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Learning	outcomes	

•  What	aspects	of	a	model	can	we	express	using	
graphical	notation?	

•  Which	aspects	are	not	captured	in	this	way?	
•  How	do	independencies	change	as	a	result	of	
conditioning?	

•  Reasons	for	using	latent	variables	
•  Common	motifs	such	as	mixtures	and	chains	
•  How	to	integrate	out	unobserved	variables	



Joint	Probabili7es	

•  Chain	rule	implies	that	any	joint	distribution	equals	

•  Directed	graphical	model	implies	a	restricted	factorization	

p(x1:D) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)...p(xD|x1:D�1)



Condi7onal	Independence	
•  Notation:	xA	⊥	xB|xC	
	

•  DeGinition:	two	(sets	of)	variables	xA	and	xB	are	conditionally	
independent	given	a	third	xC	if:		

									which	is	equivalent	to	saying		
	

•  Only	a	subset	of	all	distributions	respect	any	given	
(nontrivial)	conditional	independence	statement.	The	subset	
of	distributions	that	respect	all	the	CI	assumptions	we	make	
is	the	family	of	distributions	consistent	with	our	assumptions.		

•  Probabilistic	graphical	models	are	a	powerful,	elegant	and	
simple	way	to	specify	such	a	family.	

P (xA,xB |xC) = P (xA|xC)P (xB |xC) ; 8xC

P (xA|xB ,xC) = P (xA|xC) ; 8xC



Directed	Graphical	Models	
•  Consider	directed	acyclic	graphs	over	n	variables.		
•  Each	node	has	(possibly	empty)	set	of	parents	πi	
	
•  We	can	then	write	

•  Hence	we	factorize	the	joint	in	terms	of	local	conditional	
probabilities	

•  Exponential	in	“fan-in”	of	each	node	instead	of	in	N	

P (x1, ...,xN ) =
Y

i

P (xi|x⇡i)



Condi7onal	Independence	in	DAGs	

•  If	we	order	the	nodes	in	a	directed	graphical	model	so	that	
parents	always	come	before	their	children	in	the	ordering	then	
the	graphical	model	implies	the	following	about	the	
distribution:		

where									are	the	nodes	coming	before	xi	that	are	not	its	parents	

•  In	other	words,	the	DAG	is	telling	us	that	each	variable	is	
conditionally	independent	of	its	non-descendants	given	its	
parents.		

•  Such	an	ordering	is	called	a	“topological”	ordering	

x⇡̃i

{xi ? x⇡̃i |x⇡i} ; 8i



Example	DAG	
Consider	this	six	node	network:							The	joint	probability	is	now:		
	
	



Missing	Edges	
•  Key	point	about	directed	graphical	models:		

Missing	edges	imply	conditional	independence		
•  Remember	that	by	the	chain	rule	we	can	always	write	the	full	
joint	as	a	product	of	conditionals,	given	an	ordering:		

•  If	the	joint	is	represented	by	a	DAGM,	then	some	of	the	
conditioned	variables	on	the	right	hand	sides	are	missing.		

•  This	is	equivalent	to	enforcing	conditional	independence.		
•  Start	with	the	“idiot’s	graph”:	each	node	has	all	previous	nodes	
in	the	ordering	as	its	parents.		

•  Now	remove	edges	to	get	your	DAG.		
•  Removing	an	edge	into	node	i	eliminates	an	argument	from	the	
conditional	probability	factor	

P (x1,x2, ...) = P (x1)P (x2|x1)P (x3|x2,x1)P (x4|x3,x2,x1)

P (xi|x1,x2, ...,xi�1)



D-Separa7on	
•  D-separation,	or	directed-separation	is	a	notion	of	
connectedness	in	DAGMs	in	which	two	(sets	of)	variables	may	
or	may	not	be	connected	conditioned	on	a	third	(set	of)	variable.		

•  D-connection	implies	conditional	dependence	and	d-separation	
implies	conditional	independence.		

•  In	particular,	we	say	that	xA	⊥	xB|xC	if	every	variable	in	A	is	d-
separated	from	every	variable	in	B	conditioned	on	all	the	
variables	in	C.		

