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Object Detection and Localization

@ Solvable using local image models, and supervised learning.

@ Big problem: Pixel-labeled data is scarce and expensive.
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@ Much easier to find images known to contain an object,
without knowing where.
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@ How to train a local image model, using globally-labeled data?
@ An important problem.

@ Seems like it should be possible...
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Multiscale model

Perform segmentation at several scales.

Define a joint object presence model over all scales.

Evidence from global scale can flow downwards to local scale.
Enough evidence should resolve ambiguities.
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Recursive Segmentation




Recursive Segmentation
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How to Build a CRF

_>

@ Need to estimate local object probabilities for each patch, and
combine them.
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Image Segments to Class Probabilities

_)
@ Patch Features: Colour histograms, HoG, textons, location.
@ Each feature vector has 826 dimensions.

@ Could use GIST at top level.
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Class probabilities to CRF

—

@ Local class probabilities become nodes on a Conditional
Random Field

@ CRF has factors enforcing consistency
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Evidence Flow

True Labels Local Evidence

il

Tree Marginals Clamped Marginals

11/17



Semi-supervised Learning

Fully Labeled Globally Labeled

@ Supervised setting: Trained on 400 fully-labeled examples.

@ Semi-Supervised: Trained on an additional 400
globally-labeled examples.

@ Used E-M for learning, Belief Propagation for inference.

@ Learning the local image models, and the CRF joint factors.
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True labels

Independent Pairwise Trees  Noisy-or Trees
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Globally-labeled data improves pixel-level labels!
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Pixel-level Improvement from Semi-Supervised

Which classes benefitted?
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Controlled for better global-level model.
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Combining evidence

@ Could incorporate evidence from other classifiers
@ Could handle noisy labels

@ Could learn from loose bounding boxes
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Conclusion

@ Learning a local image model from globally-labeled data is
possible.

@ All you need is a joint probabilistic model over all scales.

@ Questions?
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