Probabilistic Graphical Models

Lecture 8: State-Space Models

Based on slides by Richard Zemel



Sequential data

Turn attention to sequential data
— Time-series: stock market, speech, video analysis
— Ordered: text, gene

Simple example: Dealer A 1s fair; Dealer B 1s not

c=t ' ’ c
Process (let Z be dealer A or B): 0 0

Loop until tired:
1. Flip coin C, use it to decide whether to switch dealer C=h
2. Chosen dealer rolls die, record result

Fully observable formulation: data is sequence of dealer selections
AAAABBBBAABBBBBBBAAAAABBBBB



Simple example: Markov model

* If underlying process unknown, can construct model to predict
next letter in sequence

* In general, product rule expresses joint distribution for sequence
T
P(X1,Xo,...X7) =111 P(X¢| X¢—1, ..., X7)

« First-order Markov chain: each observation independent of all
previous observations except most recent

P(Xt|Xt—17 ---»Xl) — P(Xt’Xt—ﬂ
* ML parameter estimates are easy

« Each pair of outputs is a training case; in this example:
P(X,=B| X =A) =#[ts.t. X, =B, X, =A]/ #[ts.t. X, ; =A]



Higher-order Markov models

Consider example of text

Can capture some regularities with bigrams (e.g., q nearly
always followed by u, very rarely by j) — probability of a
letter given just its preceding letter

But probability of a letter depends on more than just
previous letter

Can formulate as second-order Markov model (trigram
model)

X4 N "\

Need to take care: many counts may be zero in training
dataset



Table 3

Bigrams as Graphemes
Time Time
occurs combined
Relative asa to form
Graph- frequency Countas  graph- Example used grapheme
a r a C e r eme asastring astring eme (%) as grapheme (%)
AE 0.0002 39.0 8462 AERO 0.00
AH 0.0001 20.0 2000 AUTOBAHN 0.00
Al 0.0017 3250 8308 WAIT 10.46
° L AL 0.0084 1,623.0 40.11 FRUGAL 0.00
° AO 0.0000 8.0 2500 E+X+TRAORDINARY 0.00
re CO I I 1 1 AU 0.0012 239.0 81.17 SAUCER 18.83
i AW 0.0006 108.0 7731 FLAW 3.70
AY 0.0008 160.0 9938 ESSAY 0.62
BB 0.0004 87.0 9943 RABBIT 0.00
b ° BT 0.0001 18.0 4444 DEBT 0.00
n oC 0.0005 9.0 7273 SOCCER 3.03
r a 1 CE 0.0037 726.0 062 OCEAN 0.00
CH 0.0037 719.0 89.01 ARCH 1099
1 0.0024 473.0 1603 FACIAL 085
CK 0.0018 3440 9927 PICK 0.00
° ° L4 0 0.0000 6.0 5000 ACQUIT 50.00
(& 0.0002 320 5000 OPTI+CS+* 0.00
T 0.0025 4790 0.21 INDICT 0.00
cz 0.0000 20 10000 CZAR 0.00
DD 0.0005 1000 97.00 ODD 0.00
DG 0.0003 60.0 10000 MIDGET 0.00
DI 0.0039 750.0 033 CORDIAL 0.00
DJ 0.0001 180 9444 ADJUST 0.00
EA 0.0031 606.0 7261 TWEAK 9.49
ED 0.0027 5150 427 VOICED 0.00
EE 0.0017 3370 9362 DEER 4.60
El 0.0007 1330 5000 HEIST 2632
EL 0.0035 682.0 2053 LEVEL 0.00
EN 0.0085 1,643.0 822 EATEN 0.00
EO 0.0007 1400 2250 PIGEON 643
ES 0.0043 831.0 353 HOOV 0.00
ET 0.0039 762.0 223 SACHET 0.00
EU 0.0004 86.0 8140 FEUD 465
EW 0.0006 108.0 6389 GREW 741
EY 0.0004 810 9259 MONEY 741
FF 0.0009 176.0 100.00 O FF 0.00
FT 0.0004 69.0 145 SOFTEN 0.00
GG 0.0004 730 9863 JUGGLE 0.00
GH 0.0009 171.0 1228 ROUGH 8246
Gl 0.0014 267.0 8.05 REGION 0.00
GM 0.0001 280 1429 PHLEGM 0.00
GN 0.0006 126.0 3333 GNASH 0.00
1A 0.0034 6670 637 PARLIAMENT 045
1E 0.0018 3400 41.13 BRIEF 1250
1L 0.0038 7370 6.51 VIGIL 0.00
IN 00113 2,1880 320 LATIN 0.00
KH 0.0001 140 57.14 SHEIKH 0.00
KN 0.0002 430 9419 KNOT 0.00
LD 0.0006 1210 372 wWouLb 0.00
LE 0.0085 1,6520 4370 PICKLE 0.00
LF 0.0002 460 1308 HALF 0.00
LK 0.0002 470 4894 WALK 0.00
LL 0.0033 649.0 9792 DWELL 0.00
LM 0.0002 480 2917 PAIM 0.00
Lv 0.0003 550 1091 CALVES 0.00
MB 0.0011 2210 1606 THUMB 0.00
MM 0.0009 1780 9888 RUMMY 0.00
MN 0.0002 430 2558 AUTUMN 0.00
NG 0.0032 616.0 5844 PING 032
NN 0.0008 1640 9756 TENNIS 0.00
OA 0.0008 1480 8750 LOAN 236
OE 0.0003 61.0 4180 SHOE 0.00
OH 0.0001 19.0 3158 OHM 0.00



