
Will Grathwohl

Oops I took a gradient!
Scalable sampling for discrete distributions

Energy-Based Models

• An energy-based model (EBM) is a probability model in
the following form:

• Where fully specifies the model so
does not need to be modelled

pθ(x) =
e−Eθ(x)

Z(θ)
Z(θ) = ∫x

e−Eθ(x)dx

Eθ(x) : χ → R Z(θ)

Energy-Based Models

• Long been popular in biology, physics,
chemistry, and natural sciences

Noe et al.

Ingraham et al.

Energy-Based Models

• Foundational to the history of deep learning and
generative models

• For example, RBMs:

 E(v, h) = − aTv − bTv − vTWh, p(v, h) =
e−E(v,h)

Z

Energy-Based Models

• Fell out of favour in the 2000’s as other approaches scaled
better — VAEs, Flows, GANs, etc…

• But, have recently been re-popularized and are now one of the
strongest approaches for generative modelling

Song et al. (2021)

Xie et al. (2020)

The comeback kid?

• What explains the rapid success of recent EBM
methods?

• Deep neural nets

• Gradient-based MCMC

• Score matching

Training EBMs
• To maximize likelihood we must compute

• Which is intractable

• The gradient however is simpler

• If we can sample from model then we can derive an unbiased gradient
estimator

• We can use this to train

log pθ(x) = − Eθ(x) − log Z(θ)

log pθ(x) = − Eθ(x) − log∫ e−Eθ(x)dx

∇θlog pθ(x) = − ∇θEθ(x) − Epθ(x)[∇θEθ(x)]

Training EBMs (in the past)
• We design to make sampling easy

• For example, an RBM

• Which enables fast sampling through Gibbs

• Consequences are:
• discrete data+latents
• restricted architectures

Eθ(x)

Eθ(x, h) = hTWx + cT x + bTh

p(x |h) = Bernoulli(x; WTh + c)

p(h |x) = Bernoulli(h; Wx + b)

Salakhutdinov and Murray (2008)

Training EBMs (today)
• We design to be flexible as possible
• We let be a deep neural network

• There is no longer structure which can be exploited for sampling
• Unless we make data continuous…

• We can use gradient-based samplers

• Consequences are:
• Data must be continuous
• Energy must be differentiable

Eθ(x)
Eθ(x) = − fθ(x)

xt+t = xt +
ϵ
2

∇x fθ(x) + ϵη, η ∼ N(0,I)

Du and Mordatch (2020)

Discrete Data
• Now EBMs compete with (or outperform) other generative models

• Are powerful method for
• Semi-supervised learning
• Adversarial robustness
• Image generation
• Out-of-distribution detection
• And more!

• We would love to apply these new advances to EBMs for discrete data such
as tabular data, text, proteins, DNA

• When gradient-based MCMC cannot be applied, we’re out of luck

• We could use de-quantization techniques, but these don’t work (trust me…)

• How do we move forward???

In this work…
• We focus on MCMC sampling from discrete distributions where

minimal structure is known a priori

• Motivated by EBMs we study a wide-class of discrete distributions

• We find a simple structure common to many discrete distributions

• We present a very simple sampler which exploits this structure in a
novel way

• We find this sampler outperforms prior samplers for discrete data

• Our sampler enables the training of deep EBMs on discrete data

Discrete Sampling

• We focus on sampling from where

• or

p(x) =
ef(x)

Z

x ∈ {0,1}D x ∈ {0,…, K}D

Discrete Sampling
• Simplest and most general approach is Gibbs sampling

• Pick dim then re-sample

• For discrete has form

i xi ∼ p(xi |x−i)

x

p(xi = k |x−i) =
exp f(x1, …, xi−1, k, xi+1, …, xD)

∑K
j=1 exp f(x1, …, xi−1, j, xi+1, …, xD)

Discrete Sampling
• Simplest and most general approach is Gibbs sampling

• Pick dim then re-sample

• For discrete has form

i xi ∼ p(xi |x−i)

x

p(xi = k |x−i) =
exp f(x1, …, xi−1, k, xi+1, …, xD)

∑K
j=1 exp f(x1, …, xi−1, j, xi+1, …, xD)

Typically fix an ordering
and iterate through

An example…

• Consider sampling from a model of MNIST

• Most pixels are black

An example…

• Consider sampling from a model of MNIST

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted →

An example…

• Consider sampling from a model of MNIST

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted

• If we propose dim in middle of digit
• Will not change computation wasted

→

→

An example…

• Consider sampling from a model of MNIST

• Most pixels are black

• If we propose dim in background
• Will not change computation wasted

• If we propose dim in middle of digit
• Will not change computation wasted

• Dims on edge will change

→

→

Adaptive Gibbs
• With this intuition wan come up with a related sampler

• Metropolis-Hastings with proposal

• Proposal places distribution over dimensions

• To generate , sample and set accept with
prob

 (Metropolis-Hastings)

q(x′ |x)

q(i)

x′ i ∼ q(i) x′ = flip_dim(x, i)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}

