proof of Lemma 7
                    
Since  is the intersection of two closed sets,  is closed.
Since          , for each nonzero          . 
Hence          

Chose    such that B                
Consider any     with      
Now       so for any    
                       
Thus      . It follows that  is bounded. 

Strong Cost Splitting Theorem
November-23-12 2:32 PM
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Remark
There exist closed sets         such that      is closed

Lemma 6
If          are compact, then      is compact.

Lemma 7
If     is a closed cone and          , then            is compact and 
                   

Lemma 8
If         are closed cones with       

    
    then      is closed

Theorem (   ) 
Let         be closed convex sets with             . 
Then                               

Theorem

                             and 1)
                 is closed2)

Let         be closed convex sets and         such that

then                              

Has essentially the same proof as the above. 

Claim
If    and   are polyhedra then    and    are satisfied. 

Consider any     with      
Now       so for any    
                       
Thus      . It follows that  is bounded. 

Proof of Lemma 8
Let         

    
   

                   and 
                  

By Lemma 7,    and   are compact, so, by Lemma 6,      is compact. 
Now                  so                      

Grand Finale

Recall that        is the set of all     such that   minimizes 
         

Cost-Splitting Theorem (Reworded)
If           and           then 
                                 

Strong Cost-Splitting Theorem
If           are closed convex sets and                 then 
                                 

Note that both of these results follow from the special case that    

Proof of Theorem (   ) 
By the Cost Splitting Theorem,                              

If equality does not hold, there exists                           

         

Since                                      

So by Lemmas 5 and 8,                  is closed.

     for all                    and 1)
     2)

So by the Separating Hyperplane Theorem, there exists     such that

By (1) and Lemma 5,                    
By Theorem 2, 
              

However,              and                                  

1)

Proof of Claim

Recall that for a convex set S,                                  

Note that                                         
                 

So if                  and                  are closed then    
holds

If   and   are polyhedra then                  and              
    are polyhedral cones and hence are closed. So (1) holds.

2)
The dual of a polyhedral cone is a polyhedral cone (why?) 
So         and         are polyhedral cones.
The sum of polyhedral cones is a polyhedral cone. So                  is 
closed. Hence (2) is satisfied. 

Exercise
Show that the above theorem and claim imply the Strong Duality Theorem

For                 have LP and dual:
                
                     
Define           by 
                    
                         
Define       and consider the problem
                           

Suppose that   is optimal for    and   is optimal for    . Note that 
                                            
  and   are polyhedra so they satisfy    and    in the alternate Strong 
Duality Theorem and hence        is optimal for    . 

still have to prove optimal value is 0
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     closed, convex

  B             v  1)
 is given by a "separation oracle"2)

yes: if    
a separating hyperplane if    

Given     , the oracle returns

Assumptions

Remarks
Consider a linear program
                

for              it is trivial to get a separating hyperplane. There exists  with                        such that solving 

            B         solves    . 

Feasibility Problems
Given a closed convex set     , is  nonempty? 

If we can solve the feasibility problem, then we can solve    1)
Consider               and use binary search on  .
For a linear program                 2)
consider the feasibility problem:
                        
If       satisfies    then   is optimal for    

Note that:

Ellipsoid Method
Method to Solve Feasibility Problem

Ellipsoid
An ellipsoid is an affine transformation of B        

For     and a symmetric positive definite matrix       we define                                 

Positive Definite
A matrix  is positive definite iff            

              
 

 
          

       
1)

If     and                          2)
then there is an ellipsoid           such that             and
               

             
                

 
        

Useful Facts

Idea
Suppose that           

If    then  is feasible.
If not, then there exists     such that                 .
Find the smallest ellipse           containing                        

For any    , let

             
  
     

 

 
       

find a feasible solution, or1)
prove that         2)

After  iterations of the above we either

Linear Programming Feasibility
Let              
Facts:

Convex Optimization Algorithms
November-30-12 2:32 PM
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If         , then                         1)

(Uses that fact that for                   
   

                              

There exists    such that                        such that    iff                     2)

Facts:

Remark
The above facts, together with the ellipsoid method prove that linear programming can be solved in polynomial time. 
For more details see CO 471 or CO 463

What's next in C&0
Highly recommended:

Network flows•
Matching•
Matroid optimization•
Travelling Salesman Problems•

CO 450 Combinatorial Optimization (Fall)

Ellipsoid method•
Duality•

CO 463 Convex Optimization (Fall)

Optimization with quadratic constraints•
linear programming theory extends naturally•
applications in graph theory•

CO 471 Semidefinite Optimization (Summer)

Recommended
CO 466 Continuous Optimization
CO 452 Integer Programming

Applied Courses
CO 456 Game Theory
CO 454 Scheduling

Shameless advertising
CO 446 Matroid Theory

   CO 255 Page 34    


