
CSC	412/2506				Spring	2017	
Probabilis7c	Graphical	Models	

	
Lecture	2:	Genera7ve	Classifiers	

	

	
Slides	based	on	Rich	Zemel’s	

	
All	lecture	slides	will	be	available	on	the	course	website:	

www.cs.toronto.edu/~duvenaud/courses/CS412	
	

Some	of	the	Aigures	are	provided	by	Kevin	Murphy	
from	his	book:	”Machine	Learning:	A	Probabilistic	Perspective”	

	
	
	

Basic	Sta7s7cal	Problems	
•  Basic	problems:	density	est.,	clustering,	classiAication,	regression.		
•  Can	always	do	joint	density	estimation	and	then	condition:		

–  Regression:		
–  ClassiAication:		
–  Clustering:		 	 	 														c		unobserved	 		

–  Density	estimation:	 	 	 																	y		unobserved		
In	general,	if	certain	things	are	
always	observed	we	may	not	
want	to	model	their	density:		

If	certain	things	are	always	
unobserved	they	are	called	hidden	
or	latent	variables	(more	later):	
	

p(y|x) = p(y,x)/p(x) = p(y,x)/

Z
p(y,x)dy

p(c|x) = p(c,x)/p(x) = p(c,x)/
X

c

p(c,x)

p(c|x) = p(c,x)/p(x)

p(y|x) = p(y,x)/p(x)

Fundamental	Opera7ons	

•  What	can	we	do	with	a	probabilistic	graphical	model?		
•  Generate	data.	
For	this	you	need	to	know	how	to	sample	from	local	models	
(directed)	or	how	to	do	Gibbs	or	other	sampling	(undirected)		

•  Compute	probabilities.	
When	all	nodes	are	either	observed	or	marginalized	the	result	
is	a	single	number	which	is	the	prob.	of	the	conAiguration.		

•  Inference.	
Compute	expectations	of	some	things	given	others	which	are	
observed	or	marginalized.		

•  Learning.	(today)	
Set	the	parameters	of	the	local	functions	given	some	
(partially)	observed	data	to	maximize	the	probability	of	seeing	
that	data		

Learning	Graphical	Models	from	Data	

•  Want	to	build	prediction	systems	automatically	based	on	data,	
and	as	little	as	possible	on	expert	information	

•  In	this	course,	we’ll	use	probability	to	combine	evidence	from	
data	and	make	predictions	

•  We’ll	use	graphical	models	as	a	visual	shorthand	language	to	
express	and	reason	about	families	of	model	assumptions,	
structures,	dependencies	and	information	Alow,	without	
specifying	exact	distributional	forms	or	parameters			

•  In	this	case	learning	≡	setting	parameters	of	distributions	
given	a	model	structure.	
(“Structure	learning”	is	also	possible	but	we	won’t	consider	it	
now.)		

Mul7ple	Observa7ons,	Complete	IID	Data	
•  A	single	observation	of	the	data	X	is	rarely	useful	on	its	own.		
•  Generally	we	have	data	including	many	observations,	which	
creates	a	set	of	random	variables:		

•  We	will	sometimes	assume	two	things:		
1.  Observations	are	independently	and	identically	distributed	

according	to	joint	distribution	of	graphical	model:	i.i.d.	
samples.		

2.  We	observe	all	random	variables	in	the	domain	on	each	
observation:	complete	data,	or	fully	observed	model.	

•  We	shade	the	nodes	in	a	graphical	model	to	indicate	they	are	
observed.	(Later	we	will	work	with	unshaded	nodes	
corresponding	to	missing	data	or	latent	variables.)		

D = {x(1),x(2), ...,x(M)}

Likelihood	Func7on	
•  So	far	we	have	focused	on	the	(log)	probability	function	p(x|θ)	
which	assigns	a	probability	(density)	to	any	joint	conAiguration	
of	variables	x	given	Aixed	parameters	θ	

•  But	in	learning	we	turn	this	on	its	head:	we	have	some	Aixed	
data	and	we	want	to	Aind	parameters	

•  Think	of	p(x|θ)	as	a	function	of	θ	for	Aixed	x:		
	

	This	function	is	called	the	(log)	“likelihood”.		
•  Choose	θ	to	maximize	some	cost	or	loss	function	L(θ)	which	
includes										:	

	 	 	maximum	likelihood	(ML)		
	 	 								maximum	a	posteriori	(MAP)/penalized	ML	

(also	cross-validation,	Bayesian	estimators,	BIC,	AIC,	...)		