Adaptive Gibbs
• With this intuition wan come up with a related sampler

• Metropolis-Hastings with proposal

• Proposal places distribution over dimensions

• To generate , sample and set accept with
prob

 (Metropolis-Hastings)

q(x′ |x)

q(i)

x′ i ∼ q(i) x′ = flip_dim(x, i)

min {exp(f(x′) − f(x))
q(i)
q(i)

,1}

Adaptive Gibbs
• With this intuition wan come up with a related sampler

• Metropolis-Hastings with proposal

• Proposal places distribution over dimensions

• To generate , sample and set accept with
prob

 (Metropolis-Hastings)

• Bias towards dims which are likely to flip Efficient sampling!

q(x′ |x)

q(i)

x′ i ∼ q(i) x′ = flip_dim(x, i)

min {exp(f(x′) − f(x)),1}
q(i) →

Back to our example…

• Dims most likely to flip depend on input

Back to our example…

• Dims most likely to flip depend on input

• Thus, an input-dependent proposal
should be most efficient

• Changes accept probability to

q(i |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}

Proposals for Discrete Sampling
• How to design ? Acceptance rate:

• Want high to proposals have high likelihood

• Want high (reversible) to have high acceptance rate

• Need to balance these for good sampling

q(x′ |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}
f(x′) − f(x)

q(x |x′)

q(x′ |x)

Proposals for Discrete Sampling
• How to design ? Acceptance rate:

• Want high to proposals have high likelihood

• Want high (reversible) to have high acceptance rate

• Need to balance these for good sampling

•
Idea: let

q(x′ |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}
f(x′) − f(x)

q(x |x′)

q(x′ |x)

qτ(x′ |x) =
exp (f(x′) − f(x)

τ)
Z(x)

=
exp (f(x′) − f(x)

τ)
∑x′ ′ ∈H(x) exp (f(x′ ′) − f(x)

τ)

Proposals for Discrete Sampling
• How to design ? Acceptance rate:

• Want high to proposals have high likelihood

• Want high (reversible) to have high acceptance rate

• Need to balance these for good sampling

•
Idea: let

q(x′ |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}
f(x′) − f(x)

q(x |x′)

q(x′ |x)

qτ(x′ |x) =
exp (f(x′) − f(x)

τ)
Z(x)

=
exp (f(x′) − f(x)

τ)
∑x′ ′ ∈H(x) exp (f(x′ ′) − f(x)

τ)

Tempered softmax over

For possible

f(x′) − f(x)
τ

x′

Proposals for Discrete Sampling
• How to design ? Acceptance rate:

• Want high to proposals have high likelihood

• Want high (reversible) to have high acceptance rate

• Need to balance these for good sampling

•
Idea: let

q(x′ |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}
f(x′) − f(x)

q(x |x′)

q(x′ |x)

qτ(x′ |x) =
exp (f(x′) − f(x)

τ)
Z(x)

=
exp (f(x′) − f(x)

τ)
∑x′ ′ ∈H(x) exp (f(x′ ′) − f(x)

τ)

Tempered softmax over

For possible

f(x′) − f(x)
τ

x′

Make smallτ

Proposals for Discrete Sampling
• How to design ? Acceptance rate:

• Want high to proposals have high likelihood

• Want high (reversible) to have high acceptance rate

• Need to balance these for good sampling

•
Idea: let

q(x′ |x)

min {exp(f(x′) − f(x))
q(x |x′)
q(x′ |x)

,1}
f(x′) − f(x)

q(x |x′)

q(x′ |x)

qτ(x′ |x) =
exp (f(x′) − f(x)

τ)
Z(x)

=
exp (f(x′) − f(x)

τ)
∑x′ ′ ∈H(x) exp (f(x′ ′) − f(x)

τ)

Tempered softmax over

For possible

f(x′) − f(x)
τ

x′

Make bigτ

Choosing τ

• Rewrite acceptance probability wrt

qτ(x′ |x)

min {exp(f(x′) − f(x))
qτ(x |x′)
qτ(x′ |x)

,1}
= min exp(f(x′) − f(x))

exp(1
τ (f(x) − f(x′)))

exp(1
τ (f(x′) − f(x)))

Z(x′)
Z(x)

