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Disentanglement = Independence + Semantics

Motivations:
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Downstream Tasks:
- Interpretable Decision 

Making
- Semantic Inpainting

- Controlled Transfer
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How does this affect 
disentanglement?

Regularization in VAEs
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The marginal distribution    .

Index-code MI: Hoffman & Johnson “ELBO Surgery.” (2016)
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Define joint distribution      where    .

We should amplify the independence regularization in isolation!

The marginal distribution    .

The beta-VAE (Higgins et al., 2017) penalizes all three terms evenly.

Isolating Different Forms of Regularization
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- Evaluating        requires the full dataset.
- Stochastic estimate       based on a minibatch?

- Randomly chosen n will give q(z|n) close to zero.

- We can reuse the same minibatch.

- Better minibatch estimators since our work: 
- Esmaeili et al. “Structured Disentangled Representations.”



Pseudo-code

Isolating Different Forms of Regularization & TCVAE



Pseudo-code

Isolating Different Forms of Regularization & TCVAE



The case                   results in an equivalent objective to FactorVAE (Kim & Mnih. 
2017.), though they use a discriminator to estimate KL.

Pseudo-code

Isolating Different Forms of Regularization & TCVAE



Evaluating Disentanglement
Suppose we have some ground truth factors             .
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We can define a joint distribution                                                .

Ideally, one axis for each factor.
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Suppose we have some ground truth factors             .

We can define a joint distribution                                                .

Mutual Information Gap (MIG):

where

    One Factor == One Dimension

Evaluating Disentanglement



Datasets Used for Quantitative Experiments

PosY

Orientation

Azimuth

Elevation

dSprites:
  - Scale
  - Orientation
  - PosX
  - PosY

3D Faces:
  - Azimuth
  - Elevation
  - Lighting

Matthey et al. (2017) Paysan et al. (2009)



Penalizing Only Total Correlation Works Better

(Fully connected) (Convolutional)



How is Independence related to Disentanglement?
Empirically, they seem to be correlated in both beta-VAE and TCVAE.

Slightly stronger correlation using TCVAE.



Empirically, they seem to be correlated in both beta-VAE and TCVAE.

Slightly stronger correlation using TCVAE.

Hyvärinen & Oja. "Independent component analysis: algorithms and applications." (2000)

How is Independence related to Disentanglement?



Qualitative Results
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Qualitative Results

Hue Smoldering Look Mustache

CelebA: 15 interpretable dimensions.
Extrapolations are 6 standard deviations.



Future Directions

- Specific inductive biases for recovering specific factors.

- Better stochastic estimators of information theoretic quantities.

- Generalized notions of disentanglement.



You may also be interested in…
- Kim & Mnih. “Disentangling by Factorising.”
- CP Burgess et al. “Understanding disentangling in beta-VAE”.
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- Mathieu et al. “Disentangling Disentanglement.”
- Locatello et al. “Challenging Common Assumptions in the Unsupervised Learning of Disentangled 

Representations.”
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