`(✓;x) = log p(x|✓)

`(✓)
L(✓) = `(✓;D)
L(✓) = `(✓;D) + r(✓)

Maximum	Likelihood	
•  For	IID	data,	the	log	likelihood	is	a	sum	of	identical	functions		

•  Idea	of	maximum	likelihood	estimation	(MLE):	pick	the	setting	
of	parameters	most	likely	to	have	generated	the	data	we	saw:		

•  Very	commonly	used	in	statistics.		
•  Often	leads	to	“intuitive”,	“appealing”,	or	“natural”	estimators.	
•  For	a	start,	the	IID	assumption	makes	the	log	likelihood	into	a	
sum,	so	its	derivative	can	be	easily	taken	term	by	term.		

		

p(D|✓) =
Y

m

p(x(m)|✓)

`(✓;D) =

X

m

log p(x(m)|✓)

✓⇤ML = argmax

✓
`(✓;D)

Sufficient	Sta7s7cs	
•  A	statistic	is	a	(possibly	vector	valued)	deterministic	function	
of	a	(set	of)	random	variable(s).	

•  T(X)	is	a	“sufAicient	statistic”	for	X	if		

•  Equivalently	(by	the	Neyman	factorization	theorem)	we	can	
write:		

•  Example:	exponential	family	models:		

p(x|✓) = h(x, T (x))g(T (x), ✓)

T (x(1)) = T (x(2))) L(✓;x(1)) = L(✓;x(2)) 8✓

p(x|⌘) = h(x) exp{⌘TT (x)�A(⌘)}

Example:	Bernoulli	Trials	
•  We	observe	M	iid	coin	Alips	
•  Model:			p(H)=θ			p(T)=(1−θ)	
•  Likelihood:		

•  Take	derivatives	and	set	to	zero:	

`(✓;D) = log p(D|✓)

= log

Y

m

✓x
(m)

(1� ✓)1�x

(m)

= log ✓
X

m

x

(m)
+ log(1� ✓)

X

m

(1� x

(m)
)

= log ✓NH + log(1� ✓)NT

) ✓⇤ML =
NH

NH +NT

@`

@✓
=

NH

✓
� NT

1� ✓

D = H,H, T,H, ...

Example:	Mul7nomial	
•  We	observe	M	iid	die	rolls	(K-sided):		
•  Model:		

•  Likelihood	(for	binary	indicators	[x(m)	=	k]):		

•  Take	derivatives	and	set	to	zero	(enforcing):	

`(✓;D) = log p(D|✓)

D = 3, 1,K, 2, ...
p(k) = ✓k

X

k

✓k = 1

= log

Y

m

✓[x
(m)=k]

1 ...✓[x
(m)=k]

k

=

X

k

log ✓k
X

m

[x

(m)
= k] =

X

k

Nk log ✓k

@`

@✓k
=

Nk

✓k
�M

) ✓⇤k =
Nk

M

X

k

✓k = 1

Example:	Univariate	Normal	
•  We	observe	M	iid	real	samples:		
•  Model:		

•  Likelihood	(using	probability	density):		

	

•  Take	derivatives	and	set	to	zero	:	

`(✓;D) = log p(D|✓)

p(x) = (2⇡�

2
)

�1/2
exp{�(x� µ)

2
/2�

2}

= �M

2

log(2⇡�

2
)� 1

2

X

m

(x� µ)

2

�

2

@`

@�

2
= � M

2�2
+

1

2�4

X

m

(xm � µ)2
@`

@µ

=
1

�

2

X

m

(xm � µ)

) µML = (1/M)
X

m

xm) �

2
ML = (1/M)

X

m

x

2
m � µ

2
ML

D = 1.18,�.25, .78, ...

