Sandwiching the marginal likelihood using bidirectional Monte Carlo Roger Grosse

Zoubin Ghahramani

- When comparing different statistical models, we'd like a quantitative criterion which trades off model complexity and fit to the data
- In a Bayesian setting, we often use marginal likelihood
 - Defined as the probability of the data, with all parameters and latent variables integrated out
- Motivation: plug into Bayes' Rule

$$p(\mathcal{M}_i | \mathcal{D}) = \frac{p(\mathcal{M}_i) \, p(\mathcal{D} | \mathcal{M}_i)}{\sum_j p(\mathcal{M}_j) \, p(\mathcal{D} | \mathcal{M}_j)}$$

Introduction: marginal likelihood

- Advantages of marginal likelihood (ML)
 - Accounts for model complexity in a sophisticated way
 - Closely related to description length
 - Measures the model's ability to generalize to unseen examples
- ML is used in those rare cases where it is tractable
 - e.g. Gaussian processes, fully observed Bayes nets
- Unfortunately, it's typically very hard to compute because it requires a very high-dimensional integral
- While ML has been criticized on many fronts, the proposed alternatives pose similar computational difficulties

- Focus on latent variable models
 - parameters $oldsymbol{ heta}$, latent variables $oldsymbol{z}$, observations $oldsymbol{y}$
 - assume i.i.d. observations
- Marginal likelihood requires summing or integrating out latent variables and parameters

$$p(\mathbf{y}) = \int p(\boldsymbol{\theta}) \prod_{i=1}^{N} \sum_{\mathbf{z}_{i}} p(\mathbf{z}_{i} | \boldsymbol{\theta}) p(\mathbf{y}_{i} | \mathbf{z}_{i}, \boldsymbol{\theta}) d\boldsymbol{\theta}$$

• Similar to computing the partition function

$$\mathcal{Z} = \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

- Problem: exact marginal likelihood computation is intractable
- There are many algorithms to approximate it, but we don't know how well they work

Why evaluating ML estimators is hard

The answer to life, the universe, and everything is...

42

Why evaluating ML estimators is hard

The marginal likelihood is...

$\log p(\mathcal{D}) = -23814.7$

Why evaluating ML estimators is hard

- How does one deal with this in practice?
 - polynomial-time approximations for partition functions of ferromagnetic Ising models
 - test on very small instances which can be solved exactly
 - run a bunch of estimators and see if they agree with each other

Log-ML lower bounds

• One marginal likelihood estimator is simple importance sampling:

$$\{\boldsymbol{\theta}^{(k)}, \mathbf{z}^{(k)}\}_{k=1}^{K} \sim q$$

$$\hat{p}(\mathcal{D}) = \frac{1}{K} \sum_{k=1}^{K} \frac{p(\boldsymbol{\theta}^{(k)}, \mathbf{z}^{(k)}, \mathcal{D})}{q(\boldsymbol{\theta}^{(k)}, \mathbf{z}^{(k)})}$$

T/

• This is an unbiased estimator

 $\mathbb{E}[\hat{p}(\mathcal{D})] = p(\mathcal{D})$

• Unbiased estimators are stochastic lower bounds

(Jensen's inequality) $\mathbb{E}[\log \hat{p}(\mathcal{D})] \leq \log p(\mathcal{D})$ (Markov's inequality) $\Pr(\log \hat{p}(\mathcal{D}) > \log p(\mathcal{D}) + b) \leq e^{-b}$

Many widely used algorithms have the same property!

Log-ML lower bounds

How to obtain an upper bound?

• Harmonic Mean Estimator:

 $\{\boldsymbol{\theta}^{(k)}, \mathbf{z}^{(k)}\}_{k=1}^{K} \sim p(\boldsymbol{\theta}, \mathbf{z} | \mathcal{D})$

$$\hat{p}(\mathcal{D}) = \frac{K}{\sum_{k=1}^{K} 1/p(\mathcal{D} | \boldsymbol{\theta}^{(k)}, \mathbf{z}^{(k)})}$$

- Equivalent to simple importance sampling, but with the role of the proposal and target distributions reversed
- Unbiased estimate of the reciprocal of the ML

$$\mathbb{E}\left[\frac{1}{\hat{p}(\mathcal{D})}\right] = \frac{1}{p(\mathcal{D})}$$