,1

= min exp ((1 −
2
τ)(f(x′) − f(x))) Z(x′)

Z(x)
,1

Choosing τ

• Rewrite acceptance probability wrt

qτ(x′ |x)

min {exp(f(x′) − f(x))
qτ(x |x′)
qτ(x′ |x)

,1}
= min exp(f(x′) − f(x))

exp(1
τ (f(x) − f(x′)))

exp(1
τ (f(x′) − f(x)))

Z(x′)
Z(x)

,1

= min exp ((1 −
2
τ)(f(x′) − f(x))) Z(x′)

Z(x)
,1

Set to cancelτ = 2

Choosing τ

• Rewrite acceptance probability wrt

q2(x′ |x)

min {exp(f(x′) − f(x))
q2(x |x′)
q2(x′ |x)

,1}
= min { Z(x′)

Z(x)
,1}

Choosing τ

• Rewrite acceptance probability wrt

q2(x′ |x)

min {exp(f(x′) − f(x))
q2(x |x′)
q2(x′ |x)

,1}
= min { Z(x′)

Z(x)
,1}

Should be
near 1

Difference Functions

• We want a proposal

• To sample we must compute for all

• If this is Hamming ball of size 1 this means function evals

• Bad news if big…

q(x′ |x) =
exp (f(x′) − f(x)

2)
Z(x)

f(x′) − f(x) x′ ∈ H(x)

O(D)

D

A surprisingly common structure

Bernoulli:

Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

A surprisingly common structure

Bernoulli:

Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

• What’s going on here?

log p(x) = θx − log Z

log p(x) = θT x − log Z

log p(x) = xTWx + bT x − log Z

log p(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
i Jijxj − log Z

log p(x) = ∑
i

softplus(Wx + b)i + cT x

log p(x |y) =
T

∑
t=1

xtAxt−1 +
(wT xt − yt)2

σ2

log p(x) = fθ(x) − log Z

These are all continuous,
differentiable functions of

real-valued inputs!

Discrete structure is
created by restricting
input to {0,1} ⊂ R

Exploiting a surprisingly common structure

• If the unnormalized log-probability function is a continuous,
differentiable real-valued function restricted to a discrete set

• We can use Taylor-series to estimate

• For binary data, we estimate for all with:

• Where

• For categorical data:

f(x)

f(x′) ≈ (x′ − x)T ∇x f(x)

f(x′) − f(x) x′ ∈ H(x)

d̃(x) = − (2x − 1) ⊙ ∇x f(x)

d̃(x)i = f(filp_dim(x, i)) − f(x)

d̃(x)ij = ∇x f(x)ij − xT
i ∇x f(x)i

Gibbs With Gradients

• We propose a new sampler for discrete distributions

• We do Metropolis-Hastings with a proposal

• The proposal approximates:

• Using a Taylor-series

• Where and we use to efficiently compute all differences
using function evaluations

q(x′ |x)

q(x′ |x) =
exp (f(x′) − f(x)

2)
Z(x)

q(x′ |x) =
exp ((x′ − x)T ∇x f(x)

2)
Z̃(x)

x′ ∈ H(x) d̃(x)
O(1)

Gibbs With Gradients (pseudo-code)

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal

Metropolis-Hastings

Step

Gibbs With Gradients (visually)

Sampling Experiments…

Sampling Experiments…

Sampling Experiments…

Relationship to Relaxations
• Ours is not the first method to use the functional form and gradients

of a discrete distribution for sampling

• Use discrete target , to create a related distribution
over continuous , and a mapping such that if

• Then we have

• Then gradient-based MCMC is used to sample from

• For binary , we can let and then

pd(x) x ∈ X pc(y)
y ∈ Y Γ(y) : Y → X

y ∼ pc(y) x = Γ(y)
x ∼ pd(x)

pc(y)

x Γ(y) = sign(y)

pc(y) = N(0,I)pd(Γ(y))

Unfortunately…
• These approaches do not scale to high dimensions

Unfortunately…
• These approaches do not scale to high dimensions

• They behave well with < 200 dimensions

• Perform poorly above

• Relaxation can technically use gradient-based MCMC but

• Can be arbitrarily multi-modal
• Approximately discontinuous
• Metrics of mixing and convergence in -space are meaningless

in -space
• Infinite possibilities for relaxation, choices matter
• Lots of hyper-parameters: base distribution, temperature, length-

scale, …

y
x

Training EBMs
• Recall

• So MCMC sampling can enable parameter inference for EBMs

• We train two traditional EBMs

• Ising model: , where

• Potts model: , where

∇θlog p(x) = − Eθ(x) + Epθ(x)[Eθ(x)]