•  To	check	if	an	independence	is	true,	we	can	cycle	through	each	
node	in	A,	do	a	depth-Girst	search	to	reach	every	node	in	B,	and	
examine	the	path	between	them.	If	all	of	the	paths	are	d-
separated,	then	we	can	assert		xA	⊥	xB|xC			

•  Thus,	it	will	be	sufGicient	to	consider	triples	of	nodes.	(Why?)		
•  Pictorially,	when	we	condition	on	a	node,	we	shade	it	in.		



Chain	

•  Q:	When	we	condition	on	y,	are	x	and	z	independent?		
	

	which	implies		
	
	
	
	
	
												and	therefore	x	⊥	z|y	
	
•  Think	of	x	as	the	past,	y	as	the	present	and	z	as	the	future.		
	

P (x,y, z) = P (x)P (y|x)P (z|y)

P (z|x,y) = P (x,y, z)

P (x,y)

=
P (x)P (y|x)P (z|y)

P (x)P (y|x)
= P (z|y)



Common	Cause	

•  Q:	When	we	condition	on	y,	are	x	and	z	independent?		
	

	which	implies		
	
	
	
	
	
												and	therefore	x	⊥	z|y	
	

= P (x|y)P (z|y)

=
P (y)P (x|y)P (z|y)

P (y)

P (x, z|y) = P (x,y, z)

P (y)

P (x,y, z) = P (y)P (x|y)P (z|y)



Explaining	Away	

•  Q:	When	we	condition	on	y,	are	x	and	z	independent?		
	
•  x	and	z	are	marginally	independent,	but	given	y	they	are	
conditionally	dependent.		

•  This	important	effect	is	called	explaining	away	(Berkson’s	
paradox.)		

•  	For	example,	Glip	two	coins	independently;	let	x=coin1,z=coin2.		
•  Let	y=1	if	the	coins	come	up	the	same	and	y=0	if	different.	
•  x	and	z	are	independent,	but	if	I	tell	you	y,	they	become	coupled!		
	
	

P (x,y, z) = P (x)P (z)P (y|x, z)



Bayes-Ball	Algorithm	
•  To	check	if	xA	⊥	xB|xC	we	need	to	check	if	every	variable	in	A	is	
d-separated	from	every	variable	in	B	conditioned	on	all	vars	in	
C.		

•  In	other	words,	given	that	all	the	nodes	in	xC		are	clamped,	when	
we	wiggle	nodes	xA	can	we	change	any	of	the	nodes	in	xB?		

•  The	Bayes-Ball	Algorithm	is	a	such	a	d-separation	test.		
•  We	shade	all	nodes	xC,	place	balls	at	each	node	in		xA		(or	xB),	let	
them	bounce	around	according	to	some	rules,	and	then	ask	if	
any	of	the	balls	reach	any	of	the	nodes	in	xB	(or	xA).		



Bayes-Ball	Rules	
•  The	three	cases	we	considered	tell	us	rules:	



Bayes-Ball	Boundary	Rules	

•  We	also	need	the	boundary	conditions:	

•  Here’s	a	trick	for	the	explaining	away	case:	If	y	or	any	of	its	
descendants	is	shaded,	the	ball	passes	through.		

•  Notice	balls	can	travel	opposite	to	edge	directions.		



Canonical	Micrographs	



Examples	of	Bayes-Ball	Algorithm	



Examples	of	Bayes-Ball	Algorithm	

•  Notice:	balls	can	travel	opposite	to	edge	direction	



Plates	



Plates	&	Parameters	

•  Since	Bayesian	methods	treat	parameters	as	random	variables,	
we	would	like	to	include	them	in	the	graphical	model.		

•  One	way	to	do	this	is	to	repeat	all	the	iid	observations	explicitly	
and	show	the	parameter	only	once.		

•  A	better	way	is	to	use	plates,	in	which	repeated	quantities	that	
are	iid	are	put	in	a	box.		



Plates:	Macros	for	Repeated	Structures	
•  Plates	are	like	“macros”	that	allow	you	to	draw	a	very	
complicated	graphical	model	with	a	simpler	notation.		

•  The	rules	of	plates	are	simple:	repeat	every	structure	in	a	box	a	
number	of	times	given	by	the	integer	in	the	corner	of	the	box	
(e.g.	N),	updating	the	plate	index	variable	(e.g.	n)	as	you	go.		