- Gives a stochastic *upper* bound on the log-ML
- Caveat I: only an upper bound if you sample *exactly* from the posterior, which is generally intractable
- Caveat 2: this is the Worst Monte Carlo Estimator (Neal, 2008)

distribution (e.g.

prior)

intractable target distribution (e.g. posterior)

Annealed importance sampling (Neal, 2001)

Given:

unnormalized distributions f_0, \ldots, f_K MCMC transition operators $\mathcal{T}_0, \ldots, \mathcal{T}_K$ f_0 easy to sample from, compute partition function of $\mathbf{x} \sim f_0$ w = 1For i = 0, ..., K - 1 $w := w \frac{f_{i+1}(\mathbf{x})}{f_i(\mathbf{x})}$ $\mathbf{x} :\sim \mathcal{T}_{i+1}(\mathbf{x})$ Then, $\mathbb{E}[w] = \frac{\mathcal{Z}_K}{\mathcal{Z}_0}$ \boldsymbol{C}

$$\hat{\mathcal{Z}}_K = \frac{\mathcal{Z}_0}{S} \sum_{s=1}^S w^{(s)}$$

Annealed importance sampling (Neal, 2001)

Forward: $w := \prod_{i=1}^{K} \frac{f_i(\mathbf{x}_{i-1})}{f_{i-1}(\mathbf{x}_{i-1})} = \frac{\mathcal{Z}_K}{\mathcal{Z}_0} \frac{q_{\text{back}}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_K)}{q_{\text{fwd}}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_K)} \quad \mathbb{E}[w] = \frac{\mathcal{Z}_K}{\mathcal{Z}_0}$

Backward: $w := \prod_{i=1}^{K} \frac{f_{i-1}(\mathbf{x}_i)}{f_i(\mathbf{x}_i)} = \frac{\mathcal{Z}_0}{\mathcal{Z}_K} \frac{q_{\text{fwd}}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_K)}{q_{\text{back}}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_K)} \qquad \mathbb{E}[w] = \frac{\mathcal{Z}_0}{\mathcal{Z}_K}$

Bidirectional Monte Carlo

- Initial distribution: prior $p(\theta, \mathbf{z})$
- Target distribution: posterior $p(\theta, \mathbf{z} | D) = \frac{p(\theta, \mathbf{z}, D)}{p(D)}$
- Partition function: $\mathcal{Z} = \int p(\boldsymbol{\theta}, \mathbf{z}, \mathcal{D}) \, \mathrm{d}\boldsymbol{\theta} \, \mathrm{d}\mathbf{z} = p(\mathcal{D})$
- Forward chain

$$\mathbb{E}[w] = \frac{\mathcal{Z}_K}{\mathcal{Z}_0} = p(\mathcal{D})$$

stochastic lower bound

Backward chain (requires exact posterior sample!)

$$\mathbb{E}[w] = \frac{\mathcal{Z}_0}{\mathcal{Z}_K} = \frac{1}{p(\mathcal{D})}$$

stochastic upper bound

Bidirectional Monte Carlo

How to get an exact sample? Two ways to sample from $p(\theta, \mathbf{z}, D)$

Therefore, the parameters and latent variables used to generate the data are an exact posterior sample!

Bidirectional Monte Carlo

Summary of algorithm:

$$\boldsymbol{\theta}^{\star}, \mathbf{z}^{\star} \sim p_{\boldsymbol{\theta}, \mathbf{z}}$$
$$\mathbf{y} \sim p_{\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{z}} (\cdot \mid \boldsymbol{\theta}^{\star}, \mathbf{z}^{\star})$$

Obtain a stochastic lower bound on $\log p(\mathbf{y})$ by running AIS forwards

Obtain a stochastic upper bound on $\log p(\mathbf{y})$ by running AIS backwards, starting from $(\pmb{\theta}^\star, \mathbf{z}^\star)$

The two bounds will converge given enough intermediate distributions.