Example:	Linear	Regression	
•  At	a	linear	regression	node,	some	parents	(covariates/inputs)	
and	all	children	(responses/outputs)	are	continuous	valued	
variables.		

•  For	each	child	and	setting	of		parents	we	use	the	model:		

•  The	likelihood	is	the	familiar	“squared	error”	cost:		

•  The	ML	parameters	can	be	solved	for	using	linear	least-
squares:		

•  SufAicient	statistics	are	input	correlation	matrix	and	input-
output	cross-correlation	vector.		

p(y|x, ✓) = gauss(y|✓Tx,�2)

) ✓⇤ML = (XTX)�1XTY

@`

@✓
= �

X

m

(y(m) � ✓Tx(m))x(m)

`(✓;D) = � 1

2�2

X

m

(y(m) � ✓Tx(m))2

Example:	Linear	Regression	

Sufficient	Sta7s7cs	are	Sums	

•  In	the	examples	above,	the	sufAicient	
statistics	were	merely	sums	
(counts)	of	the	data:		
–  Bernoulli:	#	of	heads,	tails		
–  Multinomial:	#	of	each	type		
–  Gaussian:	mean,	mean-square		
–  Regression:	correlations		

•  As	we	will	see,	this	is	true	for	all	
exponential	family	models:	
sufAicient	statistics	are	the	average	
natural	parameters.		

•  Only	exponential	family	models	
have	simple	sufAicient	statistics.		

MLE	for	Directed	GMs	
•  For	a	directed	GM,	the	likelihood	
function	has	a	nice	form:	

•  The	parameters	decouple;	so	we	can	
maximize	likelihood	independently	
for	each	node’s	function	by	setting	θi	

•  Only	need	the	values	of	xi	and	its	
parents	in	order	to	estimate	θi	

•  Furthermore,	if																have	
sufAicient	statistics	only	need	those.	

•  In	general,	for	fully	observed	data	if	
we	know	how	to	estimate	params	at	a	
single	node	we	can	do	it	for	the	whole	
network.		

log p(D|✓) = log

Y

m

Y

i

p(x(m)
i |x⇡i , ✓i) =

X

m

X

i

log p(x(m)
i |x⇡i , ✓i)

xi,x⇡i

Example:	A	Directed	Model	
•  Consider	the	distribution	deAined	by	
the	DAGM:	
	

•  This	is	exactly	like	learning	four	
separate	small	DAGMs,	each	of	which	
consists	of	a	node	and	its	parents	

p(x|✓) = p(x1|✓1)p(x2|x1, ✓2)p(x3|x1, ✓3)p(x4|x2,x3, ✓4)

MLE	for	Categorical	Networks	
•  Assume	our	DAGM	contains	only	discrete	nodes,	and	we	use	the	
(general)	categorical	form	for	the	conditional	probabilities.		

•  SufAicient	statistics	involve	counts	of	joint	settings	of												
summing	over	all	other	variables	in	the	table.		

•  Likelihood	for	these	special	“fully	observed	categorical	networks”:		

xi,x⇡i

`(⌘;D) = log

Y

m,i

p(x(m)
i |x(m)

⇡i
, ✓i)

= log

Y

i,xi,x⇡i

p(xi|x⇡i , ✓i)
N(xi,x⇡i)

= log

Y

i,xi,x⇡i

✓
N(xi,x⇡i)

xi|x⇡i

=

X

i

X

xi,x⇡i

N(xi,x⇡i) log ✓xi|x⇡i

) ✓⇤
xi|x⇡i

=
N(xi,x⇡i)

N(x⇡i)

MLE	for	General	Exponen7al	Family	Models	
•  Recall	the	probability	function	for	models	in	the	exponential	family:		

•  For	i.i.d.	data,	the	sufAicient	statistic	vector	is	︎	

•  Take	derivatives	and	set	to	zero:	
	

					recalling	that	the	natural	moments	of	an	exponential	distribution	are												
	the	derivatives	of	the	log	normalizer.		

