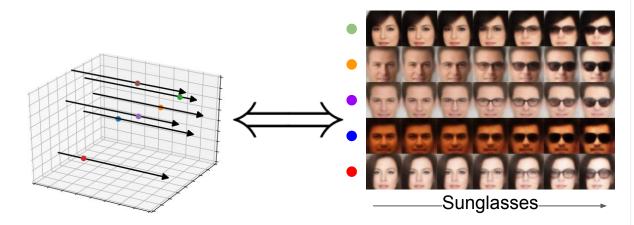
Isolating Sources of Disentanglement in VAEs

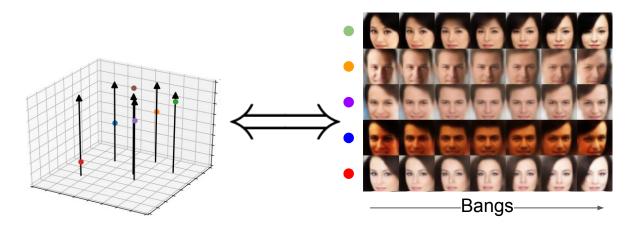
Ricky T. Q. Chen, Xuechen Li, Roger Grosse, David Duvenaud

University of Toronto, Vector Institute

<u>Axis-aligned</u> Traversal in the Representation: <u>Global</u> Interpretability in Data Space:



<u>Axis-aligned</u> Traversal in the Representation: <u>Global</u> Interpretability in Data Space:



Motivations:

- Independent Components

Downstream Tasks:

- Interpretable Decision Making

Motivations:

- Independent
 Components
- Controllable Sample Generation

Downstream Tasks:

- Interpretable Decision Making
- Semantic Inpainting

Motivations:

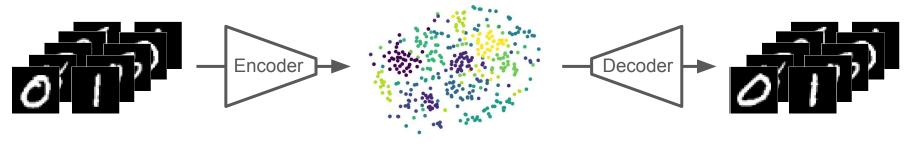
- Independent
 Components
- Controllable Sample Generation
- Generalization and Robustness

Downstream Tasks:

- Interpretable Decision Making
- Semantic Inpainting

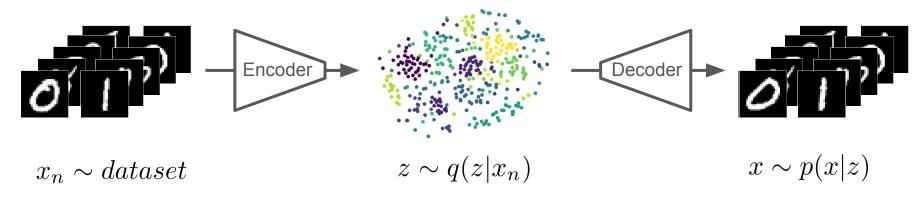
- Controlled Transfer

Regularization in VAEs



 $x_n \sim dataset$

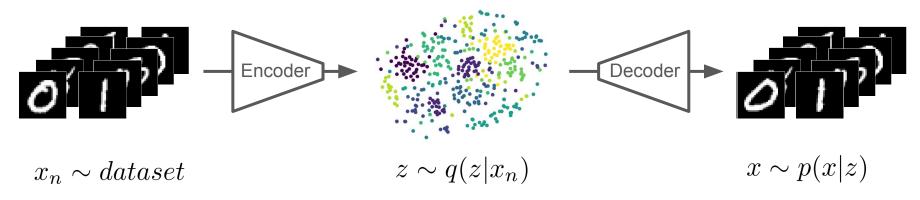
Regularization in VAEs



Evidence Lower Bound (ELBO):

$$\log p(x_n) \ge \underbrace{\mathbb{E}_{q(z|x_n)} \left[\frac{p(x_n, z)}{q(z|x_n)} \right]}_{\text{ELBO}} = \underbrace{\mathbb{E}_{q(z|x_n)} [\log p(x_n|z)]}_{\text{reconstruction}} -\beta \underbrace{\text{KL}[q(z|x_n)||p(z|x_n)]}_{\text{regularization}}$$

