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Oops I took a gradient!
Scalable sampling for discrete distributions



Energy-Based Models

• An energy-based model (EBM) is a probability model in 
the following form:  

       


• Where  fully specifies the model so  
does not need to be modelled 

pθ(x) =
e−Eθ(x)

Z(θ)
Z(θ) = ∫x

e−Eθ(x)dx

Eθ(x) : χ → R Z(θ)



Energy-Based Models

• Long been popular in biology, physics, 
chemistry, and natural sciences 

Noe et al.

Ingraham et al.



Energy-Based Models

• Foundational to the history of deep learning and 
generative models 

• For example, RBMs: 

 E(v, h) = − aTv − bTv − vTWh, p(v, h) =
e−E(v,h)

Z



Energy-Based Models

• Fell out of favour in the 2000’s as other approaches scaled 
better — VAEs, Flows, GANs, etc… 

• But, have recently been re-popularized and are now one of the 
strongest approaches for generative modelling 

Song et al. (2021)

Xie et al. (2020)



The comeback kid?

• What explains the rapid success of recent EBM 
methods? 

• Deep neural nets 

• Gradient-based MCMC 

• Score matching 



Training EBMs
• To maximize likelihood we must compute 

 

 

• Which is intractable 

• The gradient however is simpler 

 

• If we can sample from model then we can derive an unbiased gradient 
estimator 

• We can use this to train

log pθ(x) = − Eθ(x) − log Z(θ)

log pθ(x) = − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]



Training EBMs (in the past)
• We design  to make sampling easy 

• For example, an RBM 
 

• Which enables fast sampling through Gibbs 

 

 

• Consequences are:  
• discrete data+latents 
• restricted architectures

Eθ(x)

Eθ(x, h) = hTWx + cT x + bTh

p(x |h) = Bernoulli(x; WTh + c)

p(h |x) = Bernoulli(h; Wx + b)

Salakhutdinov and Murray (2008)



Training EBMs (today)
• We design  to be flexible as possible 
• We let be a deep neural network  

• There is no longer structure which can be exploited for sampling 
• Unless we make data continuous… 

• We can use gradient-based samplers 

 

• Consequences are:  
• Data must be continuous 
• Energy must be differentiable

Eθ(x)
Eθ(x) = − fθ(x)

xt+t = xt +
ϵ
2

∇x fθ(x) + ϵη, η ∼ N(0,I)

Du and Mordatch (2020)



Discrete Data
• Now EBMs compete with (or outperform) other generative models 

• Are powerful method for  
• Semi-supervised learning 
• Adversarial robustness 
• Image generation 
• Out-of-distribution detection 
• And more! 

• We would love to apply these new advances to EBMs for discrete data such 
as tabular data, text, proteins, DNA 

• When gradient-based MCMC cannot be applied, we’re out of luck 

• We could use de-quantization techniques, but these don’t work (trust me…) 

• How do we move forward???



In this work…
• We focus on MCMC sampling from discrete distributions where 

minimal structure is known a priori 

• Motivated by EBMs we study a wide-class of discrete distributions 

• We find a simple structure common to many discrete distributions 

• We present a very simple sampler which exploits this structure in a 
novel way 

• We find this sampler outperforms prior samplers for discrete data  

• Our sampler enables the training of deep EBMs on discrete data 



Discrete Sampling

• We focus on sampling from  where  

•  or 

p(x) =
ef(x)

Z

x ∈ {0,1}D x ∈ {0,…, K}D



Discrete Sampling
• Simplest and most general approach is Gibbs sampling 

• Pick dim  then re-sample  

• For discrete  has form 

i xi ∼ p(xi |x−i)

x

p(xi = k |x−i) =
exp f(x1, …, xi−1, k, xi+1, …, xD)

∑K
j=1 exp f(x1, …, xi−1, j, xi+1, …, xD)



Discrete Sampling
• Simplest and most general approach is Gibbs sampling 

• Pick dim  then re-sample  

• For discrete  has form 

i xi ∼ p(xi |x−i)

x

p(xi = k |x−i) =
exp f(x1, …, xi−1, k, xi+1, …, xD)

∑K
j=1 exp f(x1, …, xi−1, j, xi+1, …, xD)

