Stochastic Hyperparameter Optimization through Hypernetworks Cross-validation

JONATHAN LORRAINE& DAVID DUVENAUD

UNIVERSITY OF TORONTO

Cross-validation as Nested Optimization

- Cross-validation nests optimization of network weights inside of optimization of hyperparameters.
- Bi-level optimization is a game with a leading player and a following player. Each has their own objective.
- The followers best-responding strategy depends on the leaders strate($w^*(\lambda) = \underset{w}{\operatorname{argmin}} \mathcal{L}_{\operatorname{Train}}(w,\lambda)$

 $\operatorname{argmin}_{\lambda} \underbrace{\mathcal{L}}_{\text{Valid.}} \left(\operatorname{argmin}_{w} \underbrace{\mathcal{L}}_{\text{Train}}(w, \lambda) \right)$

Maclaurin et. Al. (2015) backprop through a training procedure to get gradients, but requires training from scratch each time.

Learning the best-response function

Lets learn the best-response function and amortize optimization!

 $\mathbf{w}^*(\lambda) = \operatorname*{argmin}_{\mathbf{w}} \underbrace{\mathcal{L}}_{\mathrm{Train}}(\mathbf{w}, \lambda)$

New gradient terms:

 $\frac{\partial \, \mathcal{L}_{\mathrm{Train}}(\mathbf{w}_{\phi})}{\partial \mathbf{w}_{\phi}} \frac{\partial \mathbf{w}_{\phi}}{\partial \phi} \ \text{or} \ \frac{\partial \, \mathcal{L}_{\mathrm{Valid.}}(\mathbf{w}_{\phi}(\lambda))}{\partial \mathbf{w}_{\phi}(\lambda)} \frac{\partial \mathbf{w}_{\phi}(\lambda)}{\partial \lambda}$

Algorithm 1 Standard cross-validation Algorithm 2 Optimization of hyperwith stochastic optimization network, then hyperparameters for $i = 1, \ldots, T_{\text{outer}}$ do initialize w initialize ϕ $\lambda = \text{hyperopt}(\lambda^{(1:i)}, \mathcal{L}_{\text{Valid.}}(\mathbf{w}^{(1:i)}))$ initialize λ loop loop $\mathbf{x} \sim \text{Training data}, \lambda \sim p(\lambda)$ $\mathbf{x} \sim \text{Training data}$ $\phi = \alpha \nabla_{\phi} \mathcal{L}_{\text{Train}}(w_{\phi}(\lambda), \lambda, \mathbf{x})$ $w = \alpha \nabla_w \mathcal{L}_{Train}(w, \lambda, \mathbf{x})$ $\lambda^i, \mathbf{w}^i = \lambda, \mathbf{w}$ loop $i = \operatorname{argmin} \mathcal{L}_{\operatorname{Train}}(\mathbf{w}^{(i)}, \lambda^{(i)}, \mathbf{x})$ $\mathbf{x} \sim \text{Validation data}$ $\hat{\lambda} = \beta \nabla_{\hat{\lambda}} \mathcal{L}_{\text{Valid.}}(\mathbf{w}_{\phi}(\hat{\lambda}), \mathbf{x})$ Return $\lambda^{(i)}, \mathbf{w}^{(i)}$ Return $\hat{\lambda}, w_{\phi}(\hat{\lambda})$

Figure 2: The validation loss of a neural net, estimated by cross-validation (crosses) or by a hypernetwork (line), which outputs 7, 850-dimensional network weights. Crossvalidation requires optimizing from scratch each time. The hypernetwork can be used to evaluate the validation loss cheaply.

Local Optimization

Limited capacity hypernetwork in practice.