Experiments

- BDMC lets us compute ground truth log-ML values for data simulated from a model
 - We can use these ground truth values to benchmark log-ML estimators!
- Obtained ground truth ML for simulated data for
 - clustering
 - low rank approximation
 - binary attributes
- Compared a wide variety of ML estimators
- MCMC operators shared between all algorithms wherever possible

Results: binary attributes

Results: binary attributes

Results: binary attributes (zoomed in)

Results: binary attributes

Which estimators give accurate results?

Results: low rank approximation

Recommendations

- Try AIS first
- If AIS is too slow, try sequential Monte Carlo or nested sampling
- Can't fix a bad algorithm by averaging many samples
- Don't trust naive confidence intervals -- need to evaluate rigorously

On the quantitative evaluation of decoder-based generative models

Yuhuai Wu

Yuri Burda

Ruslan Salakhutdinov

- Define a generative process:
 - sample latent variables z from a simple (fixed) prior p(z)
 - pass them through a decoder network to get x = f(z)
- Examples:
 - variational autoencoders (Kingma and Welling, 2014)
 - generative adversarial networks (Goodfellow et al., 2014)
 - generative moment matching networks (Li et al., 2015; Dziugaite et al., 2015)
 - nonlinear independent components estimation (Dinh et al., 2015)

- Variational autoencoder (VAE)
 - Train both a generator (decoder) and a recognition network (encoder)
 - Optimize a variational lower bound on the log-likelihood
- Generative adversarial network (GAN)
 - Train a generator (decoder) and a discriminator
 - Discriminator wants to distinguish model samples from the training data
 - Generator wants to fool the discriminator
- Generative moment matching network (GMMN)
 - Train a generative network such that certain statistics match between the generated samples and the data

Some impressive-looking samples:

Denton et al. (2015)

Radford et al. (2016)

But how well do these models capture the distribution?

Looking at samples can be misleading:

375) 96018726968 0675665151(7479

- Want to quantitatively evaluate generative models in terms of the probability of held-out data
- Problem: a GAN or GMMN with k latent dimensions can only generate within a k-dimensional submanifold!
- Standard (but unsatisfying) solution: impose a spherical Gaussian observation model

 $p_{\sigma}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(f(\mathbf{z}), \sigma \mathbf{I})$

- tune σ on a validation set
- Problem: this still requires computing an intractable integral:

$$p_{\sigma}(\mathbf{x}) = \int p(\mathbf{z}) p_{\sigma}(\mathbf{x} | \mathbf{z}) \, \mathrm{d}\mathbf{z}$$

- For some models, we can tractably compute log-likelihoods, or at least a reasonable lower bound
- Tractable likelihoods for models with reversible decoders (e.g. NICE)
- Variational autoencoders: ELBO lower bound

 $\log p(\mathbf{x}) \geq \mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})}[\log p(\mathbf{x} \mid \mathbf{z})] - \mathcal{D}_{\mathrm{KL}}(q(\mathbf{z} \mid \mathbf{x}) \parallel p(\mathbf{z}))$

Importance Weighted Autoencoder

$$\log p(\mathbf{x}) \ge \mathbb{E}_{q(\mathbf{z} \mid \mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z} \mid \mathbf{x})} \right]$$

- In general, we don't have accurate and tractable bounds
 - Even in the cases of VAEs and IWAEs, we don't know how accurate the bounds are

• Currently, results reported using kernel density estimation (KDE)

$$\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(S)} \sim p(\mathbf{z})$$
$$\hat{p}_{\sigma}(\mathbf{x}) = \frac{1}{S} \sum_{s=1}^{S} p_{\sigma}(\mathbf{x} | \mathbf{z}^{(s)})$$

• Can show this is a stochastic lower bound:

 $\mathbb{E}[\log \hat{p}_{\sigma}(\mathbf{x})] \le \log p_{\sigma}(\mathbf{x})$

- Unlikely to perform well in high dimensions
- Papers caution the reader not to trust the results

- Our approach: integrate out latent variables using AIS, with Hamiltonian Monte Carlo (HMC) as the transition operator
- Validate the accuracy of the estimates on simulated data using BDMC
- Experiment details
 - Real-valued MNIST dataset
 - VAEs, GANs, GMMNs with the following decoder architectures:
 - 10-64-256-256-1024-784
 - 50-1024-1024-1024-784
 - Spherical Gaussian observations imposed on all models (including VAE)

How accurate are AIS and KDE?