•  Duplicate	every	arrow	going	into	the	plate	and	every	arrow	
leaving	the	plate	by	connecting	the	arrows	to	each	copy	of	the	
structure.		



Nested/Intersec7ng	Plates	

•  Plates	can	be	nested,	in	which	case	their	arrows	get	
duplicated	also,	according	to	the	rule:	draw	an	arrow	
from	every	copy	of	the	source	node	to	every	copy	of	the	
destination	node.		

•  Plates	can	also	cross	(intersect),	
in	which	case	the	nodes	at	the	
intersection	have	multiple	indices	
and	get	duplicated	a	number	of	times	equal	to	the	
product	of	the	duplication	numbers	on	all	the	plates	
containing	them.		



Example:	Nested	Plates	



Example	DAGM:	Markov	Chain	

	
•  Markov	Property:	Conditioned	on	the	present,	the	past	and	
future	are	independent	



Unobserved	Variables	
•  Certain	variables	Q	in	our	models	may	be	unobserved,									
either	some	of	the	time	or	always,																																																			
either	at	training	time	or	at	test	time	

	
•  Graphically,	we	will	use	shading	to	indicate	observation	



Par7ally	Unobserved	(Missing)	Variables	
•  If	variables	are	occasionally	unobserved	they	are	missing	data,	
e.g.,	undeGined	inputs,	missing	class	labels,	erroneous	target	
values	

•  In	this	case,	we	can	still	model	the	joint	distribution,	but	we	
deGine	a	new	cost	function	in	which	we	sum	out	or	marginalize	
the	missing	values	at	training	or	test	time:		

	
	 	Recall	that		

`(✓;D) =

X

complete

log p(xc,yc|✓) +
X

missing

log p(xm|✓)

=

X

complete

log p(xc,yc|✓) +
X

missing

log

X

y

p(xm,y|✓)

p(x) =
X

q

p(x, q)



Latent	Variables	
•  What	to	do	when	a	variable	z	is	always	unobserved?	
Depends	on	where	it	appears	in	our	model.	If	we	never	condition	
on	it	when	computing	the	probability	of	the	variables	we	do	
observe,	then	we	can	just	forget	about	it	and	integrate	it	out.	
e.g.,	given	y,	x	Git	the	model	p(z,	y|x)	=	p(z|y)p(y|x,	w)p(w).										
(In	other	words	if	it	is	a	leaf	node.)		

•  But	if	z	is	conditioned	on,	we	need	to	m ︎odel	it:	odel	it:	

											e.g.	given	y,	x	Git	the	model	p(y|x)	=	Σz	p(y|x,	z)p(z)	



Where	Do	Latent	Variables	Come	From?	
•  Latent	variables	may	appear	naturally,	from	the	structure	of	the	
problem,	because	something	wasn’t	measured,	because	of	faulty	
sensors,	occlusion,	privacy,	etc.		

•  But	also,	we	may	want	to	intentionally	introduce	latent	variables	
to	model	complex	dependencies	between	variables	without	
looking	at	the	dependencies	between	them	directly.	
This	can	actually	simplify	the	model	(e.g.,	mixtures).		



	Latent	Variables	Models	&	Regression	

•  You	can	think	of	clustering	as	the	problem	of	classiGication	with	
missing	class	labels.		

•  You	can	think	of	factor	models	(such	as	factor	analysis,	PCA,	ICA,	
etc.)	as	linear	or	nonlinear	regression	with	missing	inputs.		



Why	is	Learning	Harder?	

•  In	fully	observed	iid	settings,	the	probability	model	is	a	product,	
thus	the	log	likelihood	is	a	sum	where	terms	decouple.	
(At	least	for	directed	models.)		

	
•  With	latent	variables,	the	probability	already	contains	a	su ︎m,	so	
the	log	likelihood	has	all	paramete︎rs	coupled	together	via	z:		rs	coupled	together	via	z:		

		
	(Just	as	with	the	partition	function	in	undirected	models)		

`(✓;D) = log p(x, z|✓)

= log p(z|✓
z

) + log p(x|z, ✓
x

)

`(✓;D) = log

X

z

p(x, z|✓)

= log

X

z

p(z|✓
z

) + log p(x|z, ✓
x

)



Why	is	Learning	Harder?	

