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Outline

• Basics 
• Probability rules 
• Exponential family models 
• Maximum likelihood 
• Conjugate Bayesian inference (time 

permitting)



Why Represent Uncertainty?

• The world is full of uncertainty 
– “What will the weather be like today?” 
– “Will I like this movie?” 
– “Is there a person in this image?” 

• We’re trying to build systems that understand 
and (possibly) interact with the real world 

• We often can’t prove something is true, but 
we can still ask how likely different outcomes 
are or ask for the most likely explanation 

• Sometimes probability gives a concise 
description of an otherwise complex 
phenomenon.



Why Use Probability to Represent 
Uncertainty?

• Write down simple, reasonable criteria 
that you'd want from a system of 
uncertainty (common sense stuff), and 
you always get probability. 

• Cox Axioms (Cox 1946); See Bishop, 
Section 1.2.3 

• We will restrict ourselves to a relatively 
informal discussion of probability theory.



Notation
• A random variable X represents outcomes or 

states of the world.  
• We will write p(x) to mean Probability(X = x)  
• Sample space: the space of all possible 

outcomes (may be discrete, continuous, or 
mixed) 

• p(x) is the probability mass (density) 
function 
– Assigns a number to each point in sample space 
– Non-negative, sums (integrates) to 1 
– Intuitively: how often does x occur, how much do 

we believe in x. 



Joint Probability Distribution
• Prob(X=x, Y=y) 
– “Probability of X=x and Y=y”  
– p(x, y) 

Conditional Probability 
Distribution

• Prob(X=x|Y=y) 
– “Probability of X=x given Y=y”  
– p(x|y) = p(x,y)/p(y) 



The Rules of Probability

• Sum Rule (marginalization/summing out): 

• Product/Chain Rule:
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Bayes’ Rule

• One of the most important formulas in 
probability theory 

• This gives us a way of “reversing” 
conditional probabilities
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Independence

• Two random variables are said to be 
independent iff their joint distribution 
factors 

• Two random variables are conditionally 
independent given a third if they are 
independent after conditioning on the 
third
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Continuous Random Variables
• Outcomes are real values.  Probability 

density functions define distributions. 
– E.g., 
  
  

• Continuous joint distributions: replace 
sums with integrals, and everything holds 
– E.g., Marginalization and conditional 

probability
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Summarizing Probability Distributions

• It is often useful to give summaries of 
distributions without defining the whole 
distribution (E.g., mean and variance) 

• Mean: 
  
• Variance:
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Summarizing Probability Distributions

• It is often useful to give summaries of 
distributions without defining the whole 
distribution (E.g., mean and variance) 

• Mean: 
  
• Variance:
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Exponential Family

• Family of probability distributions 
• Many of the standard distributions belong 

to this family  
– Bernoulli, Binomial/Multinomial, Poisson, 

Normal (Gaussian), Beta/Dirichlet,… 

• Share many important properties 
– e.g. They have a conjugate prior (we’ll get to 

that later. Important for Bayesian statistics)



Definition
• The exponential family of distributions over x, 

given parameter η (eta) is the set of distributions 
of the form 

• x-scalar/vector, discrete/continuous 
• η – ‘natural parameters’ 
• u(x) – some function of x (sufficient statistic) 
• g(η) – normalizer 

• h(x) – base measure (often constant)
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Sufficient Statistics

• Vague definition: called so because they 
completely summarize a distribution. 

• Less vague: they are the only part of the 
distribution that interacts with the 
parameters and are therefore sufficient to 
estimate the parameters.



Example 1: Bernoulli

• Binary random variable -  
• p(heads) = µ 
• Coin toss
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Example 1: Bernoulli
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Example 2: Multinomial
• p(value k) = µk 

• For a single observation – die toss 
– Sometimes called Categorical 

• For multiple observations  
– integer counts on N trials 
– Prob(1 came out 3 times, 2 came out once,…,

6 came out 7 times if I tossed a die 20 times)
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Example 2: Multinomial (1 
observation)

}lnexp{
1
∑
=

=
M

k
kkx µ

xx
x
=

=

)(
1)(

u
h

)}(exp{)()()|( xugxhxp Tηηη =

∏
=

=
M

k

x
kM
kxxP

1
1 )|,...,( µµ

)exp()|( xx Tp ηη =

Parameters are not independent 
due to constraint of summing to 
1, there’s a slightly more 
involved notation to address 
that, see Bishop 2.4



Example 3: Normal (Gaussian) 
Distribution

• Gaussian (Normal)
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Example 3: Normal (Gaussian) 
Distribution

• µ is the mean 
• σ2 is the variance 
• Can verify these by computing integrals.  