`(⌘;D) = log p(D|⌘) =

X

m

log h(x(m)
)

!
�MA(⌘) +

⌘T
X

m

T (x(m)

!

@`

@⌘
=

X

m

T (x(m))�M
@A(⌘)

@⌘

⌘ML = 1/M
X

m

T (x(m))

p(x|✓) = h(x) exp{⌘TT (x)�A(⌘)}

) @A(⌘)

@⌘
= 1/M

X

m

T (x(m))

Classifica7on,	Revisited	
•  Given	examples	of	a	discrete	class	label	y	and	some	features	x.		
•  Goal:	compute	label	(y)	for	new	inputs	x.		
•  Two	approaches:	
Generative:	model					p(x,	y)	=	p(y)p(x|y);	
							use	Bayes’	rule	to	infer	conditional	p(y|x).	
Discriminative:	model	discriminants	f(y|x)	directly	and	take	max.		

•  Generative	approach	is	related	to	conditional	density	estimation	
while	discriminative	is	closer	to	regression	

	

Probabilis7c	Classifica7on:	Bayes	Classifier	
•  Generative	model:				p(x,	y)	=	p(y)p(x|y)	
						p(y)	are	called	class	priors	(relative	frequencies).	
						p(x|y)	are	called	class-conditional	feature	distributions	

•  For	the	class	frequency	prior	we	use	a	Bernoulli	or	categorical:	
	
	
•  Fitting	by	maximum	likelihood:	

–  Sort	data	into	batches	by	class	label	
–  Estimate	p(y)	by	counting	size	of	batches	(plus	regularization)	
–  Estimate	p(x|y)	separately	within	each	batch	using	ML	(also	
with	regularization)	

•  Two	classiAication	rules	(if	forced	to	choose):	
–  ML:						argmaxy	p(x|y)									(can	behave	badly	if	skewed	frequencies)	
–  MAP:			argmaxy	p(y|x)	=		argmaxy		log	p(x|y)	+	log	p(y)					(safer)	

							

p(y = k|⇡) = ⇡k

X

k

⇡k = 1

Three	Key	Regulariza7on	Ideas	
To	avoid	overAitting,	we	can:	
•  put	priors	on	the	parameters.		Maximum	likelihood	+	priors	=	
maximum	a	posteriori	(MAP).		Simple	and	fast.		Not	Bayesian.	

•  Integrate	over	all	possible	parameters.		Also	requires	priors,	but	
protects	against	overAitting	for	totally	different	reasons.	

•  Make	factorization	or	independence	assumptions.		Fewer	inputs	
to	each	conditional	probability.	Ties	parameters	together	so	that	
fewer	of	them	are	estimated.	

Gaussian	Class-Condi7onal	Distribu7on	

•  If	all	features	are	continuous,	a	popular	choice	is	a	Gaussian	
class-conditional.		

•  Fitting:	use	the	following	amazing	and	useful	fact.	
The	maximum	likelihood	Kit	of	a	Gaussian	to	some	data	is	the	
Gaussian	whose	mean	is	equal	to	the	data	mean	and	whose	
covariance	is	equal	to	the	sample	covariance.	
[Try	to	prove	this	as	an	exercise	in	understanding	likelihood,	algebra,	and	calculus	all	
at	once!]		

•  Seems	easy.	And	works	amazingly	well.	
But	we	can	do	even	better	with	some	simple	regularization...		

p(x|y = k, ✓) = |2⇡⌃|�1/2
exp{�1

2

(x� µk)⌃
�1

(x� µk)}

Regularized	Gaussians	
•  Idea	1:	assume	all	the	covariances	are	the	same	(tie	parameters).	
This	is	exactly	Fisher’s	linear	discriminant	analysis.		

•  Idea	2:	Make	independence	assumptions	to	get	diagonal	or	
identity-multiple	covariances.	(Or	sparse	inverse	covariances.)	
More	on	this	in	a	few	minutes...		

•  Idea	3:	add	a	bit	of	the	identity	matrix	to	each	sample	covariance.	
This	“fattens	it	up”	in	all	directions	and	prevents	collapse.	
Related	to	using	a	Wishart	prior	on	the	covariance	matrix.		