Return $\hat{\lambda}, w_{\phi}(\hat{\lambda})$

Algorithm 2 Optimization of hyper- network, then hyperparameters	Algorithm 3 Joint optimization of hy- pernetwork and hyperparameters	Algorithm 4 Simplified joint optimization of hypernet- work and hyperparameters
initialize ϕ initialize $\hat{\lambda}$ loop $\mathbf{x} \sim \text{Training data}, \lambda \sim p(\lambda)$ $\phi = \alpha \nabla_{\phi} \mathcal{L}_{\text{Train}}(w_{\phi}(\lambda), \lambda, \mathbf{x})$	initialize ϕ initialize $\hat{\lambda}$ loop $\mathbf{x} \sim \text{Training data}, \lambda \sim p(\lambda \hat{\lambda})$ $\phi = \alpha \nabla_{\phi} \mathcal{L}_{\text{Train}}(\mathbf{w}_{\phi}(\lambda), \lambda, \mathbf{x})$	initialize $\phi, \hat{\lambda}$ loop $\mathbf{x} \sim \text{Training data}, \mathbf{x}' \sim \text{Validation data}$ $\phi = \alpha \nabla_{\phi} \mathcal{L}_{\text{Train}}(\mathbf{w}_{\phi}(\hat{\lambda}), \hat{\lambda}, \mathbf{x})$ $\hat{\lambda} = \beta \nabla_{\hat{\lambda}} \mathcal{L}_{\text{Valid.}}(\mathbf{w}_{\phi}(\hat{\lambda}), \mathbf{x}')$ Return $\hat{\lambda}, \mathbf{w}_{\phi}(\hat{\lambda})$
loop $\mathbf{x} \sim \text{Validation data}$ $\hat{\lambda} = \beta \nabla_{\hat{\lambda}} \mathcal{L}_{\text{Valid.}}(\mathbf{w}_{\phi}(\hat{\lambda}), \mathbf{x})$	$\mathbf{x} \sim \text{Validation data} \\ \hat{\lambda} = \beta \nabla_{\hat{\lambda}} \mathcal{L}_{\text{Valid.}}(\mathbf{w}_{\phi}(\hat{\lambda}), \mathbf{x})$	

Learn the best-response in some small neighborhood about our current hyperparameter.

Return $\hat{\lambda}, w_{\phi}(\hat{\lambda})$

Figure 2: The validation loss of a neural net, estimated by cross-validation (crosses) or by a hypernetwork (line), which outputs 7, 850-dimensional network weights. Crossvalidation requires optimizing from scratch each time. The hypernetwork can be used to evaluate the validation loss cheaply.

Figure 4: Training and validation losses of a neural network, estimated by cross-validation (crosses) or a linear hypernetwork (lines). The hypernetwork's limited capacity makes it only accurate where the hyperparameter distribution puts mass.

Visualization

Figure 3: A visualization of exact (blue) and approximate (red) optimal weights as a function of hyperparameters. The approximately optimal weights w_{ϕ^*} are output by a linear model fit at $\hat{\lambda}$. The true optimal hyperparameter is λ^* , while the hyperparameter estimated using approximately optimal weights is nearby at λ_{ϕ^*} .

Stochastic evaluation of validation loss

Idea: Hyper-training is effective because it partially optimizes across many hyperparameters.

Limitations

- No inner optimization parameters can be tuned (they don't exist!).
- Hard to tune discrete hyperparameters with gradients (working on it).
- No uncertainty based exploration.
- Hard to choose the distribution of hyperparameters to train against.
 - Future work: use implicit function theorem instead?

Takeaway and Future Directions

- Currently using a linear hypernet consider a net with 10,000,000 weights and 10 hyperparameters.
- Try optimizing other hyperparameters: e.g. training data

$$w^{*}(\lambda) = \underset{w}{\operatorname{argmin}} \sum_{\mathbf{x}_{i}, \mathbf{t}_{i} \in \mathcal{D}_{t}} \mathcal{L}_{p} \left(\mathbf{y}_{w} \left(\mathbf{x}_{i} \right), \mathbf{t}_{i} \right) + \mathcal{L}_{r} \left(\mathbf{y}_{w}, \mathbf{X}_{t} \right)$$

Main point: Learning the best-response function lets you collapse a nested optimization problem into a joint optimization problem. Can be applied to GANs, and possibly to funding Nash equilibria more generally. Optimizing weight dropout on MNIST.

Hyperparameter λ

Related Work

- Brock, Andrew, Lim, Theodore, Ritchie, JM, and Weston, Nick. SMASH: Oneshot model architecture search through hypernetworks. arXiv:1708.05344, 2017.
- MAML
- Efficient Neural Architecture search