(GMMN-50)

How accurate is the IWAE bound?

Estimation of variance parameter

Comparison of different models

(Nats)	AIS Test (1000ex)	AIS Train (100ex)	B	<mark>DMC ga</mark> p	KDE Test	IWAE Test
VAE-50	991.435±6.477	1272.586 ± 6.759		1.540	351.213	826.325
GAN-50	627.297±8.813	-620.498 ± 31.012		10.045	300.331	/
GMMN-50	593.472±8.591	-571.803 ± 30.864		1.146	277.193	/
VAE-10	>705.375±7.411	780.196±19.147		0.832	408.659	486.466
GAN-10	328.772 ± 5.538	-318.948 ± 22.544		0.934	259.673	/
GMMN-10	346.679±5.860	-345.176 ± 19.893		0.605	262.73	/

AIS estimates are accurate (small BDMC gap)

Larger model ==> much higher log-likelihood

VAEs achieve much higher log-likelihood than GANs and GMMNs

For GANs and GMMNs, no statistically significant difference between training and test log-likelihoods!

These models are not just memorizing training examples.

Training curves for a GMMN

Training curves for a VAE

The GAN seriously misallocates probability mass between modes:

But this effect by itself is too small to explain why it underperforms the VAE by over 350 nats

- To see if the network is missing modes, let's visualize posterior samples given observations.
- Use AIS to approximately sample z from p(z | x), then run the decoder
- Using BDMC, we can validate the accuracy of AIS samples on simulated data

Visualization of posterior samples for validation images

data	Ø	ł	۵	3	Ч	2	6	7	Ś	9
GAN-10	0	ł	ູ	3	વ	S	6	7	S	9
VAE-10	0	(۵	З	ч	5	6	7	8	9
GMMN-10	0	۱	2	3	4	5	6	7	9	9
GAN-50	0	ł	a	3	ч	5	6	З	8	9
VAE-50	0	ł	a	3	Ч	5	6	7	૬	9
GMMN-50	0	ł	a	3	4	5	6	3	*	9

Posterior samples on *training* set

data	2	2	2	2	Ζ	Ъ	۲	2	≁	2
GAN-10	2	2	2	÷.	2	٦	2	3	Ĭ,	2
VAE-10	2	2	2	2-	Ζ	Э	۲	2	Ĺ.	2
GMMN-10	2	2	2	4	2	4	2	9	2	2
GAN-50	2	2	2	L	2	7	٢	9	1.	2
VAE-50	2	2	2	2	Ζ	φ	ک	ð	Ł	2
GMMN-50	2	2	2	24	2	3	2	2	÷-	2

Conjecture: the GAN acts like a frustrated student

9	O	1	0	٩	8	8	/	/	6		9	0	1	0	6	8	4	/	5
3	8	7	7	0	9	8	3	7	8		8	/	1	7	0	4	1	9	1
6	1	١	3	4	7	6	9	0	9		6	ł	3	1	١	1	ı	0	8
9	1	8	5	Æ	1	1	1	9	6		9	1	0	0	1	I	1	1	1
Ô	1	6	1	0	8	0	8	ł	1		6	8	1	1	/	8	2	8	S
0	7	6	4	9	/	7	1	7	٩		8	8	6	9	8	/	7	1	7
Ø	/	8	1	0	9	7	9	6	4		3	1	Ø	1	0	9	7	4	ł
I	8	4	1	0	٩	١	1	5	6		1	3	1	/	0	٥	q	1	5
1	4	3	7	1	Ь	/	1	8	8		1	1	8	0	1	1	1	/	8
З	8	4	/	3	Ô	5	٩	۹	5		3	8	9	/	0	3	¥	9	4
200 epochs 1000 epochs											S								

Conclusions

- AIS gives high-accuracy log-likelihood estimates on MNIST (as validated by BDMC)
- This lets us observe interesting phenomena that are invisible to KDE
- GANs and GMMNs are not just memorizing training examples
- VAEs achieve substantially higher log-likelihoods than GANs and GMMNs
 - This appears to reflect failure to model certain modes of the data distribution
- Recognition nets can overfit
- Networks may continue to improve during training, even if KDE estimates don't reflect that
- Will be interesting to measure the effects of other algorithmic improvements to these networks