Typically fix an ordering 
and iterate through



An example…

• Consider sampling from a model of MNIST 

• Most pixels are black 
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An example…

• Consider sampling from a model of MNIST 

• Most pixels are black 

• If we propose dim in background 
• Will not change  computation wasted 

• If we propose dim in middle of digit 
• Will not change  computation wasted 

• Dims on edge will change 

→

→



Adaptive Gibbs
• With this intuition wan come up with a related sampler 

• Metropolis-Hastings with proposal  

• Proposal places distribution  over dimensions 

• To generate , sample  and set  accept with 
prob 

 (Metropolis-Hastings)

q(x′ |x)

q(i)

x′ i ∼ q(i) x′ = flip_dim(x, i)

min {exp( f(x′ ) − f(x))
q(x |x′ )
q(x′ |x)

,1}
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Adaptive Gibbs
• With this intuition wan come up with a related sampler 

• Metropolis-Hastings with proposal  

• Proposal places distribution  over dimensions 

• To generate , sample  and set  accept with 
prob 

 (Metropolis-Hastings) 

• Bias  towards dims which are likely to flip  Efficient sampling!

q(x′ |x)

q(i)

x′ i ∼ q(i) x′ = flip_dim(x, i)

min {exp( f(x′ ) − f(x)),1}
q(i) →



Back to our example…

• Dims most likely to flip depend on input 



Back to our example…

• Dims most likely to flip depend on input 

• Thus, an input-dependent proposal  
should be most efficient 

• Changes accept probability to 

 

q(i |x)

min {exp( f(x′ ) − f(x))
q(x |x′ )
q(x′ |x)

,1}



Proposals for Discrete Sampling
• How to design ? Acceptance rate:  

 

• Want  high to proposals have high likelihood 

• Want  high (reversible) to have high acceptance rate 

• Need  to balance these for good sampling

q(x′ |x)

min {exp( f(x′ ) − f(x))
q(x |x′ )
q(x′ |x)

,1}
f(x′ ) − f(x)

q(x |x′ )

q(x′ |x)



Proposals for Discrete Sampling
• How to design ? Acceptance rate: 

 

• Want  high to proposals have high likelihood 

• Want  high (reversible) to have high acceptance rate 

• Need  to balance these for good sampling 

•
Idea: let 

q(x′ |x)

min {exp( f(x′ ) − f(x))
q(x |x′ )
q(x′ |x)

,1}
f(x′ ) − f(x)

q(x |x′ )

q(x′ |x)

qτ(x′ |x) =
exp ( f(x′ ) − f(x)

τ )
Z(x)

=
exp ( f(x′ ) − f(x)

τ )
∑x′ ′ ∈H(x) exp ( f(x′ ′ ) − f(x)

τ )



Proposals for Discrete Sampling
• How to design ? Acceptance rate: 

 

• Want  high to proposals have high likelihood 

• Want  high (reversible) to have high acceptance rate 

• Need  to balance these for good sampling 

•
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q(x′ |x)
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Tempered softmax over 

 

For possible 

f(x′ ) − f(x)
τ

x′ 
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• Want  high to proposals have high likelihood 

• Want  high (reversible) to have high acceptance rate 

• Need  to balance these for good sampling 
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For possible 
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τ

x′ 

Make  smallτ



Proposals for Discrete Sampling
• How to design ? Acceptance rate: 

 

• Want  high to proposals have high likelihood 

• Want  high (reversible) to have high acceptance rate 

• Need  to balance these for good sampling 

•
Idea: let 

q(x′ |x)

min {exp( f(x′ ) − f(x))
q(x |x′ )
q(x′ |x)

,1}
f(x′ ) − f(x)

q(x |x′ )

q(x′ |x)

qτ(x′ |x) =
exp ( f(x′ ) − f(x)

τ )
Z(x)

=
exp ( f(x′ ) − f(x)

τ )
∑x′ ′ ∈H(x) exp ( f(x′ ′ ) − f(x)

τ )

Tempered softmax over 

 

For possible 

f(x′ ) − f(x)
τ

x′ 

Make  bigτ



Choosing τ

• Rewrite acceptance probability wrt  

 

