Probabilistic ODE Solvers
with Runge-Kutta Means

Michael Schober*, David Duvenaud*, Philipp Hennig*

*Research Group Elementary Intelligence
Department of Empirical Inference
Max Planck Institute for Intelligent Systems
Tubingen, Germany

*Computational and Biological Learning Lab
Department of Engineering
Cambridge University

Can we assign a probability distribution
over the solution to

an ordinary differential equation
(initial value problem)?

x(to) = wo x'(t) = f(x(t),t)

The Probabilistic View on Computation

computing as the collection of information [Poincaré, 1896, Diaconis, 1988, O’'Hagan, 1992]

A numerical method
estimates a function’s latent property
given the result of computations.

quadrature estimates fab f(z)dx given {f(z;)}
linear algebra estimates z s.t. Az =10 given {As =y}
optimization estimates z s.t. Vf(z) =0 given {V f(z;)}
analysis estimates z(t) s.t. 2’ = f(x,t), given {f(z;,t;)}

» computations yield “data” / “observations”
» non-analytic quantities are “latent”
» even deterministic quantities can be uncertain.

Numerical Methods and Statistical Estimators

several classic numerical algorithms identified precisely as maximum a-posteriori estimators

quadrature [Diaconis, 1988, O’Hagan, 1991]

Gaussian quadrature

linear algebra
conjugate gradients

Gaussian process regression

[Hennig, 2015]

nonlinear optimization
BFGS

Gaussian conditioning

[Hennig & Kiefel, 2013]

autoregressive filtering

ordinary differential equations
Runge-Kutta

[Schober et al., 2014]

Gauss-Markov extrapolation

Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]

xz(t)

to
t
0 Y1 = f(lwo,to+0)
C1 Yo :f(o + Y17t0+61)
Cc2

Yo = f(lmo+ X5 w. Y, to +cs)
h 1 bl bg 173 i‘(to + h) = 1(130 + Zl bqn

Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]

i \ |
g
to to +c1 to + c2 to+h
t
0 Yi =f(IEo,'L’o+0)
c1 Yo =f(lzo+wiY1,to+c1)
Cc2

Yo = f(lmo+ 25w Y to +¢s)
h 1 b1 bo b3 i‘(to + h) =1lxo + ZZ b;Y;

Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]

i \ |
g
—6—
to to +c1 to + c2 to+h
t

0 Yi =f(IEo,'L’o+0)
c1 Yo =f(lzo+ Yi,t0+c1)
C2

Yo = f(lmo+ 25w Y to +¢s)
h 1 b1 bo b3 i‘(to + h) =1lxo + ZZ b;Y;

Runge-Kutta methods

are linear extrapolators of high convergence order [Hairer et al., 1987]

_ \]
5 \e\
to to+c1 to + c2 to+h
t
0 Yi =f(l‘o,t0+0)
c1 Yo =f(lzo+wi Yi,t0+c1)
C2

Yor1 = f(laxo+ X5 w..Yi, to +cs)
h 1 b1 b2 bg i(to + h) = 1$0 + ZZ bL}/i

Gaussian process solvers

are also linear extrapolators

= —= I
P —d \e;\
to to+c1 to + C2 to+h
t

» Linear extrapolation suggests Gaussian process model
» Gaussian process solvers previously studied
[Skilling (1991), Chrekbitii et al. (2014), Hennig & Hauberg (2014)]

Some properties of Gaussian measures

The only two equations you really need (in this group)

» closure under affine transformations (x € R,y ¢ RM)

p(z) ~N(m, P), p(yle) ~N(Hz+v,R)
x N m P PH'
“Plyl) " \|Hm+v | |HP HPH +R
» inference involves only linear algebra operations
€T myq P1 C
G- 7))
p(z|y) ~N(mi + CP;'(y - my), P, - CP;'C")

= sequential Gaussian inference at linear cost (filtering’)

Gaussian process solvers

implicitly define a Butcher tableau

) — —
\H/ -l . e— |
to to+c1 to + c2 to+h
t

0 Y1 =f(t0+0,t0+0)
C1
C2
h 1 by bo b3

Hizg (to) = (z0)

Gaussian process solvers

implicitly define a Butcher tableau

= "\ I
\&/ N \}‘ \e\g
\\ B
to to+c1 to + c2 to+h
0 Y1 =f(to+0 ,t()+0)
é y2 = f(to+c1),to+c1)
C2

h 1 by bo b3

Hlzg,yy (tO +51):

()