Regularization in VAEs



Evidence Lower Bound (ELBO):

$$\log p(x_n) \ge \underbrace{\mathbb{E}_{q(z|x_n)} \left[\frac{p(x_n, z)}{q(z|x_n)} \right]}_{\text{ELBO}} = \underbrace{\mathbb{E}_{q(z|x_n)} [\log p(x_n|z)]}_{\text{reconstruction}} -\beta \underbrace{\text{KL}[q(z|x_n)||p(z|x_n)]}_{\text{regularization}}$$

$$How \text{ does this affect disentanglement?}$$

Different Forms of Regularization in the ELBO

Define joint distribution q(z,n) = p(n)q(z|n) where $p(n) = \frac{1}{N}$.

Different Forms of Regularization in the ELBO

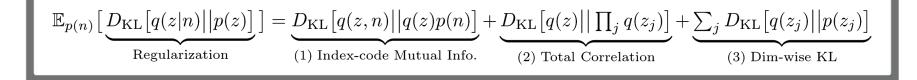
Define joint distribution q(z,n) = p(n)q(z|n) where $p(n) = \frac{1}{N}$.

The marginal distribution $q(z) = \mathbb{E}_{p(n)}[q(z|n)]$.

Isolating Different Forms of Regularization

Define joint distribution q(z,n) = p(n)q(z|n) where $p(n) = \frac{1}{N}$.

The marginal distribution $q(z) = \mathbb{E}_{p(n)}[q(z|n)]$.

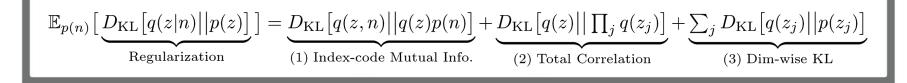


Isolating Different Forms of Regularization

Define joint distribution q(z, n) = p(n)q(z|n) where $p(n) = \frac{1}{N}$.

The marginal distribution $q(z) = \mathbb{E}_{p(n)}[q(z|n)]$.

ELBO TC-DECOMPOSITION

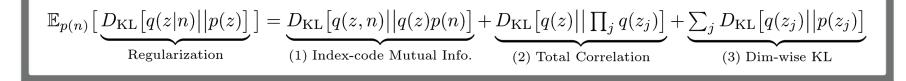


The beta-VAE (Higgins et al., 2017) penalizes all three terms evenly.

Isolating Different Forms of Regularization

Define joint distribution q(z,n) = p(n)q(z|n) where $p(n) = \frac{1}{N}$.

The marginal distribution $q(z) = \mathbb{E}_{p(n)}[q(z|n)]$.



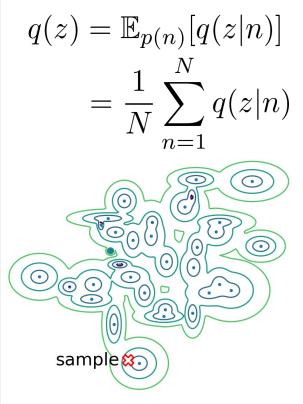
The beta-VAE (Higgins et al., 2017) penalizes all three terms evenly.

We should amplify the independence regularization in isolation!

Stochastic Estimation of $\log q(\cdot)$

 $q(\cdot)$ is a mixture distribution.

- Evaluating $q(\cdot)$ requires the full dataset.
- Stochastic estimate $q(\cdot)$ based on a minibatch?
 - Randomly chosen n will give q(z|n) close to zero.



Mixture of q(z|n)

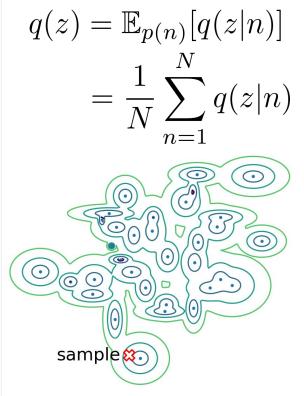
Stochastic Estimation of $\log q(\cdot)$

 $q(\cdot)$ is a mixture distribution.

- Evaluating $q(\cdot)$ requires the full dataset.
- Stochastic estimate $q(\cdot)$ based on a minibatch?
 - Randomly chosen n will give q(z|n) close to zero.
- We can reuse the **same minibatch**.