Gaussian	Bayes	Classifier	
•  Maximum	likelihood	estimates	for	parameters:	
priors	πk:	use	observed	frequencies	of	classes	(plus	smoothing)	
means	μk:	use	class	means	
covariance	Σ:	use	data	from	single	class	or	pooled	data	
																													to	estimate	full/diagonal	covariances		

•  Compute	the	posterior	via	Bayes’	rule:	

								where	 	 	 	 	 	and	we	have	augmented	x	
with	a	constant	component	always	equal	to	1	(bias	term).	

=

exp{µT
k⌃

�1
x� µT

k⌃
�1µk/2 + log ⇡k}P

j exp{µT
j ⌃

�1
x� µT

j ⌃
�1µj/2 + log ⇡j}

= e�
T
k x/

X

j

e�
T
j x

= exp{�T
k x}/Z

�k = [⌃

�1µk; (µ
T
k⌃

�1µk + log ⇡k]

(x(m) � µy(m))

p(y = k|x, ✓) = p(x|y = k, ✓)p(y = k|⇡)P
j p(x|y = j, ✓)p(y = j|⇡)

SoZmax/Logit	
•  The	squashing	function	is	known	as	the	softmax	or	logit:		

	
•  It	is	invertible	(up	to	a	constant):		
	
•  Derivative	is	easy:	
	

�k(z) ⌘
ezkP
j e

zj
g(⌘) =

1

1 + e�⌘

zk = log �k + c ⌘ = log(g/1� g)

@�k

@zj
= �k(�kj � �j)

@g

@⌘
= g(1� g)

Linear	Geometry	
•  Taking	the	ratio	of	any	two	posteriors	(the	“odds”)	shows	that	
the	contours	of	equal	pairwise	probability	are	linear	surfaces	in	
the	feature	space:		

•  The	pairwise	discrimination	contours	p(yk)	=	p(yj)	are	
orthogonal	to	the	differences	of	the	means	in	feature	space	
when	Σ	=	σI.	For	general	Σ	shared	b/w	all	classes	the	same	is	
true	in	the	transformed	feature	space	t	=	Σ−1x.		

•  Class	priors	do	not	change	the	geometry,	they	only	shift	the	
operating	point	on	the	logit	by	the	log-odds:	log(πk/πj).		

•  Thus,	for	equal	class-covariances,	we	obtain	a	linear	classiKier.		
•  If	we	use	different	covariances,	the	decision	surfaces	are	conic	
sections	and	we	have	a	quadratic	classiAier.		

p(y = k|x, ✓)
p(y = j|x, ✓) = exp{(�k � �j)

T
x}

Exponen7al	Family	Class-Condi7onals	
•  Bayes	ClassiAier	has	the	same	softmax	form	whenever	the	class-
conditional	densities	are	any	exponential	family	density:		

•  Where																																						and	we	have	augmented	x	with	a	
constant	component	always	equal	to	1	(bias	term)	

•  Resulting	classiAier	is	linear	in	the	sufAicient	statistics	

p(x|y = k, ⌘k) = h(x) exp{⌘Tk x� a(⌘k)}

p(y = k|x, ⌘) = p(x|y = k, ⌘k)p(y = k|⇡)
p(x|y = j, ⌘j)p(y = j|⇡)

=

exp{⌘Tk x� a(⌘k)}P
j exp{⌘Tj x� a(⌘j)}

=
e�

T
k x

P
j e

�T
k x

�k = [⌘k;�a(⌘k)]

Discrete	Bayesian	Classifier	
•  If	the	inputs	are	discrete	(categorical),	what	should	we	do?		
•  The	simplest	class	conditional	model	is	a	joint	multinomial	
(table):		

•  This	is	conceptually	correct,	but	there’s	a	big	practical	problem.		
•  Fitting:	ML	params	are	observed	counts:	
	

•  Consider	the	16x16	digits	at	256	gray	levels	
•  How	many	entries	in	the	table?	How	many	will	be	zero?	What	
happens	at	test	time?		