•  Likelihood	 	 		 	 						couples	parameters:	

•  We	can	treat	this	as	a	black	box	probability	function	and	just	try	
to	optimize	the	likelihood	as	a	function	of	θ	(e.g.	gradient	
descent).	However,	sometimes	taking	advantage	of	the	latent	
variable	structure	can	make	parameter	estimation	easier.		

•  Good	news:	soon	we	will	see	how	to	deal	with	latent	variables.	
•  Basic	trick:	put	a	tractable	distribution	on	the	values	you	don’t	
know.	
Basic	math:	use	convexity	to	lower	bound	the	likelihood.		

= log

X

z

p(z|✓
z

) + log p(x|z, ✓
x

)



Mixture	Models	
•  Most	basic	latent	variable	model	with	a	single	discrete	node	z.		
•  Allows	different	submodels	(experts)	to	contribute	to	the	
(conditional)	density	model	in	different	parts	of	the	space.		

•  Divide	&	conquer	idea:	use	simple	parts	to	build	complex	models	
(e.g.,	multimodal	densities,	or	piecewise-linear	regressions).		



Mixture	Densi7es	
•  Exactly	like	a	classiGication	model	but	the	class	is	unobserved	
and	so	we	sum	it	out.	What	we	get	is	a	perfectly	valid	density:		

	

	where	the	“mixing	proportions”	add	to	one:	Σk	αk	=	1.		
	
•  We	can	use	Bayes’	rule	to	compute	the	posterior	probability	
of	the	mixture	component	given	some	data:		

		
	 	these	quantities	are	called	responsibilities.		

p(z = k|x, ✓) = ↵kpk(x|✓k)P
j ↵jpj(x|✓j)

p(x|✓) =
KX

k=1

p(z = k|✓z)p(x|z = k, ✓k)

=
X

k

↵kpk(x|✓k)



Example:	Gaussian	Mixture	Models	
•  Consider	a	mixture	of	K	Gaussian	components:		

	
		

•  Density	model:	p(x|θ)	is	a	familiarity	signal.	
Clustering:	p(z|x,	θ)	is	the	assignment	rule,	−l(θ)	is	the	cost.		

p(x|✓) =
X

k

↵kN (x|µk,⌃k)

p(z = k|x, ✓) = ↵kN (x|µk,⌃k)P
j ↵jN (x|µj ,⌃j)

`(✓;D) =

X

n

log

X

k

↵kN (x

(n)|µk,⌃k)



Example:	Mixtures	of	Experts	
•  Also	called	conditional	mixtures.	Exactly	like	a	class-conditional	
model	but	the	class	is	unobserved	and	so	we	sum	it	out	again:		

	
	where		

•  Harder:	must	learn	α(x)	(unless	chose	z	independent	of	x).		
•  We	can	still	use	Bayes’	rule	to	compute	the	posterior	
probability	of	the	mixture	component	given	some	data:		

	this	function	is	often	called	the	gating	function.		

p(y|x, ✓) =
KX

k=1

p(z = k|x, ✓z)p(y|z = k,x, ✓k)

=
X

k

↵k(x|✓z)pk(y|x, ✓k)
X

k

↵k(x) = 1 8x

p(z = k|x,y, ✓) = ↵k(x)pk(y|x, ✓k)P
j ↵j(x)pj(y|x, ✓j)



Example:	Mixtures	of	Linear	Regression	Experts	
•  Each	expert	generates	data	according	to	a	linear	function	of	the	
input	plus	additive	Gaussian	 ︎noise:		

		

•  The	“gate”	function	can	be	a	softmax	classiGication	machine	
	

•  Remember:	we	are	not	modeling	the	density	of	the	inputs	x	

p(y|x, ✓) =
X

k

↵kN (y|�T
k x,�

2
k)

↵k(x) = p(z = k|x) = e⌘
T
k x

P
j e

⌘T
j x



Gradient	Learning	with	Mixtures	

•  We	can	learn	mixture	densities	using	gradient	descent	on	the	
likelihood	as	usual.	The	gradients	are	quite	interesting:		

	
•  In	other	words,	the	gradient	is	the	responsibility	weighted	sum	
of	the	individual	log	likelihood	gradients	

`(✓) = log p(x|✓) = log

X

k

↵kpk(x|✓k)

