
Assignment #3: Small Data

In this assignment, we’ll look at two approaches to dealing with having small amounts of data. You can
use automatic differentiation in your code.

Data preparation Binarize the MNIST dataset. In this assignment, we’ll use only 30 examples in our
training set. We’ll keep the test set the same size, at 10000 examples.

Problem 1 (L2-Regularized Logistic Regression, 10 points)
In this question, we’ll attempt to regularize logistic regression to deal with having such a small dataset.
Recall that the likelihood given by this model is:
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(a) Using your code from assignment 2, fit a maximum likelihood estimate of logistic regression to
the 30 training points, and report the training and test-set error. Also plot the learned parameters
as a set of 10 images.

(b) Next, let’s define a prior distribution on parameters, so that we can fit a maximum a posteriori
(MAP) estimate. Let’s consider a spherical Gaussian prior on the parameters:

p(w|σ2) =
9

∏
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∏
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N (wcd|0, σ2) (2)

Write down log
(

p(t|X, w)p(w|σ2)
)
, the log-likelihood of the entire training set (X, t) of 30 exam-

ples, multiplied by the prior on parameters. Also write down its gradient. You do not need to
show the derivation. Hint: It should look like the gradient of the training log-likelihood from
assignment 2, but with an extra term added that only depends on w.

(c) Fit a MAP estimate of the parameters w on the training set using gradient ascent. Try different
values of σ2 across several orders of magnitude. For the value of σ2 with the highest test-set
log-likelihood, plot the optimized wMAP as 10 images. Also print the training and test accuracy,
and average predictive log-likelihood:
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log p(ti|xi, w) (3)
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Problem 2 (Bayesian Logistic Regression using Stochastic Variational Inference, 20 points)
In this question, we’ll avoid choosing a single set of parameters ŵ. Instead, we’ll approximately in-
tegrate over all possible w. This will avoid over-fitting by making approximately Bayes-optimal predic-
tions, given the assumptions of our model. The Bayes-optimal predictions are given by:

p(c|x) =
∫

p(c|x, w)p(w|t, X)dw (4)

The posterior over weights is given by:

p(w|t, X) =
p(t|X, w)p(w|σ2)∫
p(t|X, w)p(w|σ2)dw

∝ p(t|X, w)p(w|σ2) (5)

which is the same quantity whose gradients you derived in question 1. If we could sample from the
posterior p(w|t, X), we could approximate the Bayes-optimal predictions using simple Monte Carlo:

p(c|xi) =
∫

p(c|xi, w)p(w|t, X)dw u 1
S

S

∑
j=1

p(c|xi, w(j)), each w(j) ∼ p(w|t, X) (6)

In this question, we’ll use stochastic variational inference to approximately sample from p(w|t, X).
To do this, we’ll fit the parameters of an approximate posterior q(w|φ) to make it as close as possible
to the true posterior p(w|t, X). We’ll use stochastic gradient ascent to fit the variational parameters φ.

(a) Using a fully-factorized Gaussian as the variational posterior, the variational parameters φ =
(µ, σ) specify the mean and diagonal variance of the distribution on the weights w:

q(w|φ) = N (w|µ, σ2 I) =
9

∏
c=0

784

∏
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N (wcd|µcd, σ2

cd) (7)

How many parameters w does this model have? How many variational parameters φ?

(b) Code up SVI for this model. That is, use stochastic gradient ascent to find locally optimal varia-
tional parameters maximizing the evidence lower bound:

φ∗ = argmaxφ Eq(w|φ)

[
log p(t|X, w)p(w|σ2)− log q(w|φ)

]
(8)

using simple Monte Carlo to estimate the expectation. Feel free to base your code on

https://github.com/HIPS/autograd/blob/master/examples/black box svi.py

And you can use pre-written optimizers.

As a sanity check, if you optimize Eq(w|φ)

[
log p(t|X, w)p(w|σ2)

]
, your variational mean param-

eters µ should converge to your MAP estimate of w if you use the same σ2.

(c) Use your code to find φ∗. Compute the average predictive accuracy on the test set using simple
Monte Carlo using your approximate posterior and 100 samples (S=100):

p(ti|xi) =
∫

p(ti|xi, w)p(w|t, X)dw u 1
S

S

∑
j=1

p(ti|xi, w(j)), each w(j) ∼ q(w|φ∗) (9)

Play with the prior variance σ2 to see if you can get a higher test-set accuracy than MAP inference.

(d) Plot, using 10 images for each, 1) The variational posterior means µ∗ 2) The variational posterior
standard deviations σ∗ and 3) A single sample from the variational posterior q(w|φ∗).
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