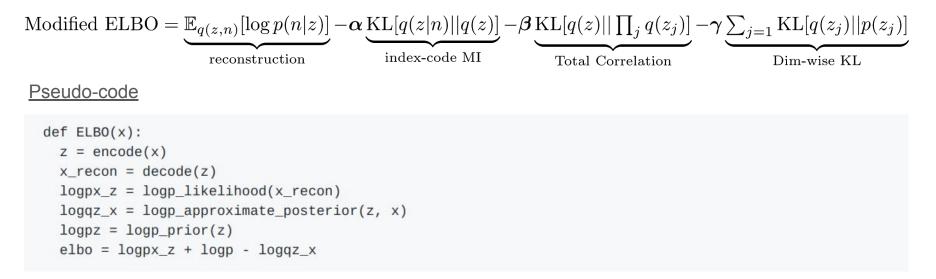
$$\mathbb{E}_q(z)[\log q(z)] \approx \frac{1}{M} \sum_{i=1}^M \left[\log \frac{1}{NM} \sum_{j=1}^M q(z(n_i)|n_j) \right]$$

- Better minibatch estimators since our work:
 - Esmaeili et al. "Structured Disentangled Representations."

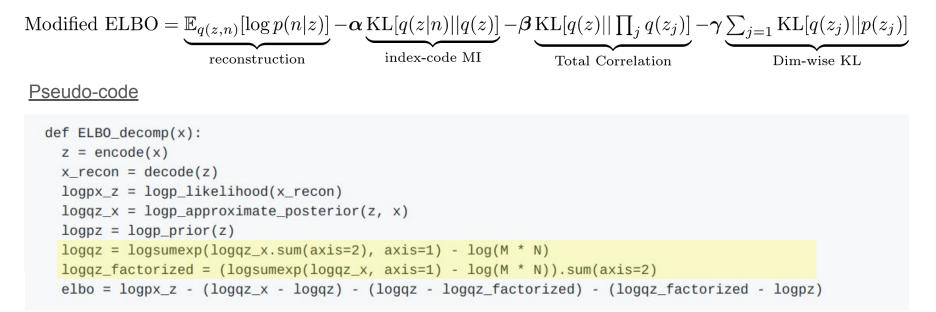


Mixture of q(z|n)

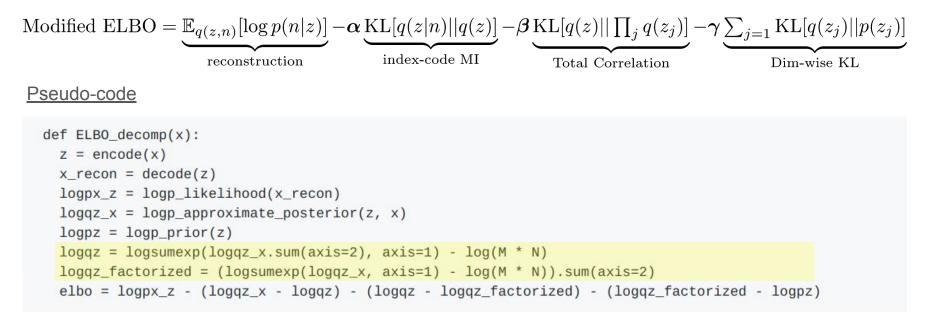
Isolating Different Forms of Regularization & TCVAE



Isolating Different Forms of Regularization & TCVAE



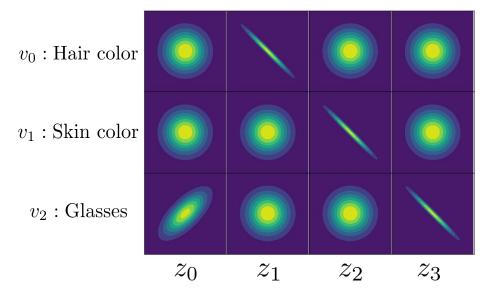
Isolating Different Forms of Regularization & TCVAE



The case $\alpha = \gamma = 1$ results in an equivalent objective to FactorVAE (*Kim & Mnih.* 2017.), though they use a discriminator to estimate KL.