 

qτ(x′ |x)

min {exp( f(x′ ) − f(x))
qτ(x |x′ )
qτ(x′ |x)

,1}
= min exp( f(x′ ) − f(x))

exp( 1
τ ( f(x) − f(x′ )))

exp( 1
τ ( f(x′ ) − f(x)))

Z(x′ )
Z(x)

,1

= min exp ((1 −
2
τ )( f(x′ ) − f(x))) Z(x′ )

Z(x)
,1



Choosing τ

• Rewrite acceptance probability wrt  

 

 

qτ(x′ |x)

min {exp( f(x′ ) − f(x))
qτ(x |x′ )
qτ(x′ |x)

,1}
= min exp( f(x′ ) − f(x))

exp( 1
τ ( f(x) − f(x′ )))

exp( 1
τ ( f(x′ ) − f(x)))

Z(x′ )
Z(x)

,1

= min exp ((1 −
2
τ )( f(x′ ) − f(x))) Z(x′ )

Z(x)
,1

Set  to cancelτ = 2



Choosing τ

• Rewrite acceptance probability wrt  

 

q2(x′ |x)

min {exp( f(x′ ) − f(x))
q2(x |x′ )
q2(x′ |x)

,1}
= min { Z(x′ )

Z(x)
,1}



Choosing τ

• Rewrite acceptance probability wrt  

 

q2(x′ |x)

min {exp( f(x′ ) − f(x))
q2(x |x′ )
q2(x′ |x)

,1}
= min { Z(x′ )

Z(x)
,1}

Should be 
near 1



Difference Functions

• We want a proposal 

 

• To sample we must compute  for all  

• If this is Hamming ball of size 1 this means  function evals 

• Bad news if  big…

q(x′ |x) =
exp ( f(x′ ) − f(x)

2 )
Z(x)

f(x′ ) − f(x) x′ ∈ H(x)

O(D)

D



A surprisingly common structure

Bernoulli:              

Categorical:         

Ising:                     

Potts:                    

RBM:                     

HMM:                    

Deep EBM:           

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z



A surprisingly common structure

Bernoulli:              

Categorical:         

Ising:                     

Potts:                    

RBM:                     

HMM:                    

Deep EBM:           

• What’s going on here? 

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

These are all continuous, 
differentiable functions of 

real-valued inputs!

Discrete structure is 
created by restricting 
input to {0,1} ⊂ R



Exploiting a surprisingly common structure

• If the unnormalized log-probability function  is a continuous, 
differentiable real-valued function restricted to a discrete set 

• We can use Taylor-series to estimate 

 

• For binary data, we estimate  for all  with: 

 

• Where  

• For categorical data: 

f(x)

f(x′ ) ≈ (x′ − x)T ∇x f(x)

f(x′ ) − f(x) x′ ∈ H(x)

d̃(x) = − (2x − 1) ⊙ ∇x f(x)

d̃(x)i = f(filp_dim(x, i)) − f(x)

d̃(x)ij = ∇x f(x)ij − xT
i ∇x f(x)i



Gibbs With Gradients

• We propose a new sampler for discrete distributions 

• We do Metropolis-Hastings with a proposal  

• The proposal approximates: 

 

• Using a Taylor-series 

 

• Where  and we use  to efficiently compute all differences 
using  function evaluations

q(x′ |x)

q(x′ |x) =
exp ( f(x′ ) − f(x)

2 )
Z(x)

q(x′ |x) =
exp ( (x′ − x)T ∇x f(x)

2 )
Z̃(x)

x′ ∈ H(x) d̃(x)
O(1)



Gibbs With Gradients (pseudo-code)



Underlying Continuous Function

Compute gradients of 

continuous function


Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original


discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal


Metropolis-Hastings

Step

Gibbs With Gradients (visually)



Sampling Experiments…



Sampling Experiments…



Sampling Experiments…



Relationship to Relaxations
• Ours is not the first method to use the functional form and gradients 

of a discrete distribution for sampling  

• Use discrete target ,  to create a related distribution  
over continuous , and a mapping  such that if 

