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Can we assign a probability distribution
over the solution to

an ordinary differential equation
(initial value problem)?

x(to) = wo x'(t) = f(x(t),t)



The Probabilistic View on Computation

computing as the collection of information [Poincaré, 1896, Diaconis, 1988, O’'Hagan, 1992]

A numerical method
estimates a function’s latent property
given the result of computations.

quadrature estimates fab f(z)dx given {f(z;)}
linear algebra estimates z s.t. Az =10 given {As =y}
optimization estimates z s.t. Vf(z) =0 given {V f(z;)}
analysis estimates z(t) s.t. 2’ = f(x,t), given {f(z;,t;)}

» computations yield “data” / “observations”
» non-analytic quantities are “latent”
» even deterministic quantities can be uncertain.



Numerical Methods and Statistical Estimators

several classic numerical algorithms identified precisely as maximum a-posteriori estimators

quadrature [Diaconis, 1988, O’Hagan, 1991]

Gaussian quadrature

linear algebra
conjugate gradients

Gaussian process regression

[Hennig, 2015]

nonlinear optimization
BFGS

Gaussian conditioning

[Hennig & Kiefel, 2013]

autoregressive filtering

ordinary differential equations
Runge-Kutta

[Schober et al., 2014]

Gauss-Markov extrapolation




Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]
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Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]
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Gaussian process solvers

are also linear extrapolators
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» Linear extrapolation suggests Gaussian process model
» Gaussian process solvers previously studied
[Skilling (1991), Chrekbitii et al. (2014), Hennig & Hauberg (2014)]



Some properties of Gaussian measures

The only two equations you really need (in this group)

» closure under affine transformations (x € R,y ¢ RM)

p(z) ~N(m, P), p(yle) ~N(Hz+v,R)
x N m P PH'
“Plyl) " \|Hm+v | |HP HPH +R
» inference involves only linear algebra operations
€T myq P1 C
G- 7))
p(z|y) ~N(mi + CP;'(y - my), P, - CP;'C")

= sequential Gaussian inference at linear cost (filtering’)



Gaussian process solvers

implicitly define a Butcher tableau
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Gaussian process solvers

implicitly define a Butcher tableau
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Gaussian process solvers

implicitly define a Butcher tableau
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Gauss-Markov-Runge-Kutta methods

a GP solver whose mean matches RK exactly

» RK choose (¢, w,b) such that |Z(to + h) — z(to + h)| = O(hP)
» polynomial form suggests integrated Wiener (polynomial spline)
process

p(z(t)) = GP(x(t);0,ks(t,t")) where

ks (t,1) :[[f[ min(7, #') df di’

» T —> —oo: improper prior p(z(t)), proper posterior after s
observations.
» kth-times integrated Wiener process gives k-order RK solver!

» Inherets RK guarantees. Gives closed-form solution for tableau (used
to use numerical search!)

» a Markov (state-space) model, so inference is O(s) (as opposed to
usual O(s*) cost



Calibrating Uncertainty

within the parametrized class
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> posterior mean 1|, = kK 'y invariant under k — 6%k
> posterior covariance k|, = k - kK 'k scaled by 62
» initial ideas for uncertainty calibration in paper (more to come)



Multi-Step Extension

[A. Nordsieck, 1962]
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» probabilistic interpretation questions RK beyond s steps
» ‘Obvious’ solution is to continue filtering process
» result very similar, though not identical, to multi-step methods



Some Conceptual Open Questions

precise interpretation of posterior measure still evolving

How precise can the connection to multi-step methods be?
» order / stability conditions currently not fully understood
» flexibility is also a design criterion
» what about stiff problems?

What, precisely, does the posterior mean?

» width of Gaussian posterior should be inferred from regularity of
‘observed’ gradients. How, precisely, should this be done? (We have
one particular solution)

» is the Gaussian family enough? How expensive is it to move beyond
Gauss?



What we’ve done so far:

Numerical methods can be interpreted as performing statistical
inference from noise-free data

in some cases, e.g. Runge-Kutta, this link can be made precise

Inherets convergence guarantees, but also get extensibility &
uncertainty estimates

What we’re working on next:
understand the connection to multi-step methods
construct a robust probabilistic IVP solver
Continue finding model-based interpretations of numerical solvers.
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