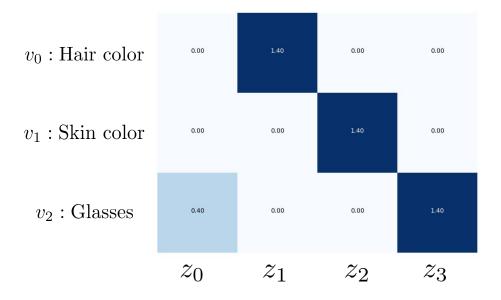
Evaluating Disentanglement

Suppose we have some ground truth factors $\{v_k\}_{k=1}^K$. We can define a joint distribution $q(z_j, v_k) = \sum_{n=1}^N p(v_k)p(n|v_k)q(z_j|n)$.



Evaluating Disentanglement

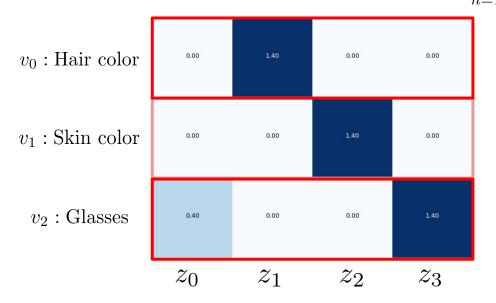
Suppose we have some ground truth factors $\{v_k\}_{k=1}^K$. We can define a joint distribution $q(z_j, v_k) = \sum_{n=1}^N p(v_k)p(n|v_k)q(z_j|n)$.



Ideally, one axis for each factor.

Evaluating Disentanglement

Suppose we have some ground truth factors $\{v_k\}_{k=1}^K$. We can define a joint distribution $q(z_j, v_k) = \sum_{n=1}^N p(v_k)p(n|v_k)q(z_j|n)$.



One Factor == One Dimension

Mutual Information Gap (MIG): $\frac{1}{K} \sum_{k=1}^{K} \frac{1}{H(v_k)} \left(I(z_{j^{(k)}}; v_k) - \max_{j \neq j^{(k)}} I(z_j; v_k) \right)$

where $j^{(k)} = \arg \max_{j} I(z_j; v_k)$

Datasets Used for Quantitative Experiments

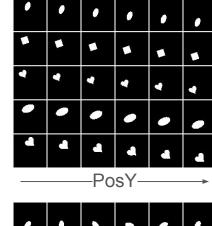
3D Faces:

- Azimuth

- Elevation

Paysan et al. (2009)

- Lighting



 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·

Orientation-

Matthey et al. (2017)

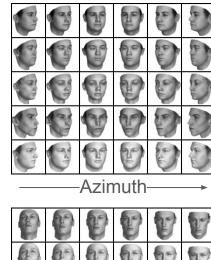
dSprites:

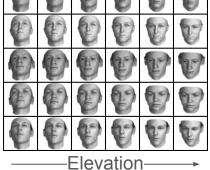
- Orientation

- Scale

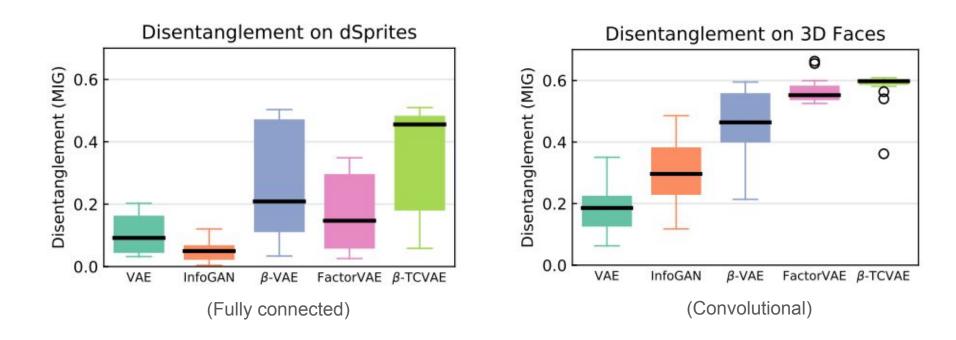
- PosX

- PosY





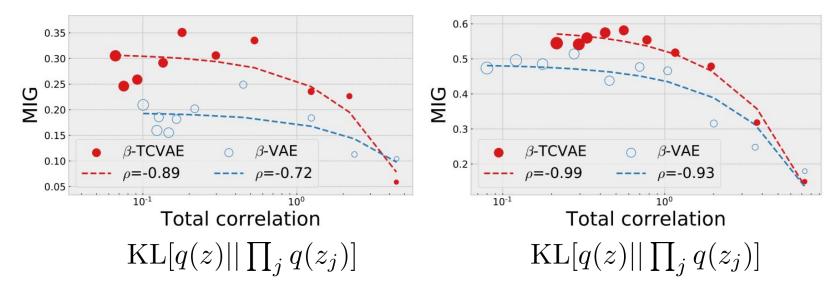
Penalizing Only Total Correlation Works Better



How is Independence related to Disentanglement?