E.g.,
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Example 3: Normal (Gaussian) 
Distribution

• Multivariate Gaussian
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Example 3: Normal (Gaussian) 
Distribution

• Multivariate Gaussian 

• x is now a vector 
• µ is the mean vector 
• Σ is the covariance matrix
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Important Properties of Gaussians

• All marginals of a Gaussian are again 
Gaussian 

• Any conditional of a Gaussian is Gaussian 
• The product of two Gaussians is again 

Gaussian 
• Even the sum of two independent Gaussian 

RVs is a Gaussian. 
• Beyond the scope of this tutorial, but very 

important: marginalization and conditioning 
rules for multivariate Gaussians.



Gaussian marginalization visualization



Exponential Family Representation
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Example: Maximum Likelihood For a 1D 
Gaussian

• Suppose we are given a data set of 
samples of a Gaussian random variable X, 
D={x1,…, xN} and told that the variance of 
the data is σ2 

What is our best guess of µ?  
*Need to assume data is independent and 

identically distributed (i.i.d.)

x1 x2 xN…



Example: Maximum Likelihood For a 1D 
Gaussian

What is our best guess of µ?  
• We can write down the likelihood function: 

• We want to choose the µ that maximizes 
this expression 
– Take log, then basic calculus: differentiate 

w.r.t. µ, set derivative to 0, solve for µ to get 
sample mean
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Example: Maximum Likelihood For a 1D 
Gaussian

x1 x2 xN…µML

σML

Maximum Likelihood



ML estimation of model parameters for 
Exponential Family

p(D |η) = p(x1,..., xN ) = h(xn)∏( )g(η)N exp{ηT u(xn
n
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• Can in principle be solved to get estimate for eta.  
• The solution for the ML estimator depends on the data only through 
sum    
over u,  which is therefore called sufficient statistic 
• What we need to store in order to estimate parameters. 



•             is the likelihood function 
•         is the prior probability of (or our prior 

belief over) θ 
– our beliefs over what models are likely or not 

before seeing any data 
•                                   is the        

normalization constant or partition function 

•            is the posterior distribution 
– Readjustment of our prior beliefs in the face of 

data

Bayesian Probabilities
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Example: Bayesian Inference For a 1D 
Gaussian

• Suppose we have a prior belief that the 
mean of some random variable X is µ0 and 
the variance of our belief is σ0

2 

• We are then given a data set of samples of 
X, d={x1,…, xN} and somehow know that 
the variance of the data is σ2 

What is the posterior distribution over (our 
belief about the value of) µ? 



Example: Bayesian Inference For a 1D 
Gaussian

x1 x2 xN…



Example: Bayesian Inference For a 1D 
Gaussian

x1 x2 xN… µ0

σ0

Prior belief



Example: Bayesian Inference For a 1D 
Gaussian

• Remember from earlier 
•            is the likelihood function 

•        is the prior probability of (or our prior 
belief over) µ
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Example: Bayesian Inference For a 1D 
Gaussian
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Example: Bayesian Inference For a 1D 
Gaussian

x1 x2 xN… µ0

σ0

Prior belief



Example: Bayesian Inference For a 1D 
Gaussian

x1 x2 xN… µ0

σ0

Prior belief
µML

σML

Maximum Likelihood



Example: Bayesian Inference For a 1D 
Gaussian

x1 x2 xNµN

σN

Prior belief
Maximum Likelihood

Posterior Distribution



Conjugate Priors
• Notice in the Gaussian parameter estimation 

example that the functional form of the 
posterior was that of the prior (Gaussian) 

• Priors that lead to that form are called 
‘conjugate priors’ 

• For any member of the exponential family there 
exists a conjugate prior that can be written like 

• Multiply by likelihood to obtain posterior (up to 
normalization) of the form  

• Notice the addition to the sufficient statistic 
• ν is the effective number of pseudo-

observations.
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Conjugate Priors - Examples

• Beta for Bernoulli/binomial 
• Dirichlet for categorical/multinomial 
• Normal for Normal