Hidden Markov model (HMM)

Return to casino example -- now imagine that do not observe
ABBAA, but instead just sequence of die rolls (1-6)

* Generative process: (O—C)
Loop until tired: " a
1.Flip coin C(Z=A or B) © ©

2.Chosen dealer rolls die, record result X

Z is now hidden state variable — 15t order Markov chain generates
state sequence (path), governed by transition matrix A

P(Zy = k|21 = J) = Aji

Azt—l,jzt,k
115445k

State as multinomial variable : P(zz:—1) =[],

Observations governed by emission probabilities, convert state path
into sequence of observable symbols or vectors: P(X:|Z;)



Relationship to other models

Can think of HMM as:
— Markov chain with stochastic measurements

Z1 Zo Zp 1 Zn, Zpt1 |

Hidden state is 1%-order Markov, but output not Markov of any
order

Future is independent of g:fast give present, but conditioning on
observations couples hidden states



Character Recognition Example

Which letters are these?



HMM: Character Recognition Example

Context matters: recognition easier based on sequence of
characters

How to apply HMM to this character string?
Main elements: states? emission, transition probabilities?




HMM: Semantics

Need 3 distributions:

1. Initial state: P(Z,)

2. Transition model: P(Z,1Z, ,)

3. Observation model (emission probabilities): P(X,|Z,)



HMM: Main tasks

* Joint probabilities of hidden states and outputs:

P(x,2) = P(z)P(x, | 2)[ |, Pz, | 2)P(x, | 2)

* Three problems

1.

Computing probability of observed sequence: forward-
backward algorithm [good for recognition]

Infer most likely hidden state sequence: Viterbi algorithm
[useful for interpretation]

Learning parameters: Baum-Welch algorithm (version of
EM)



Fully observed HMM

Learning fully observed HMM (observe both X and Z) is easy:

1. Initial state: P(Z;) — proportion of words start with each
letter

2. Transition model: P(Z,1Z, ;) — proportion of times a given
letter follows another (bigram statistics)

3. Observation model (emission probabilities): P(X,|Z,) — how
often particular image represents specific character, relative
to all images

But still have to do inference at test time: work out states given
observations

HMMs often used where hidden states are identified: words in
speech recognition; activity recognition; spatial position of
rat; genes; POS tagging



HMM: Inference tasks

Important to infer distributions over hidden states:

If states are interpretable, infer interpretations
Also essential for learning

Can break down hidden state inference tasks to solve (each
based on all observations up to current time, X,.,)

1.

2.

3.

Filtering: compute posterior over current hidden state:
P(Ztl XO:t)

Prediction: compute posterior over future hidden state:
P(Zycl Xo.)