 
• Then we have  

• Then gradient-based MCMC is used to sample from  

• For binary , we can let  and then 

pd(x) x ∈ X pc(y)
y ∈ Y Γ(y) : Y → X

y ∼ pc(y) x = Γ(y)
x ∼ pd(x)

pc(y)

x Γ(y) = sign(y)

pc(y) = N(0,I)pd(Γ(y))



Unfortunately…
• These approaches do not scale to high dimensions



Unfortunately…
• These approaches do not scale to high dimensions 

• They behave well with < 200 dimensions 

• Perform poorly above 

• Relaxation can technically use gradient-based MCMC but 

• Can be arbitrarily multi-modal 
• Approximately discontinuous 
• Metrics of mixing and convergence in -space are meaningless 

in -space 
• Infinite possibilities for relaxation, choices matter 
• Lots of hyper-parameters: base distribution, temperature, length-

scale, … 

y
x



Training EBMs
• Recall  

• So MCMC sampling can enable parameter inference for EBMs 

• We train two traditional EBMs 

• Ising model: , where  

• Potts model: , where 

∇θlog p(x) = − Eθ(x) + Epθ(x)[Eθ(x)]

Eθ(x) = xTWx + bT x θ = {W, b}

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}



Training EBMs
• Ising model: , where  

• We generate Ising models where  is the adjacency of: 

• 2D Lattice  
• Random Erdos-Renyi Graph 

• Compared to Gibbs sampling 

• GWG finds better solutions 
• Does so much more efficiently

Eθ(x) = xTWx + bT x θ = {W, b}

W



Training EBMs
• Potts model: , where  

• Train on evolutionary protein data  

• Potts model likelihood is sum of pairwise interactions  

• Strength of inferred interactions can predict 3D structure of protein 

• Normally trained with pseudo-likelihood

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}

x ∈ {0,…,20}D

xT
j Jijxj



Training EBMs
• Potts model: , where  

• Inferred contacts

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}



Training EBMs
• Potts model: , where  

• Contact prediction

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}



Deep EBMs for Discrete Data
• Recent success in EBMs comes from powerful, expressive energy 

functions  

• For high dimensional data, Gibbs is too slow to converge 

• For -outcome categorical data we must evaluate  -times vs 2 for 
GWG 
• For large  GWG is much faster per iterations AND converges in 

fewer iterations 

• We train Deep ResNet EBMs on binary and categorical image data 

• Binary pixel values are 0, 1 

• For categorical we take continuous pixel values and treat as 1-of-256 
way categorical 
• This means 256 function evals for 1 step of Gibbs

pθ(x) =
efθ(x)

Z

k fθ(x) k

k



Deep EBMs for Discrete Data
• Train with PCD 

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood 

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train 
because of high cost per-iteration



Deep EBMs for Discrete Data
• Train with PCD 

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood 

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train 
because of high cost per-iteration

Data EBM Samples
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Deep EBMs for Discrete Data



Deep EBMs for Discrete Data



Deep EBMs for Discrete Data



Deep EBMs for text?
• A more extreme categorical domain is text 

• Most language models today have > 10,000 words in their vocabulary 

• HUGE categorical sampling space 

• Standard Gibbs would need over 10,000 function evals per step 

• Can GWG enable text EBMs? 

• We train a model on short sentences with 10k vocab 
• 20 words x 10k vocab = 200,000 possible moves for GWG 

• Autoregressive model gets -74 test set log-likelihood  
• EBM gets -77.14 

• Uniform is -184.18 and categorical distribution gets -100.05 

• GWG is competitive with AR despite HUGE sampling space 
.



Next Steps
• Improvements and new approximations for large categoricals 
• New approximations when gradients can’t be computed (graphs, 

programs) 

• New applications of gradient-based approximations 
• Discrete Score Matching 
• Discrete Stein Discrepancies 

• Extend to larger window sizes and change multiple dimensions at a 
time 

• Incorporating momentum 

• Integrate into probabilistic programming frameworks



log p (x )

x

log p (x + 1)

log p (x − 1)

log p̃ (x + 1)

log p̃ (x − 1)
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x x +
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−
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Metropolis-Hastings

Step

x

x

Updated Sample



Underlying Continuous Function

Compute gradients of 
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