@`

@✓
=

1

p(x|✓)
X

k

↵k
@pk(x|✓k)

@✓

=

X

k

↵k
1

p(x|✓)pk(x|✓k)
@ log pk(x|✓k)

@✓

=
X

k

↵k
pk(x|✓k)
p(x|✓)

@`k
@✓k

=
X

k

↵krk
@`k
@✓k



Parameter	Constraints	

•  If	we	want	to	use	general	optimizations	(e.g.,	conjugate	gradient)	
to	learn	latent	variable	models,	we	of︎ten	have	to	make	sure	
parameters	respect	certain	constraints	(e.g.,	Σk	αk	=	1,	Σk	αk	
positive	deGinite)		

•  A	good	trick	is	to	re-parameterize	these	quantities	in	terms	of	
unconstrained	values.	For	mixing	proportions,	use	the	softmax:	

•  For	covariance	matrices,	use	the	Cholesky	decomposition		

	where	A	is	upper	diagonal	with	positive	diagonal	

↵k =

exp(qk)P
j exp(qj)

⌃�1 = ATA |⌃|�1/2 =
Y

i

Aii

Aii = exp(ri) > 0 Aij = aij (j > i) Aij = 0 (j < i)



Logsumexp	
•  Often	you	can	easily	compute	bk	=	log	p(x|z	=	k,	θk),		

	but	it	will	be	very	negative,	say	-106	or	smaller.		
•  Now,	to	compute	l	=	log	p(x|θ)	you	need	to	compute																					
(e.g.,	for	calculating	responsibilities	at	test	time	or	for	learning)	

•  Careful!	Do	not	compute	this	by	doing	log(sum(exp(b))).	You	will	
get	underGlow	and	an	incorrect	answer.		

•  Instead	do	this:	
							–Add	a	constant	exponent	B	to	all	the	values	bk	such	that	the	

	largest	value	equals	zero:	B	=	max(b).		
							–	Compute	log(sum(exp(b	-	B)))	+	B.		
•  	Example:	if	log	p(x|z	=	1)	=	−120	and	log	p(x|z	=	2)	=	−120,	what	
is	log	p(x)	=	log	[p(x|z	=	1)	+	p(x|z	=	2)]?	
Answer:	log[2e−120]	=	−120	+	log	2.		

•  Rule	of	thumb:	never	use	log	or	exp	by	itself	

log

P
k e

bk



Hidden	Markov	Models	(HMMs)	

•  A	very	popular	form	of	latent	variable	model	

	
•  Zt	à	Hidden	states	taking	one	of	K	discrete	values	
•  Xt	à	Observations	taking	values	in	any	space	

	Example:	discrete,	M	observation	symbols			B 2 <KxM

p(xt = j|zt = k) = Bkj



Inference	in	Graphical	Models	

xE	à	Observed	evidence	variables	(subset	of	nodes)	
xF	à	unobserved	query	nodes	we’d	like	to	infer	
xR	à	remaining	variables,	extraneous	to	this	query	but	part	of	the	
given	graphical	representation	



Inference	with	Two	Variables	

Table	look-up	

Bayes’	Rule	
p(x|y = ȳ) =

p(ȳ|x)p(x)
p(ȳ)

p(y|x = x̄)



Naïve	Inference	

•  Suppose	each	variable	takes	one	of		k	discrete	values	

•  Costs	O(k)	operations	to	update	each	of	O(k5)	table	entries	
•  Use	factorization	and	distributed	law	to	reduce	complexity	

p(x1, x2, ..., x5) =
X

x6

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)

= p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)
X

x6

p(x6|x2, x5)



Inference	in	Directed	Graphs	



Inference	in	Directed	Graphs	



Inference	in	Directed	Graphs	



Learning	outcomes	

•  What	aspects	of	a	model	can	we	express	using	
graphical	notation?	

•  Which	aspects	are	not	captured	in	this	way?	
•  How	do	independencies	change	as	a	result	of	
conditioning?	

•  Reasons	for	using	latent	variables	
•  Common	motifs	such	as	mixtures	and	chains	
•  How	to	integrate	out	unobserved	variables	



Ques7ons?	

•  Thursday:	Tutorial	on	automatic	differentiation	
•  This	week:	Assignment	1	released	