•  We	obviously	need	some	regularization.	
Smoothing	will	not	help	much	here.	Unless	we	know	about	the	
relationships	between	inputs	beforehand,	sharing	parameters	
is	hard	also.	But	what	about	independence?		

p(x1 = a, x2 = b, ...|y = c) = ⌘

c
ab...

⌘

c
ab... =

P
n[y

(n) = c][x1 = a][x2 = b][...][...]P
n[y

(n) = c]

Naïve	Bayes	Classifier	

•  Assumption:	conditioned	on	class,	attributes	are	independent.		

•  Sounds	crazy	right?	Right!	But	it	works.	
•  Algorithm:	sort	data	cases	into	bins	according	to	yn	
•  Compute	marginal	probabilities	p(y	=	c)	using	frequencies	
•  For	each	class,	estimate	distribution	of	ith	variable:	p(xi|y	=	c).	
•  At	test	time,	compute	argmaxc	p(c|x)	using		

c(x) = argmax

c
p(c|x) = argmax

c
[log p(x|c) + log p(c)]

= argmax

c
[log p(c) +

X

i

log p(xi|c)]

p(x|y) =
Y

i

p(xi|y)

Discrete	(Categorical)	Naïve	Bayes	

•  Discrete	features	xi	assumed	independent	given	class	label	y	

•  ClassiAication	rule:	

p(xi = j|y = k) = ⌘ijk

p(x|y = k, ⌘) =
Y

i

Y

j

⌘[xi=j]
ijk

p(y = k|x, ⌘) =
⇡
k

Q
i

Q
j

⌘[xi=j]
ijk

P
q

⇡
q

Q
i

Q
j

⌘[xi=j]
ijq

=
e�

T
k x

P
q e

�T
q x

�k = log[⌘11k...⌘1jk...⌘ijk... log ⇡k]

x = [x1 = 1;x2 = 2; ...xi = j; ...; 1]

Fi^ng	Discrete	Naïve	Bayes	

•  ML	parameters	are	class-conditional	frequency	counts:		

•  How	do	we	know?	Write	down	the	likelihood:		

•  and	optimize	it	by	setting	its	derivative	to	zero	
(careful!	enforce	normalization	with	Lagrange	multipliers):		

	

⌘

⇤
ijk =

P
m[x(m)

i = j][y(m) = k]P
m[y(m) = k]

`(⌘;D) =

X

m

log p(y

(m)|⇡) +
X

m,i

log p(x

(m)
i |y(m)

, ⌘)

`(⌘;D) =

X

m

X

ijk

[x

(m)
i = j][y

(m)
= k] log ⌘ijk +

X

ik

�ik(1�
X

j

⌘ijk)

@`

@⌘ijk
=

P
m[x(m)

i = j][y(m) = k]

⌘ijk
� �ik

@`

@⌘ijk
= 0) �ik =

X

m

[y(m)
= k]) ⌘⇤ijk = above

Gaussian	Naïve	Bayes	

•  This	is	just	a	Gaussian	Bayes	ClassiAier	with	a	separate	diagonal	
covariance	matrix	for	each	class.		

•  Equivalent	to	Aitting	a	one-dimensional	Gaussian	to	each	input	
for	each	possible	class.		

•  Decision	surfaces	are	quadratics,	not	linear...		

Discrimina7ve	Models	
•  Parametrize	p(y|x)	directly,	forget	p(x,	y)	and	Bayes’	rule.		
•  As	long	as	p(y|x)	or	discriminants	f(y|x)	are	linear	functions	of	
x	(or	monotone	transforms),	decision	surfaces	will	be	
piecewise	linear.		

•  Don’t	need	to	model	the	density	of	the	features.	Some	density	
models	have	lots	of	parameters.	Many	densities	give	same	
linear	classiAier.	
But	we	cannot	generate	new	labeled	data.		

•  Optimize	the	same	cost	function	we	use	at	test	time.		

Logis7c/SoZmax	Regression	
•  Model:	y	is	a	multinomial	random	variable	whose	posterior	is	
the	softmax	of	linear	functions	of	any	feature	vector.		