Gaussian process solvers

implicitly define a Butcher tableau

/5 [B—
Py - — |
to to+c1 to + co t0+h
t
0 yio=f(to+0),t0+0)
c1 Y2 = (to +c1 7t()+01)
C2 ys+1:f(to + cs 7t0+Cs)

h 1 by bo b3

Hizg,u; (fo +cs) =

1
—

ajo)
Yi

= o + i1 Yi

Gaussian process solvers

implicitly define a Butcher tableau

Y* TN
\\
to to+c1 to + c2 to+h
t

0 Y1 =f(t0+0,t0+0)

C1 Y2 =f(to+c1 7t()+01)
C2 Yst1 = f(to + cs ,to+cs)
h 1 b1 ba b3

Hlzg,u; (to + h) = [k:(to +h,to) k‘”(to +h,to + (:,')] Kt (mo)

=bozo +X;_ 1 biyi

i’(to + h) = ll/‘fl/'Oxl/i (t() + h)

Yi

Gauss-Markov-Runge-Kutta methods

a GP solver whose mean matches RK exactly

» RK choose (¢, w,b) such that |Z(to + h) — z(to + h)| = O(hP)
» polynomial form suggests integrated Wiener (polynomial spline)
process

p(z(t)) = GP(x(t);0,ks(t,t")) where

ks (t,1) :[[f[min(7, #') df di’

» T —> —oo: improper prior p(z(t)), proper posterior after s
observations.
» kth-times integrated Wiener process gives k-order RK solver!

» Inherets RK guarantees. Gives closed-form solution for tableau (used
to use numerical search!)

» a Markov (state-space) model, so inference is O(s) (as opposed to
usual O(s*) cost

Calibrating Uncertainty

within the parametrized class

()
Jf(to + h)

to to+c1 to + c2 to+h pla(to + 1))
t

> posterior mean 1|, = kK 'y invariant under k — 6%k
> posterior covariance k|, = k - kK 'k scaled by 62
» initial ideas for uncertainty calibration in paper (more to come)

Multi-Step Extension

[A. Nordsieck, 1962]

Naive chaining Smoothing Probabilistic continuation
1e 7 -
0-8\ o = =
0.6 ~— = ~ E ~
8 061 '& § E N 2 g E N~ ; %
0.2 | T N S—¢ | TS
o4 1072 pw—2 LlO_Q
S| dekedll | peredd | S
SN st e iten I et (L P :
= 0 @=—— (@] ~ O &7 (o O o
Sto++ h 2h 3h 4h to+- h 2h 3h 4h to++~ h 2h 3h 4h
t t t

» probabilistic interpretation questions RK beyond s steps
» ‘Obvious’ solution is to continue filtering process
» result very similar, though not identical, to multi-step methods

Some Conceptual Open Questions

precise interpretation of posterior measure still evolving

How precise can the connection to multi-step methods be?
» order / stability conditions currently not fully understood
» flexibility is also a design criterion
» what about stiff problems?

What, precisely, does the posterior mean?

» width of Gaussian posterior should be inferred from regularity of
‘observed’ gradients. How, precisely, should this be done? (We have
one particular solution)

» is the Gaussian family enough? How expensive is it to move beyond
Gauss?

What we’ve done so far:

Numerical methods can be interpreted as performing statistical
inference from noise-free data

in some cases, e.g. Runge-Kutta, this link can be made precise

Inherets convergence guarantees, but also get extensibility &
uncertainty estimates

What we’re working on next:
understand the connection to multi-step methods
construct a robust probabilistic IVP solver
Continue finding model-based interpretations of numerical solvers.

Bibliography

P. Diaconis. Bayesian numerical analysis. Statistical decision theory and related topics, 1V(1):163-175,
1988.

E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations | — Nonstiff Problems.
Springer, 1987.

S. Hauberg, M. Schober, M. Liptrot, P. Hennig, and A. Feragen. A random riemannian metric for
probabilistic shortest-path tractography. In Medical Image Computing and Computer Assisted
Intervention-MICCAI 2015. Springer, 2015.

P. Hennig. Probabilistic interpretation of linear solvers. SIAM J on Optimization, 25(1):210-233, 2015.

P. Hennig and M. Kiefel. Quasi-Newton Methods — a new direction. Journal of Machine Learning
Research, 14:834-865, March 2013.

A. O’'Hagan. Bayes—Hermite quadrature. J of Statistical Planning and Inference, 29(3):245-260, 1991.
A. O’Hagan. Some Bayesian Numerical Analysis. Bayesian Statistics, 4:345-363, 1992.

H. Poincaré. Calcul des probabilités. Gauthier-Villars, Paris, 1896.

S.

Sarkka. Recursive Bayesian Inference on Stochastic Differential Equations. PhD thesis, Helsinki
University of Technology, 2006.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ODE Solvers with Runge-Kutta Means.
Advances in Neural Information Processing Systems (NIPS), 2014.

M. Schober, N. Kasenburg, A. Feragen, P. Hennig, and S. Hauberg. Probabilistic shortest path
tractography in DTI using Gaussian Process ODE solvers. In Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2014. Springer, 2014.

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	anm1:

