Invertible Residual Networks

Jens Behrmann*
Will Grathwohl*
Ricky T. Q. Chen
David Duvenaud
Jörn-Henrik Jacobsen*

(*equal contribution)
Invertible Neural Networks (INNs) are bijective function approximators which have a forward mapping

$$F_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^d$$

$$x \mapsto z$$

and an inverse mapping

$$F^{-1}_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^d$$

$$z \mapsto x$$
Why Invertible Networks?

- Mostly known because of Normalizing Flows
 - Training via maximum-likelihood and evaluation of likelihood

Generated samples from GLOW (Kingma et al. 2018)
Why Invertible Networks?

 – Normalizing Flows
• Mutual information preservation
 \[I(Y; X) = I(Y; F_\theta(X)) \]
• Analysis and regularization of invariance (Jacobsen et al. 2019)
• Memory-efficient backprop (Gomez et al. 2017)
• Analyzing inverse problems (Ardizzone et al. 2019)

Workshop: Invertible Networks and Normalizing Flows
Invertible Networks use Exotic Architectures

 - Transforms one part of the input at a time
 - Choice of partitioning is important
Invertible Networks use Exotic Architectures

 – Transforms one part of the input at a time
 – Choice of partitioning is important

• Invertible dynamics via Neural ODEs (Chen et al. 2018, Grathwohl et al. 2019)
 – Requires numerical integration
 – Hard to tune and often slow due to need of ODE-solver
Why do we move away from standard architectures?

- Partitioning, coupling layers, ODE-based approaches move further away from standard architectures
 - Many new design choices necessary and not well understood yet

- Why not use most successful discriminative architecture?

 ResNets

- Use connection of ResNet and Euler integration of ODEs
 (Haber et al. 2018)
Theorem (sufficient condition for invertible residual layer):

Let \(F_\theta^t(x) = x + g_\theta^t(x) \) be a residual layer, then it is invertible if

\[
\text{Lip}(g_\theta^t) < 1
\]

where

\[
\|g(x) - g(y)\|_2 \leq \text{Lip}(g)\|x - y\|_2
\]
Making ResNets invertible

Theorem (sufficient condition for invertible residual layer):

Let \(F_\theta^t(x) = x + g_\theta^t(x) \) be a residual layer, then it is invertible if

\[
\text{Lip}(g_\theta^t) < 1
\]

where

\[
\|g(x) - g(y)\|_2 \leq \text{Lip}(g)\|x - y\|_2
\]

\[
F_\theta = F_\theta^T \circ \cdots \circ F_\theta^1
\]
i-ResNets: Constructive Proof

Theorem: (invertible residual layer)
Let $F(x) = x + g(x)$ be a residual layer, then it is invertible if

$$\text{Lip}(g) < 1$$

Proof:
Features: $z := F(x)$
Fixed-point equation: $x = z - g(x)$
Theorem: (invertible residual layer)
Let \(F(x) = x + g(x) \) be a residual layer, then it is invertible if
\[\text{Lip}(g) < 1 \]

Proof:
Features:
\[z := F(x) \]
Fixed-point equation:
\[x = z - g(x) \]
→ Use fixed-point iteration:
\[x^{(0)} = z \]
\[x^{(i+1)} = z - g(x^{(i)}) \]
i-ResNets: Constructive Proof

Theorem: (invertible residual layer)

Let \(F(x) = x + g(x) \) be a residual layer, then it is invertible if

\[
\text{Lip}(g) < 1
\]

Proof:

Features:

\[
z := F(x)
\]

Fixed-point equation:

\[
x = z - g(x)
\]

→ Use fixed-point iteration:

\[
x^{(0)} = z
\]

\[
x^{(i+1)} = z - g(x^{(i)})
\]

→ Guaranteed convergence to \(x \) if \(g \) contractive (Banach fixed-point theorem)
Inverting i-ResNets

• Inversion method from proof

• Fixed-point iteration:
 – Init:
 \[x^{(0)} = z \]
 – Iteration:
 \[x^{(i+1)} = z - g(x^{(i)}) \]
Inverting i-ResNets

- Inversion method from proof
- Fixed-point iteration:
 - Init:
 \[x^{(0)} = z \]
 - Iteration:
 \[x^{(i+1)} = z - g(x^{(i)}) \]
- Rate of convergence depends on Lipschitz constant
- In practice: cost of inverse is 5-10 forward passes
How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

\[g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi \]

\[\text{Lip}(g) \leq \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2 \]
How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

\[g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi \]

\[\text{Lip}(g) \leq \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2 \]

• Spectral normalization \hspace{1cm} (Miyato et al. 2018, Gouk et al. 2018)

\[\tilde{W} = c \frac{W}{\hat{\sigma}_1}, \quad 0 < c < 1 \]

\(\hat{\sigma}_1 \) approx of largest singular value via power-iteration
How to build i-ResNets

• Satisfy Lip-condition: data-independent upper bound

\[g = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi \]

\[\text{Lip}(g) \leq \|W_3\|_2 \cdot \|W_2\|_2 \cdot \|W_1\|_2 \]

• Spectral normalization (Miyato et al. 2018, Gouk et al. 2018)

\[\tilde{W} = c \frac{W}{\hat{\sigma}_1}, \quad 0 < c < 1 \]

\(\hat{\sigma}_1\) approx of largest singular value via power-iteration

```python
def invertible_residual_block(self):
    layers = []
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(in_dim, hidden_dim)))
    layers.append(nn.ReLU)
    layers.append(spectral_norm(nn.Linear(hidden_dim, in_dim)))
```

Invertible Residual Networks
Validation

- Reconstructions

CIFAR10 Data
Reconstructions: i-ResNet
Reconstructions: standard ResNet
Classification Performance

<table>
<thead>
<tr>
<th>Classification Error %</th>
<th>ResNet-164</th>
<th>Vanilla</th>
<th>$c = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>-</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>CIFAR10</td>
<td>5.50</td>
<td>6.69</td>
<td>6.78</td>
</tr>
<tr>
<td>CIFAR100</td>
<td>24.30</td>
<td>23.97</td>
<td>24.58</td>
</tr>
<tr>
<td>Guaranteed Inverse</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Competetive performance
- But what do we get additionally?

Generative models via Normalizing Flows
Maximum-Likelihood Generative Modeling with i-ResNets

- We can define a simple generative model as

\[z \sim p_Z(z) \]
\[x = F_\theta^{-1}(z) \]

Gaussian distribution

\[z \]

\[F_\theta^{-1}(z) \]

Data distribution

\[x \]
Maximum-Likelihood Generative Modeling with i-ResNets

• We can define a simple generative model as

\[z \sim p_Z(z) \]
\[x = F_\theta^{-1}(z) \]

• Maximization (and evaluation) of likelihood via change-of-variables

\[\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)| \]

... if \(F_\theta \) is invertible
Maximum-Likelihood Generative Modeling with i-ResNets

• Maximization (and evaluation) of likelihood via change-of-variables

$$\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)|$$

... if F_θ is invertible

• Challenges:
 – Flexible invertible models
 – Efficient computation of log-determinant
Efficient Estimation of Likelihood

- Likelihood with log-determinant of Jacobian

\[\log p_X(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)| \]

- Previous approaches:
 - exact computation of log-determinant via constraining architecture to be triangular (Dinh et al. 2016, Kingma et al. 2018)
 - ODE-solver and estimation only of trace of Jacobian (Grathwohl et al. 2019)

- We propose an **efficient estimator for i-ResNets** based on trace-estimation and truncation of a power series
Generative Modeling Results

Data Samples

GLOW

Invertible Residual Networks
Generative Modeling Results

Data Samples GLOW i-ResNets
Generative Modeling Results

<table>
<thead>
<tr>
<th>Method</th>
<th>MNIST</th>
<th>CIFAR10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICE (Dinh et al., 2014)</td>
<td>4.36</td>
<td>4.48†</td>
</tr>
<tr>
<td>MADE (Germain et al., 2015)</td>
<td>2.04</td>
<td>5.67</td>
</tr>
<tr>
<td>MAF (Papamakarios et al., 2017)</td>
<td>1.89</td>
<td>4.31</td>
</tr>
<tr>
<td>Real NVP (Dinh et al., 2017)</td>
<td>1.06</td>
<td>3.49</td>
</tr>
<tr>
<td>Glow (Kingma & Dhariwal, 2018)</td>
<td>1.05</td>
<td>3.35</td>
</tr>
<tr>
<td>FFJORD (Grathwohl et al., 2019)</td>
<td>0.99</td>
<td>3.40</td>
</tr>
<tr>
<td>i-ResNet</td>
<td>1.06</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Invertible Residual Networks
i-ResNets Across Tasks

• i-ResNet as an architecture which **works well both in discriminative and generative modeling**

<table>
<thead>
<tr>
<th></th>
<th>Affine Glow</th>
<th>Additive Glow</th>
<th>i-ResNet Glow-Style</th>
<th>i-ResNet 164</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 1 Conv Reverse</td>
<td>12.63</td>
<td>12.36</td>
<td>8.03</td>
<td>6.69</td>
</tr>
</tbody>
</table>

• i-ResNets are generative models which use the best discriminative architecture

• Promising for:
 – Unsupervised pre-training
 – Semi-supervised learning
Drawbacks

• Iterative inverse
 – Fast convergence in practice
 – Rate depends on Lip-constant and not on dimension

• Requires estimation of log-determinant
 – Due to free-form of Jacobian
 – Properties of i-ResNets allows to design efficient estimator
Conclusion

• Simple modification makes ResNets invertible
• Stability is guaranteed by construction

• New class of likelihood-based generative models
 – without structural constraints
• Excellent performance in discriminative/ generative tasks
 – with one unified architecture

• Promising approach for:
 – unsupervised pre-training
 – semi-supervised learning
 – tasks which require invertibility
See us at Poster #11 (Pacific Ballroom)

Paper:
Code:

Follow-up work:
Residual Flows for Invertible Generative Modeling
Invertible Networks and Normalizing Flows, workshop on Saturday (contributed talk)