•  Fitting:	now	we	optimize	the	conditional	likelihood:	
	
`(⌘;D) =

X

m,k

[y(m)
= k] log p(y = k|x(m), ✓) =

X

m,k

y(m)
k log p(m)

k

p(y = k|x, ✓) = e✓
T
k x

P
j e

✓T
j x

@`

@✓i
=

X

m,k

@`(m)
k

@p(m)
k

@p(m)
k

@z(m)
i

@z(m)
i

@✓i

=
X

m,k

y(m)
k

p(m)
k

p(m)
k (�ik � p(m)

i)x(m)

=
X

m

(y(m)
k � p(m)

k)x(m)

zj = ✓Tj x

More	on	Logis7c	Regression	
•  Hardest	Part:	picking	the	feature	vector	x.		
•  The	likelihood	is	convex	in	the	parameters	θ.		No	local	
minima!	

•  Gradient	is	easy	to	compute;	so	easy	to	optimize	using	
gradient	descent	or	Newton-Raphson.		

•  Weight	decay:	add	εθ2		to	the	cost	function,	which	
subtracts	2εθ		from	each	gradient	

•  Why	is	this	method	called	logistic	regression?		
•  It	should	really	be	called	“softmax	linear	regression”.		
•  Log	odds	(logit)	between	any	two	classes	is	linear	in	
parameters.	

•  A	classiAication	neural	net	always	has	linear	regression	as	
the	last	layer	–	no	hidden	layers	=	logistic	regression	

Classifica7on	via	Regression	

•  Binary	case:	p(y	=	1|x)	is	also	the	conditional	expectation.		
•  So	we	could	forget	that	y	was	a	discrete	(categorical)	
random	variable	and	just	attempt	to	model	p(y|x)	using	
regression.		

•  One	idea:	do	regression	to	an	indicator	matrix.		
•  For	two	classes,	this	is	related	to	LDA.	For	3	or	more,	
disaster…	

•  Weird	idea.	Noise	models	(e.g.,	Gaussian)	for	regression	
are	inappropriate,	and	Aits	are	sensitive	to	outliers.	
Furthermore,	gives	unreasonable	predictions	<	0	and	>	1.		

Other	Models	

•  Noisy-OR	(see	slides)		
•  ClassiAication	via	Regression	(see	slides)		
•  Non-parametric	(e.g.	K-nearest-neighbor).		
•  Semi-parametric	(e.g.	kernel	classiAiers,	support	vector	
machines,	Gaussian	processes).		

•  Probit	regression.	
•  Complementary	log-log.	
•  Generalized	linear	models.	
•  Some	return	a	value	for	y	without	a	distribution.		

Joint	vs.	Condi7onal	Models	

•  Both	Naïve	Bayes	and	logistic	regression	have	same	
conditional	form	and	can	have	same	parameterization.	

•  But	the	criteria	used	to	choose	parameters	is	different	
	
•  Naive	Bayes	is	a	joint	model;	it	optimizes		
																						p(x,	y)	=	p(x)p(y|x).		
•  Logistic	Regression	is	conditional:	optimizes	p(y|x)	directly	
	
•  	Pros	of	discriminative:	More	Alexible,	directly	optimizes	
what	we	care	about.		Why	not	choose	optimal	parameters?	

•  Pros	of	generative:	Easier	to	think	about,	check	model,	and	
incorporate	other	data	sources	(semi-sup	learning)	

Joint	vs.	Condi7onal	Models:	Yin	and	Yang	

•  Each	generative	model	implicitly	deAines	a	conditional		
model	

•  p(z|x)	has	complicated	form	if	p(x|z)	is	at	all	complicated.		
Expensive	to	compute	naively,	necessary	for	learning.	

•  Autoencoders:	Given	interesting	generative	model	p(x|z),		
force	approximate	q(z|x)	to	have	a	nice	form.	

•  So,	designing	inference	methods	for	generative	models	
involves	designing	discriminative	recognition	networks.	

•  Thursday:	Tutorial	on	optimization.		