Eθ(x) = xTWx + bT x θ = {W, b}

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}

Training EBMs
• Ising model: , where

• We generate Ising models where is the adjacency of:

• 2D Lattice
• Random Erdos-Renyi Graph

• Compared to Gibbs sampling

• GWG finds better solutions
• Does so much more efficiently

Eθ(x) = xTWx + bT x θ = {W, b}

W

Training EBMs
• Potts model: , where

• Train on evolutionary protein data

• Potts model likelihood is sum of pairwise interactions

• Strength of inferred interactions can predict 3D structure of protein

• Normally trained with pseudo-likelihood

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}

x ∈ {0,…,20}D

xT
j Jijxj

Training EBMs
• Potts model: , where

• Inferred contacts

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}

Training EBMs
• Potts model: , where

• Contact prediction

Eθ(x) =
D

∑
i=1

hT
i xi + ∑

ij

xT
j Jijxj θ = {J, h}

Deep EBMs for Discrete Data
• Recent success in EBMs comes from powerful, expressive energy

functions

• For high dimensional data, Gibbs is too slow to converge

• For -outcome categorical data we must evaluate -times vs 2 for
GWG
• For large GWG is much faster per iterations AND converges in

fewer iterations

• We train Deep ResNet EBMs on binary and categorical image data

• Binary pixel values are 0, 1

• For categorical we take continuous pixel values and treat as 1-of-256
way categorical
• This means 256 function evals for 1 step of Gibbs

pθ(x) =
efθ(x)

Z

k fθ(x) k

k

Deep EBMs for Discrete Data
• Train with PCD

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Deep EBMs for Discrete Data
• Train with PCD

• Outperforms VAEs, RBM, and Deep belief net in log-likelihood

• GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Data EBM Samples

Deep EBMs for Discrete Data

Deep EBMs for Discrete Data

Deep EBMs for Discrete Data

Deep EBMs for Discrete Data

Deep EBMs for Discrete Data

Deep EBMs for text?
• A more extreme categorical domain is text

• Most language models today have > 10,000 words in their vocabulary

• HUGE categorical sampling space

• Standard Gibbs would need over 10,000 function evals per step

• Can GWG enable text EBMs?

• We train a model on short sentences with 10k vocab
• 20 words x 10k vocab = 200,000 possible moves for GWG

• Autoregressive model gets -74 test set log-likelihood
• EBM gets -77.14

• Uniform is -184.18 and categorical distribution gets -100.05

• GWG is competitive with AR despite HUGE sampling space
.

Next Steps
• Improvements and new approximations for large categoricals
• New approximations when gradients can’t be computed (graphs,

programs)

• New applications of gradient-based approximations
• Discrete Score Matching
• Discrete Stein Discrepancies

• Extend to larger window sizes and change multiple dimensions at a
time

• Incorporating momentum

• Integrate into probabilistic programming frameworks

log p (x)

x

log p (x + 1)

log p (x − 1)

log p̃ (x + 1)

log p̃ (x − 1)

x

Target Distribution
Underlying Continuous Function

x

Proposal

Compute gradients of

Continuous function

Use estimated likelihood

ratios to parameterize proposal

In original discrete space

x

Target Distribution Underlying Continuous Function

x

Proposal

Compute gradients of

Continuous function

Use estimated likelihood

ratios to parameterize proposal

In original discrete space

Target Distribution Underlying Continuous Function

Proposal

Compute gradients of

Continuous function

x x +

+
+

−

0

Target Distribution Underlying Continuous Function

Compute gradients of

continuous function

x x

Take softmax to obtain proposal

in original discrete space

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal

Metropolis-Hastings

Step

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

Sample from proposal

Metropolis-Hastings

Step

x

x

Updated Sample

Underlying Continuous Function

Compute gradients

of continuous

function

Estimate

likelihood ratiosx

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

Sample

from proposal

Metropolis-Hastings

Step

x

x

Updated Sample

Underlying Continuous Function

Compute gradients of

continuous function

Estimate

likelihood ratiosx x

Take softmax to obtain

proposal in original

discrete space

Target Distribution

Proposal Distribution

x x

Updated Sample

Sample from proposal

Metropolis-Hastings

Step

Block Gibbs

Gibbs-With-Gradients

D-SVGD

R-MALA

R-HMC

Block Gibbs

Gibbs-With-Gradients

D-SVGD

R-MALA

R-HMC

Gibbs-1

Gibbs-2

Gibbs-With-Gradients-5 Hamming-Ball-10-1

Block Gibbs

Gibbs-With-Gradients

D-SVGD

R-MALA

R-HMC

Gibbs-1

Gibbs-2

Hamming-Ball-10-1