Smoothing: compute posterior over past hidden state:
P(Z, | X,.), O<k<t

Fixed-lag smoothing: P(Z,_,| X,.,): compute posterior
over hidden state a few steps back



Filtering, Smoothing & Prediction
P(Zt |X1:t) = P(Zt |Xt9X1:t—1)
« P(X,|Z,, X, )P(Z | X,_)
=P(Xt Zt)P(Zt |X1:t—1)
= P(Xt Zt)zzt—l P(Zt Zz—lﬂXlzt—l)P(Zt—l |X1:t—1)

= P(Xt Zt)zzt—l P(Zz Zz—l)P(Zt—l |Xl:t—1)

Filtering: for online estimation of state
Pr(state) =observation probability * transition-model

Smoothing: post hoc estimation of state (similar computation)
Prediction is filtering, but with no new evidence:

P(Zt+k |X1:t) = EP(ZHk |Zt+k—1)P(Zt+k—1 |Xl:t)

Ztyk-1



HMM: Maximum likelihood

Having observed some dataset, use ML to learn the parameters
of the HMM

Need to marginalize over the latent variables:

p(X|0) = Zp (X, Z6)

Difficult:
— does not factorize over time steps

— involves generalization of a mixture model

Approach: utilize EM for learning

Focus first on how to do inference efficiently



Forward recursion ()

Define o2t ;) = P(z1, ..., Tt, 2t = J)

Clever recursion can compute huge sum efficiently
a(z1,) = P(x1,21 =7) = P(x1]|z1 = j)P(z1 = j)
a(z,) = P(a2lzp =7) |)_ P22 = jlz1 = k) P(z1]21 = k) P(21 = k)
k

Q’(Zn—l,l) Oé(zn,l)

= P(x2]22 = j) ZAijé(Zl,k)] k=1
w

A21

a(zi414) = P(og1lzi41=17)

ZAij‘(Zt,k)] a%l’z.)

a(zn—1,3)



Backward recursion ([3)

Define ﬂ(zt,j) — P(ajt—|—17 °°°7xT‘Zt — J)

Bz ;) = |D AjP(riy1lzi41 = K)B(z411)
k
ﬁ(ZT,j) = 1 B(zn.1) B(znt+11)
Y Aqq
\P(Xn|zn+1,1)
ﬁ(zn—f—l,Z)
a(z;;): total inflow of prob. to node (tj) * |
B(z,)): total outtlow of prob. from node (t,j) ™ p(xn|2n11,2)
5(3n+1,3)
-0
" "IN p(xnl 20 11,3)



Forward-Backward algorithm

Estimate hidden state given observations
Define v(z;;) = P(2¢ = t|z1, ..., z7)
Y(zt;) = P(X|zg =1)P(z =1)/P(X)
P(x1,...,xtlzt = 1) P(2p4-1, -, 272t = ) P(2 = 1) [ P(X)
P(x1,...,xt, 2t = 1) P(xyg 1, ... op|2t = 1) /P(X)
= a(2,)B(z,:)/ P(X)

One forward pass to compute all a(z, ;), one backward
pass to compute all B(z,;): total cost O(K*T)

Can compute likelihood at any time ¢ based on a (z, ;)

mdBE) = P(X) =, alz4)B(ze5)



Baum-Welch training algorithm: Summary

Can estimate HMM parameters using maximum
likelihood

If state path known, then parameter estimation easy

Instead must estimate states, update parameters, re-
estimate states, etc. -- Baum-Welch (form of EM)

State estimation via forward-backward, also need
transition statistics (see next slide)

Update parameters (transition matrix A, emission
parameters) to maximize likelihood



Transition statistics

Need statistics for adjacent time-steps:
Define £(2;,(t)) = P(21—1 = %, 2t = j|X)

§(2j(t)) = P(z—1 =14,%1,...,T¢_1)

P(zt = j,xty...,xp|lze—_1 = i, 21, ..., x4_1) / P(X)
P(zi—1 = 4,21, ..., x4—1) P2t = jlzp—1 = 1)
P(xt|ze = j)P(x441, - xr|2t = j) /L

= alzp—1,) A P(x|ze = 7)B(z,5) /L

Expected number of transitions from state i to state j that
begin at time ¢-1, given the observations

