
	
Probabilis*c	Graphical	Models	

	
Lecture	8:	State-Space	Models	

	
Based	on	slides	by	Richard	Zemel	

	
	
	
	

Simple example: Dealer A is fair; Dealer B is not

Process (let Z be dealer A or B):

Loop until tired:
1.  Flip coin C, use it to decide whether to switch dealer
2.  Chosen dealer rolls die, record result

Sequential data
Turn	a@en*on	to	sequen*al	data	

–  Time-series:	stock	market,	speech,	video	analysis	
–  Ordered:	text,	gene	

Fully observable formulation: data is sequence of dealer selections
 AAAABBBBAABBBBBBBAAAAABBBBB

A B

C=h

C=h
C=t C=t

Simple example: Markov model

•  If	underlying	process	unknown,	can	construct	model	to	predict	
next	le@er	in	sequence	

•  In	general,	product	rule	expresses	joint	distribu*on	for	sequence		

•  First-order	Markov	chain:	each	observa*on	independent	of	all	
previous	observa*ons	except	most	recent	

•  ML	parameter	es*mates	are	easy	
	
•  Each pair of outputs is a training case; in this example:

 P(Xt =B| Xt-1=A) = #[t s.t. Xt = B, Xt-1 = A] / #[t s.t. Xt-1 = A]

Higher-order Markov models
•  Consider example of text	
•  Can capture some regularities with bigrams (e.g., q nearly

always followed by u, very rarely by j) – probability of a
le?er given just its preceding le?er	

•  But probability of a le?er depends on more than just
previous le?er	

•  Can formulate as second-order Markov model (trigram
model)	

	
•  Need to take care: many counts may be zero in training

dataset	
	

Character
recognition:
Transition
probabilities	

•  Return	to	casino	example	--	now	imagine	that	do	not	observe	
ABBAA,	but	instead	just	sequence	of	die	rolls	(1-6)	

•  Genera*ve	process:	
Loop	un*l	*red:	

1. Flip	coin	C	(Z	=	A	or	B)	
2. Chosen	dealer	rolls	die,	record	result	X	

	
Z	is	now	hidden	state	variable	–	1st	order	Markov	chain	generates	
state	sequence	(path),	governed	by	transi2on	matrix	A	

			
	Observa*ons	governed	by	emission	probabili2es,	convert	state	path	

into	sequence	of	observable	symbols	or	vectors:	

Hidden Markov model (HMM)

•  Can think of HMM as:	
–  Markov chain with stochastic measurements	

–  Mixture model with states coupled across time	

•  Hidden state is 1st-order Markov, but output not Markov of any
order	

•  Future is independent of past give present, but conditioning on
observations couples hidden states	

Relationship to other models

Character Recognition Example	

Which le?ers are these?	
	

HMM: Character Recognition Example	

Context ma?ers: recognition easier based on sequence of
characters	

How to apply HMM to this character string?	
Main elements: states? emission, transition probabilities?	
	

},...,{1 zaz = },...,{3 zaz =},...,{2 zaz = },...,{4 zaz = },...,{5 zaz =

=3x=2x =4x =5x=1x

HMM: Semantics	

Need 3 distributions:	
1.  Initial state: P(Z1)	
2.  Transition model: P(Zt|Zt-1)	
3.  Observation model (emission probabilities): P(Xt|Zt)	
	

•  Joint probabilities of hidden states and outputs:	

•  Three problems	
1.  Computing probability of observed sequence: forward-

backward algorithm [good for recognition]	
2.  Infer most likely hidden state sequence: Viterbi algorithm

[useful for interpretation]	
3.  Learning parameters: Baum-Welch algorithm (version of

EM) 	

HMM: Main tasks	

∏ = −=
T

t tttt zxPzzPzxPzPP
2 1111)|()|()|()(),(zx

Learning fully observed HMM (observe both X and Z) is easy:	
1.  Initial state: P(Z1) – proportion of words start with each

le?er	
2.  Transition model: P(Zt|Zt-1) – proportion of times a given

le?er follows another (bigram statistics)	
3.  Observation model (emission probabilities): P(Xt|Zt) – how

often particular image represents specific character, relative
to all images	

But still have to do inference at test time: work out states given
observations	

	
HMMs often used where hidden states are identified: words in

speech recognition; activity recognition; spatial position of
rat; genes; POS tagging	

	

Fully observed HMM	

Important to infer distributions over hidden states:	
§  If states are interpretable, infer interpretations	
§  Also essential for learning	

Can break down hidden state inference tasks to solve (each
based on all observations up to current time, X0:t)	
1.  Filtering: compute posterior over current hidden state:

P(Zt| X0:t)	
2.  Prediction: compute posterior over future hidden state:

P(Zt+k| X0:t)	
3.  Smoothing: compute posterior over past hidden state:

P(Zk| X0:t), 0<k<t	
4.  Fixed-lag smoothing: P(Zt-a| X0:t): compute posterior

over hidden state a few steps back	

HMM: Inference tasks	

Filtering, Smoothing & Prediction	

∑
∑

−

−

−−−

−−−−

−

−−

−

=

=

=

∝

=

1

1

)|()|()|(

)|(),|()|(
)|()|(

)|(),|(
),|()|(

1:111

1:111:11

1:1

1:11:1

1:1:1

t

t

z tttttt

z ttttttt

tttt

ttttt

ttttt

XzPzZPZXP

XzPXzZPZXP
XZPZXP

XZPXZXP
XXZPXZP

∑
−+

−+−+++ =
1

)|()|()|(:111:1
ktz

tktktkttkt XzPzZPXZP

Filtering: for online estimation of state	
Pr(state) =observation probability * transition-model 	
	
