
Black-Box Stochastic Variational Inference
in Five Lines of Python

David Duvenaud
dduvenaud@seas.harvard.edu

Harvard University

Ryan P. Adams
rpa@seas.harvard.edu

Harvard University

Abstract

Several large software engineering projects have been undertaken to support
black-box inference methods. In contrast, we emphasize how easy it is to con-
struct scalable and easy-to-use automatic inference methods using only automatic
differentiation. We present a small function which computes stochastic gradients
of the evidence lower bound for any differentiable posterior. As an example, we
perform stochastic variational inference in a deep Bayesian neural network.

1 Introduction

Automatic variational inference procedures are maturing. Ranganath et al. (2013) showed how to do
black-box stochastic variational inference (BBSVI) in models with continuous parameterizations,
requiring only gradients of the log-posterior. Titsias & Lázaro-Gredilla (2014) applied this method
to large-scale problems by allowing stochasticity due to data subsampling. In this context, ‘black-
box’ means that the only information required about the model is the gradient of its posterior, which
can be computed using automatic differentiation.

This method has great potential to speed up the prototyping and evaluation of statistical mod-
els. However, the most commonly used automatic differentiation packages in machine learning,
Theano (Bastien et al., 2012), Torch (Collobert et al., 2002) and TensorFlow(Abadi et al., 2016) re-
quire learning a new syntax in which to express operations, each acting as a compiler for a restricted
mini-language.

In contrast, the Autograd package provides automatic differentiation for standard Python,
Numpy (Oliphant, 2007) and Scipy (Jones et al., 2001) code. Autograd can handle Python code
containing control flow primitives such as for loops, while loops, recursion, if statements, clo-
sures, classes, list indexing, dictionary indexing, arrays, array slicing and broadcasting.

Using autograd means that both the model and inference method can be specified in a small amount
of pure Python, allowing rapid development, debugging, and simple deployment. It also exposes the
simplicity of inference methods such as BBSVI. A similar approach is possible in C++ using the
automatic differentiation library of Stan (2015).

2 Very short automatic inference code

Below, we give code for doing black-box stochastic variational inference in any differentiable model
whose parameters can be transformed into an unconstrained space.

Autograd’s grad takes in a function, and returns a function computing its gradient. This gradient
function can be fed into any standard stochastic-gradient-based optimizer. In our experiments, we
used Adam (Kingma & Ba, 2014), a variant of RMSprop with momentum.
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def lower_bound(variational_params, logprob_func, D, num_samples):
# variational_params: the mean and covariance of approximate posterior.
# logprob_func: the unnormalized log-probability of the model.
# D: the number of parameters in the model.
# num_samples: the number of Monte Carlo samples to use.

# Unpack mean and covariance of diagonal Gaussian.
mu, cov = variational_params[:D], np.exp(variational_params[D:])

# Sample from multivariate normal using the reparameterization trick.
samples = npr.randn(num_samples, D) * np.sqrt(cov) + mu

# Lower bound is the exact entropy plus a Monte Carlo estimate of energy.
return mvn.entropy(mu, np.diag(cov)) + np.mean(logprob(samples))

# Get gradient with respect to variational params using autograd.
gradient_func = grad(lower_bound)

Figure 1: Black-box stochastic variational inference in five lines of Python, using automatic differen-
tiation. The variational objective gradient can be used with any stochastic-gradient-based optimizer.

3 A simple example

As an example that’s easy to visualize, we used BBSVI to fit a Guassian to a simple 2D target
distribution:

def log_density(x):
# An example unnormalized 2D density
mu, log_sigma = x[:, 0], x[:, 1]
sigma_density = norm.logpdf(log_sigma, 0, 1.35)
mu_density = norm.logpdf(mu, 0, np.exp(log_sigma))
return sigma_density + mu_density

Figure 2: Isocontours of a non-Gaussian target distribution, and contours of the correspond-
ing Gaussian approximate posterior. The full code listing for this figure is available at
github.com/HIPS/autograd/tree/master/examples/black box svi.py
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In this example we use a diagonal Gaussian as the approximating distribution, but it is straightfor-
ward to use a full-covariance parameterization, as in Kucukelbir et al. (2014). This parameterization
would have O(D2) parameters. If the Cholesky factorization is used, both sampling and the entropy
calculation can be computed in O(D2) time.

4 Variational inference in a deep Bayesian neural network

To demonstrate the power of this method, we implement Bayesian inference in an arbitrarily deep
neural network, simply by expressing its forward pass in Numpy:

def make_nn_funs(layer_sizes, L2_reg, noise_variance, nonlinearity=np.tanh):
# These functions implement a standard multi-layer perceptron,
# vectorized over both training examples and weight samples.
shapes = zip(layer_sizes[:-1], layer_sizes[1:])
num_weights = sum((m+1)*n for m, n in shapes)

def unpack_layers(params):
# Convert parameter vector into appropriately-sized weight matrices.
num_param_sets = len(params)
for m, n in shapes:

weights = params[:, :m*n] .reshape((num_param_sets, m, n))
biases = params[:, m*n:m*n+n].reshape((num_param_sets, 1, n))
yield weights, biases
params = params[:, (m+1)*n:]

def predictions(params, inputs):
# weights is shape (num_weight_samples x num_weights)
# inputs is shape (num_datapoints x D)
inputs = np.expand_dims(inputs, 0)
for weights, biases in unpack_layers(params):

# Doubly-vectorized matrix multiplication.
outputs = np.einsum("mnd,mdo->mno", inputs, weights) + biases
inputs = nonlinearity(outputs)

return outputs

def logprob(weights, inputs, targets):
log_prior = -L2_reg * np.sum(weights**2, axis=1)
preds = predictions(weights, inputs)
log_lik = -np.sum((preds - targets)**2, axis=1)[:, 0] / noise_variance
return log_prior + log_lik

return num_weights, predictions, logprob

# Specify inference problem by its unnormalized log-posterior.
rbf = lambda x: norm.pdf(x, 0, 1)
num_weights, predictions, logprob = \

make_nn_funs(layer_sizes=[1, 10, 10, 1], L2_reg=0.01,
noise_variance = 0.01, nonlinearity=rbf)

inputs, targets = build_toy_dataset()
log_posterior = lambda weights, t: logprob(weights, inputs, targets)

In this example, einsum is used to do the matrix multiplication in a way that vectorizes both over
datapoints and weight samples. This avoids a separate evaluation of the neural network for every
weight sample. This example re-creates some of the work of Blundell et al. (2015) automatically.

5 Source Code

Autograd’s source code and documentation is available at github.com/HIPS/autograd.
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Figure 3: Draws from the variational posterior on a two-layer Bayesian neural network
model trained using BBSVI. Blue crosses denote data, and colored lines show individ-
ual functions draw from the posterior. The full code listing for this demo is available at
github.com/HIPS/autograd/tree/master/examples/bayesian neural net.py
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