Can be computed with the same a(z, ;) and B(z, )
recursions



Parameter updates

Initial state distribution: expected counts in state k at time 1

v(21,%)

Zjil v(Z1,5)

Estimate transition probabilities:

Do, 8 ) Y (1)
ST ) S Az

Emission probabilities are expected number of times observe
symbol in particular state:

T —

Aij =

T
Y (zeR) T
ik — T
thl Y(2t,k)




Using HMMs for recognition

Can train an HMM to classity a sequence:
1. train a separate HMM per class

2. evaluate prob. of unlabelled sequence under each
HMM

3. classify: HMM with highest likelihood

Assumes can solve two problems:

1. estimate model parameters given some training
sequences (we can find local maximum of
parameter space near initial position)

2. given model, can evaluate prob. of a sequence



Probability of observed sequence

Want to determine if given observation sequence is likely
under the model (for learning, or recognition)

Compute marginals to evaluate prob. of observed seq.: sum
across all paths of joint prob. of observed outputs and state

P(X) =2.2P(X,Z)

Take advantage of factorization to avoid exp. cost (#paths = K!)

P(X) = > > >, H P(zt|zt—1) P(wt|2t)

21 <2 2T t=1

= Y P(21)P(z1]21) ) P(22]|21)P(z2|22)

e Z P(zr|zp_1)P(x7|27)
27



Variants on basic HMM

Input-output HMM

— Have additional observed variables U

Semi-Markov HMM

— Improve model of state duration

Autoregressive HMM

— Allow observations to depend on some previous
observations directly

Factorial HMM

— Expand dim. of latent state



State Space Models

Instead of discrete latent state of the HMM, model Z as a
continuous latent variable

Standard formulation: linear-Gaussian (LDS), with (hidden
state Z, observation Y, other variables U)
— Transition model is linear
z; = Avzi 1 + Biug + ¢
—  with Gaussian noise
e, = N(0,Qy)
—  Observation model is linear
y: = Cizy + Dyu; + 0y
— with Gaussian noise

575 — N(O, Rt)

Model parameters typically independent of time: stationary



Kalman Filter

Algorithm for filtering in linear-Gaussian state space model
Everything is Gaussian, so can compute updates exactly

Dynamics update: predict next belief state

P(th’u—h ul:t) = /N(Zt‘AtZt—l + Biuy, Qt)N(Zt—lf,ut—la Zt—l)dzt—l

— N(Zt‘:uﬂt—la Zt|t—1)

-1 = Agpir—1 + By
Sippo1 = AeXi 1A + Qy



Kalman Filter: Measurement Update

Key step: update hidden state given new measurement:

p(ztb’htaul:t) X p(yt‘ztaut)p(ztb’ht—laul:t)

First term a bit complicated, but can apply various identities
(such as the matrix inversion lemma, Bayes rule), obtain:

p(zt‘YLt? ul:t) — N(Zt‘,ut, Zt)

The mean update depends on Kalman gain matrix K, and the
residual or innovation r =y - Ely]

pe = pyje—1 + Kery
K; =3, 1C/S; "
y = Ely¢|yr:i—1,u¢] = Cipigpp—1 + Dyuy
S = cov|ri|y1:4—1, Ur) = Ct2t|t—1CtT + Ry



Kalman Filter: Extensions

Learning similar to HMM

Need to solve inference problem — local posterior marginals
for latent variables

Use Kalman smoothing instead of forward-backward in E
step, re-derive updates in M step

Many extensions and elaborations

Non-linear models: extended KF, unscented KF
Non-Gaussian noise
More general posteriors (multi-modal, discrete, etc.)

Large systems with sparse structure (sparse information
filter)



Viterb1 decoding

How to choose single best path through state space?

Choose state with largest probability at each time #: maximize
expected number of correct states

But this may not be the best path, with highest likelihood of
generating the data

To find best path — Viterbi decoding, form of dynamic
programming (forward-backward algorithm)

Same recursions, but replace ) with max (“brace” example)
Forward: retain best path into each node at time ¢

Backward: retrace path back from state where most
probable path ends