Smoothing: post hoc estimation of state (similar computation)	
Prediction is filtering, but with no new evidence:	

Having observed some dataset, use ML to learn the parameters
of the HMM	

	
Need to marginalize over the latent variables:	
	
	
	
Difficult:	

–  does not factorize over time steps	
–  involves generalization of a mixture model	

Approach: utilize EM for learning	
	
Focus first on how to do inference efficiently	

 HMM: Maximum likelihood	

p(X|✓) =
X

Z

p(X,Z|✓)

Clever recursion can compute huge sum efficiently	

Forward recursion (α)	

Backward recursion (β)

α(zt,j): total inflow of prob. to node (t,j)	
β(zt,j): total outflow of prob. from node (t,j)	

Estimate hidden state given observations	

Forward-Backward algorithm	

One forward pass to compute all α(zt,i), one backward
pass to compute all β(zt,i): total cost O(K2T)	

Can compute likelihood at any time t based on α (zt,j)
and β(zt,j)	

Can estimate HMM parameters using maximum
likelihood	

If state path known, then parameter estimation easy	
Instead must estimate states, update parameters, re-

estimate states, etc. -- Baum-Welch (form of EM)	
State estimation via forward-backward, also need

transition statistics (see next slide)	
Update parameters (transition matrix A, emission

parameters) to maximize likelihood	

Baum-Welch training algorithm: Summary

Need statistics for adjacent time-steps:	

Transition statistics

Expected number of transitions from state i to state j that
begin at time t-1, given the observations	

Can be computed with the same α(zt,j) and β(zt,j)
recursions	

Initial state distribution: expected counts in state k at time 1	

 Parameter updates

Estimate transition probabilities:	

Emission probabilities are expected number of times observe
symbol in particular state:

Can train an HMM to classify a sequence:	
 1. train a separate HMM per class	
 2. evaluate prob. of unlabelled sequence under each

HMM 	
 3. classify: HMM with highest likelihood	
	
Assumes can solve two problems:	
 1. estimate model parameters given some training

sequences (we can find local maximum of
parameter space near initial position)	

 2. given model, can evaluate prob. of a sequence	

Using HMMs for recognition

Want to determine if given observation sequence is likely
under the model (for learning, or recognition)	

	
Compute marginals to evaluate prob. of observed seq.: sum

across all paths of joint prob. of observed outputs and state	

Take advantage of factorization to avoid exp. cost (#paths = KT)	

Probability of observed sequence	

•  Input-output HMM	
–  Have additional observed variables U	

•  Semi-Markov HMM	
–  Improve model of state duration	

•  Autoregressive HMM	
–  Allow observations to depend on some previous

observations directly	

•  Factorial HMM	
–  Expand dim. of latent state	

Variants on basic HMM

Instead of discrete latent state of the HMM, model Z as a
continuous latent variable	

Standard formulation: linear-Gaussian (LDS), with (hidden
state Z, observation Y, other variables U)	
–  Transition model is linear	

–  with Gaussian noise	

–  Observation model is linear	

–  with Gaussian noise	

	
Model parameters typically independent of time: stationary	

State Space Models

zt = Atzt�1 +Btut + ✏t

✏t = N (0,Qt)

yt = Ctzt +Dtut + �t

�t = N (0,Rt)

Algorithm for filtering in linear-Gaussian state space model	
Everything is Gaussian, so can compute updates exactly	
	
Dynamics update: predict next belief state	

	

Kalman Filter

= N (zt|µt|t�1,⌃t|t�1)

µt|t�1 = Atµt�1 +Btut

⌃t|t�1 = At⌃t�1A
T
t +Qt

p(zt|y1:t�1,u1:t) =

Z
N (zt|Atzt�1 +Btut,Qt)N (zt�1|µt�1,⌃t�1)dzt�1

Key step: update hidden state given new measurement:	
	
	
First term a bit complicated, but can apply various identities

(such as the matrix inversion lemma, Bayes rule), obtain:	
	
	
The mean update depends on Kalman gain matrix K, and the

residual or innovation r = y – E[y]	
	
	
	
	

	

 Kalman Filter: Measurement Update

p(zt|y1:t,u1:t) / p(yt|zt,ut)p(zt|y1:t�1,u1:t)

Kt = ⌃t|t�1C
T
t S

�1
t

p(zt|y1:t,u1:t) = N (zt|µt,⌃t)

µt = µt|t�1 +Ktrt

St = cov[rt|y1:t�1,u1:t] = Ct⌃t|t�1C
T
t +Rt

ŷ = E[yt|y1:t�1,ut] = Ctµt|t�1 +Dtut

Learning similar to HMM	
–  Need to solve inference problem – local posterior marginals

for latent variables	
–  Use Kalman smoothing instead of forward-backward in E

step, re-derive updates in M step	

Many extensions and elaborations	
–  Non-linear models: extended KF, unscented KF	
–  Non-Gaussian noise	
–  More general posteriors (multi-modal, discrete, etc.)	
–  Large systems with sparse structure (sparse information

filter)	

	

Kalman Filter: Extensions

How to choose single best path through state space?	
Choose state with largest probability at each time t: maximize

expected number of correct states	

 But this may not be the best path, with highest likelihood of
generating the data	

	
To find best path – Viterbi decoding, form of dynamic

programming (forward-backward algorithm)	
Same recursions, but replace ∑ with max (“brace” example)	

	Forward: retain best path into each node at time t	
	Backward: retrace path back from state where most

	probable path ends	

Viterbi decoding

