CSC412: Stochastic Variational Inference

David Duvenaud
Admin

- A3 will be released this week and will be shorter
- Motivation for REINFORCE
- Class projects
Class Project ideas

• **Develop a generative model for a new medium.**

 • Generate sound given video (hard to generate raw sound)

 • Automatic onomatopoeia: Generate text ‘ka-bloom-kshhhhh’ given a sound of an explosion.

 • Generating text of a specific style. For instance, generating SMILES strings representing organic molecules

 • Emoji2Vec

 • Automatic data cleaning (flagging suspect entries)
Class Projects

- **Extend existing models, inference, or training.**
 For instance:

- Extending variational autoencoders to have infinite capacity in some sense (combining Nonparametric Bayesian methods with variational autoencoders)

- Explore the use of mixture distributions for approximating distributions
Class Projects

• **Review / comparison / tutorials:**

 • Approaches to generating images
 • Approaches to generating video
 • Approaches to handling discrete latent variables
 • Approaches to building invertible yet general transformations
 • Variants of the GAN training objective
 • Different types of recognition networks

• clearly articulate the differences between different approaches, and their strengths and weaknesses.

• Ideally, include experiments highlighting the different properties of each method on realistic problems.
Class Projects

• Demos
 • http://distill.pub/
 • https://chi-feng.github.io/mcmc-demo/
 • E.g. javascript demo of variational inference
 • Still needs report, but doesn’t need to be novel
Hard Class Projects

• Graph-valued latent variable models (attend, infer, repeat) https://arxiv.org/abs/1603.08575

• Eigenscapes - characterize the loss surface of neural nets / GANs through the eigenspectrum of the Hessian of the loss

• HMC Recognition networks with accept/reject (http://jmlr.org/proceedings/papers/v37/salimans15.pdf)

• Simultaneous localization and mapping (SLAM) from scratch
• Many situations where we want to estimate or sample from an unnormalized distribution

• MCMC is always available, but

 • Guarantees are only asymptotic
 • Hard to know how well it’s doing
 • Hard to tune hyperparameters
 • Gradient-free MCMC hard to get to work in high dimensions
Gradient-based MCMC

- Gradient-based MCMC (Hamiltonian Monte Carlo, Langevin dynamics) scale to high dimension.
- These look like SGD with noise, or SGD with momentum with noise.
- Fairly effective (see Stan)
- But we have better optimizers (e.g. Adam, Quasi-Newton methods) that we don’t know how to use.
Variational Inference

• Directly optimize the parameters of an approximate distribution \(q(z|x) \) to match \(p(z|x) \)

• Main technical difficulty:
 • Need to measure difference between \(q(z|x) \) and \(p(z|x) \) (and its gradient) using only cheap operations.

• By assumption, we can’t sample from \(p(z|x) \) or evaluate its density. We can:
 • Evaluate density \(p(x, z) \) aka unnormalized \(p(z|x) \)
 • Sample from \(q(z|x) \) and evaluate its density
Which divergence to use?

<table>
<thead>
<tr>
<th>Name</th>
<th>$D_f(P|Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variation</td>
<td>$\frac{1}{2} \int</td>
</tr>
<tr>
<td>Kullback-Leibler</td>
<td>$\int p(x) \log \frac{p(x)}{q(x)} , dx$</td>
</tr>
<tr>
<td>Reverse Kullback-Leibler</td>
<td>$\int q(x) \log \frac{q(x)}{p(x)} , dx$</td>
</tr>
<tr>
<td>Pearson χ^2</td>
<td>$\int \frac{(q(x) - p(x))^2}{p(x)} , dx$</td>
</tr>
<tr>
<td>Neyman χ^2</td>
<td>$\int \frac{(p(x) - q(x))^2}{q(x)} , dx$</td>
</tr>
<tr>
<td>Squared Hellinger</td>
<td>$\int \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^2 , dx$</td>
</tr>
<tr>
<td>Jeffrey</td>
<td>$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) , dx$</td>
</tr>
<tr>
<td>Jensen-Shannon</td>
<td>$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} , dx$</td>
</tr>
<tr>
<td>Jensen-Shannon-weighted</td>
<td>$\int p(x) \pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1 - \pi) q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} , dx$</td>
</tr>
<tr>
<td>GAN</td>
<td>$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} , dx - \log(4)$</td>
</tr>
<tr>
<td>α-divergence ($\alpha \notin {0, 1}$)</td>
<td>$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^\alpha - 1 \right] - \alpha(q(x) - p(x)) \right) , dx$</td>
</tr>
</tbody>
</table>

- From Nowozin et al, 2016, f-GANs
Why we like $KL(q\|p)$

- Can get unbiased estimate using only samples from $q(z|x)$ and evaluations of $q(z|x)$ and $p(z,x)$
- Minimizing this maximizes a lower bound on marginal likelihood (good for model comparison)
- An aside: Upper bounds on marginal likelihood are hard in general
- Can use simple Monte Carlo (hence stochastic)
Algorithm:

1. Sample z from $q(z|x, \phi)$

2. Return $\log p(z, x \mid \theta) - \log q(z \mid x, \phi)$

That’s it! Can optimize θ and ϕ using automatic differentiation if z is continuous, and dependence on ϕ is exposed
Three forms of bound

Each has its pros and cons

First is most general

First one can have zero variance
Hot off the press

- Roeder, Wu, Duvenaud
ADVI in 5 Lines of Python

```python
def elbo(p, lp, D, N):
    v = exp(p[D:]):
    s = randn(N,D)*sqrt(v)+p[:D]
    return mvn.entropy(0, diag(v))+mean(lp(s))
gf = grad(elbo)
```
What are we optimizing?

- Variational parameters ϕ specify $q(z|x, \phi)$
- Simplest example: $q(z|x, \phi) = \ldots$
Simple but not obvious

- It took a long time get here!
- Reparameterization trick vs REINFORCE
- Automatic differentiation vs local updates
- Simple Gaussian vs optimal variational family
Other Formerly Promising Directions

- Expectation Propagation (reverse KL with local updates)
- Local biased gradient estimation,
- Laplace approximation, UKF, etc
Code examples

• Show ADVI code

• Show Bayesian neural net example
Pros and Cons vs HMC

- Both are applicable out-of-the-box for almost any continuous latent variable model
- HMC is asymptotically exact, which makes statisticians happy (but it shouldn’t…)
- ADVI with simple form (Gaussian) underestimates posterior variance
 - So does un-mixed HMC
 - Can make approximate posterior more and more complex (show mixture example)
- Biggest pro in my opinion - can measure inference progress, and use fancy optimization methods (e.g. Adam)
Recent Extensions

• Importance-Weighted Autoencoders (IWAE) Burda, Grosse, Salakhudtinov

• Mixture distributions in posterior

• GAN-style ideas to avoid evaluating $q(z|x)$

• Normalizing flows: Produce arbitrarily-complicated $q(z|x)$

• Incorporate HMC or local optimization to define $q(z|x)$
Next part: Variational Autoencoders

- Haven’t talked about learning theta
- Haven’t talked about having a latent variable per-datapoint