Empirically, they seem to be correlated in both beta-VAE and TCVAE.

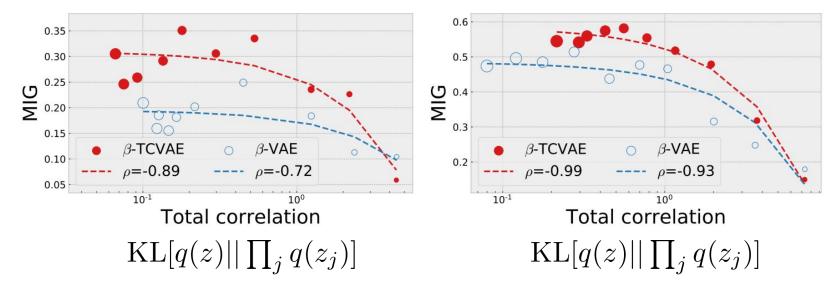
Slightly stronger correlation using TCVAE.



How is Independence related to Disentanglement?

Empirically, they seem to be correlated in both beta-VAE and TCVAE.

Slightly stronger correlation using TCVAE.

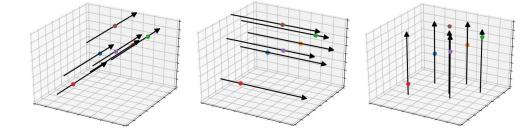


Hyvärinen & Oja. "Independent component analysis: algorithms and applications." (2000)

Bangs

Azimuth

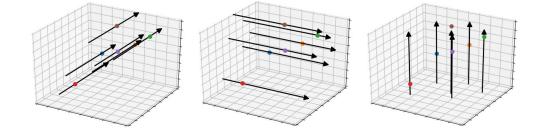
Glasses



Smile

Shadow

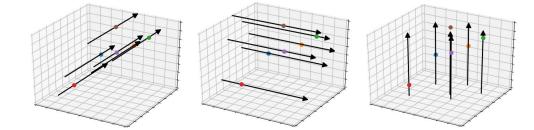
Gender



Skin Color

Brightness

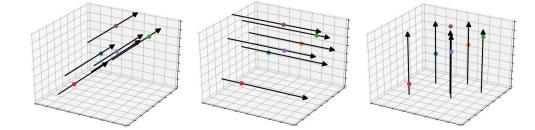
Contrast



Baldness

Face Width

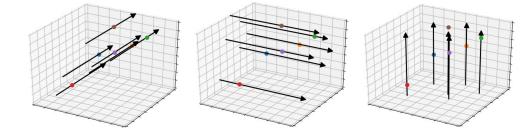
Eye shadow



Hue

Smoldering Look

Mustache



Future Directions

- Specific inductive biases for recovering specific factors.
- Better stochastic estimators of information theoretic quantities.
- Generalized notions of disentanglement.

Future Directions

- Specific inductive biases for recovering specific factors.
- Better stochastic estimators of information theoretic quantities.
- Generalized notions of disentanglement.

You may also be interested in...

- Kim & Mnih. "Disentangling by Factorising."
- CP Burgess et al. "Understanding disentangling in beta-VAE".
- Eastwood and Williams. "A Framework for the Quantitative Evaluation of Disentangled Representations."
- Mathieu et al. "Disentangling Disentanglement."
- Locatello et al. "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations."

Collaborators

You may also be interested in...

- Kim & Mnih. "Disentangling by Factorising."
- CP Burgess et al. "Understanding disentangling in beta-VAE".
- Eastwood and Williams. "A Framework for the Quantitative Evaluation of Disentangled Representations."
- Mathieu et al. "Disentangling Disentanglement."
- Locatello et al. "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations."