
Sandwiching the marginal likelihood
using bidirectional Monte Carlo

Roger Grosse

Ryan Adams Zoubin Ghahramani

Introduction
• When comparing different statistical models, we’d like a quantitative

criterion which trades off model complexity and fit to the data

• In a Bayesian setting, we often use marginal likelihood

• Defined as the probability of the data, with all parameters and latent
variables integrated out

• Motivation: plug into Bayes’ Rule

p(Mi |D) =
p(Mi) p(D|Mi)�
j p(Mj) p(D|Mj)

+G M GT

M + G

Introduction: marginal likelihood

need to integrate out
all of the component
matrices and their
hyperparameters

Introduction
• Advantages of marginal likelihood (ML)

• Accounts for model complexity in a sophisticated way

• Closely related to description length

• Measures the model’s ability to generalize to unseen examples

• ML is used in those rare cases where it is tractable

• e.g. Gaussian processes, fully observed Bayes nets

• Unfortunately, it’s typically very hard to compute because it requires a
very high-dimensional integral

• While ML has been criticized on many fronts, the proposed
alternatives pose similar computational difficulties

Introduction
• Focus on latent variable models

• parameters , latent variables , observations

• assume i.i.d. observations

• Marginal likelihood requires summing or integrating out latent
variables and parameters

• Similar to computing the partition function

p(y) =
�

p(�)
N�

i=1

�

zi

p(zi |�) p(yi |zi,�) d�

Z =
�

x�X
f(x)

� z y

Introduction
• Problem: exact marginal likelihood computation is intractable

• There are many algorithms to approximate it, but we don’t know how
well they work

Why evaluating ML estimators is hard

The answer to life, the universe, and everything is...

42

Why evaluating ML estimators is hard

log p(D) = �23814.7

The marginal likelihood is…

Why evaluating ML estimators is hard

• How does one deal with this in practice?

• polynomial-time approximations for partition functions of
ferromagnetic Ising models

• test on very small instances which can be solved exactly

• run a bunch of estimators and see if they agree with each other

Log-ML lower bounds

• One marginal likelihood estimator is simple importance sampling:

• This is an unbiased estimator

• Unbiased estimators are stochastic lower bounds

• Many widely used algorithms have the same property!

{�(k), z(k)}K
k=1 � q

E[log p̂(D)]  log p(D)

Pr(log p̂(D) > log p(D) + b)  e�b

(Jensen’s inequality)

(Markov’s inequality)

p̂(D) =
1
K

K�

k=1

p(�(k), z(k),D)
q(�(k), z(k))

E[p̂(D)] = p(D)

variational Bayes

Chib-Murray-Salakhutdinov

annealed importance
sampling (AIS)

sequential Monte Carlo (SMC)

…

True value?

Log-ML lower bounds

How to obtain an upper bound?

• Harmonic Mean Estimator:

• Equivalent to simple importance sampling, but with the role of the
proposal and target distributions reversed

• Unbiased estimate of the reciprocal of the ML

• Gives a stochastic upper bound on the log-ML

• Caveat 1: only an upper bound if you sample exactly from the
posterior, which is generally intractable

• Caveat 2: this is the Worst Monte Carlo Estimator (Neal, 2008)

p̂(D) =
K

�K
k=1 1/p(D|�(k), z(k)){�(k), z(k)}K

k=1 � p(�, z |D)

E
�

1
p̂(D)

�
=

1
p(D)

...
p0 p1 p2 p3 p4

Problem setup

Geometric averages

Geometric averages:

f�(x) = f
0

(x)1��f
1

(x)�

This is what basically everyone uses, since it’s easy to compute

If f
0

is the uniform distribution, this becomes

f�(x) = f
1

(x)� ,

which explains the term “annealing”

Think of � as an inverse temperature

Roger Grosse (joint work with Chris Maddison, Ruslan Salakhutdinov)Annealing between distributions by averaging moments May 22, 2013 4 / 22

Problem setup

Geometric averages

Geometric averages:

f�(x) = f
0

(x)1��f
1

(x)�

This is what basically everyone uses, since it’s easy to compute

If f
0

is the uniform distribution, this becomes

f�(x) = f
1

(x)� ,

which explains the term “annealing”

Think of � as an inverse temperature

Roger Grosse (joint work with Chris Maddison, Ruslan Salakhutdinov)Annealing between distributions by averaging moments May 22, 2013 4 / 22

Problem setup

Geometric averages

Geometric averages:

f�(x) = f
0

(x)1��f
1

(x)�

This is what basically everyone uses, since it’s easy to compute

If f
0

is the uniform distribution, this becomes

f�(x) = f
1

(x)� ,

which explains the term “annealing”

Think of � as an inverse temperature

Roger Grosse (joint work with Chris Maddison, Ruslan Salakhutdinov)Annealing between distributions by averaging moments May 22, 2013 4 / 22

Problem setup

Geometric averages

Geometric averages:

f�(x) = f
0

(x)1��f
1

(x)�

This is what basically everyone uses, since it’s easy to compute

If f
0

is the uniform distribution, this becomes

f�(x) = f
1

(x)� ,

which explains the term “annealing”

Think of � as an inverse temperature

Roger Grosse (joint work with Chris Maddison, Ruslan Salakhutdinov)Annealing between distributions by averaging moments May 22, 2013 4 / 22

Annealed importance sampling

tractable initial
distribution (e.g.

prior)

intractable target
distribution (e.g.

posterior)

(Neal, 2001)

pK�1 pK

Annealed importance sampling

ẐK =
Z0

S

SX

s=1

w(s)

(Neal, 2001)

Given:

unnormalized distributions f0, . . . , fK

MCMC transition operators T0, . . . , TK
f0 easy to sample from, compute partition function of

x ⇠ f0

w = 1

For i = 0, . . . ,K � 1

w := w fi+1(x)
fi(x)

x :⇠ Ti+1(x)

Then, E[w] = ZK
Z0

Annealed importance sampling

...
p0 p1 p2 p3 p4

T1 T2 T3 T4
x1x0 x2 x3 x4

T̃1 T̃2 T̃3 T̃4

Forward:

Backward:

(Neal, 2001)

pK�1 pK

TK

T̃K

xK�1 xK

w :=
KY

i=1

fi�1(xi)

fi(xi)
=

Z0

ZK

qfwd(x0,x1, . . . ,xK)

qback(x0,x1, . . . ,xK)

w :=
KY

i=1

fi(xi�1)

fi�1(xi�1)
=

ZK

Z0

qback(x0,x1, . . . ,xK)

qfwd(x0,x1, . . . ,xK) E[w] = ZK

Z0

E[w] = Z0

ZK

Bidirectional Monte Carlo

• Initial distribution: prior

• Target distribution: posterior

• Partition function:

• Forward chain

• Backward chain (requires exact posterior sample!)

p(✓, z)

p(✓, z |D) =
p(✓, z,D)

p(D)

stochastic lower bound

stochastic upper bound

E[w] = ZK

Z0
= p(D)

E[w] = Z0

ZK
=

1

p(D)

Z =
�

p(�, z,D) d� dz = p(D)

Bidirectional Monte Carlo

Two ways to sample from p(✓, z,D)

forward
sample

generate
data, then
perform
inference

p(✓, z) p(D|✓, z)
p(D) p(✓, z |D)

Therefore, the parameters and latent variables used to generate
the data are an exact posterior sample!

� z

D

How to get an exact sample?

Bidirectional Monte Carlo

Summary of algorithm:

��, z� � p�,z

y � py |�,z(· |��, z�)

Obtain a stochastic lower bound on by running AIS forwards

Obtain a stochastic upper bound on by running AIS backwards,
starting from

log p(y)

log p(y)
(��, z�)

The two bounds will converge given enough intermediate distributions.

Experiments

• BDMC lets us compute ground truth log-ML values for data simulated
from a model

• We can use these ground truth values to benchmark log-ML
estimators!

• Obtained ground truth ML for simulated data for

• clustering

• low rank approximation

• binary attributes

• Compared a wide variety of ML estimators

• MCMC operators shared between all algorithms wherever possible

Results: binary attributes

harmonic mean estimator

true

Bayesian information criterion (BIC)

Likelihood weighting

true

variational Bayes

Chib-Murray-
Salakhutdinov

Results: binary attributes

true

nested sampling

annealed importance
sampling (AIS)

sequential
Monte Carlo

reverse AIS

reverse SMC

Results: binary attributes (zoomed in)

Which estimators give accurate results?

accuracy needed
to distinguish simple
matrix factorizations

variational Bayes
Chib-Murray-Salakhutdinov

AIS sequential Monte Carlo (SMC)

harmonic mean

likelihood weighting

mean
squared

error

time (seconds)

nested sampling

Results: binary attributes

Results: low rank approximationFigure 7-2: Mean squared error relative to ground truth for individual trials (left) and com-
bined estimates (right) for the clustering model MG+G. See Figure 7-1 for the acronyms.

Figure 7-3: Comparison of marginal likelihood estimators on the low rank model GG+ G.
Left: average log-ML estimates across the 25 trials. Middle: same as left, but zoomed
in. Right: average MSE of individual samples. See Figure 7-1 for the acronyms.

Low rank. The results on the low rank factorization GG + G overwhelmingly
favor AIS: its accuracy after only 1.6 seconds (RMSE = 8.6) matched or surpassed
all other algorithms with up to 20 minutes of running time. In fact, AIS was the
only algorithm to achieve an RMSE of less than 10.

One reason that NS did not perform as well on this model as it did on the
clustering model is that it took more steps to reach the region with high posterior
mass. E.g., with 5 MCMC transitions per step, it required 904 steps, as compared
with 208 for clustering and 404 for binary. Another reason is that the MCMC
implementation could not take advantage of the same structure which allowed block
Gibbs sampling for the remaining algorithms; instead, one variable was resampled
at a time from its conditional distribution. (For the clustering and binary models,

132

annealed importance
sampling (AIS)

Recommendations

• Try AIS first

• If AIS is too slow, try sequential Monte Carlo or nested sampling

• Can’t fix a bad algorithm by averaging many samples

• Don’t trust naive confidence intervals -- need to evaluate rigorously

On the quantitative evaluation of
decoder-based generative models

Yuhuai Wu Yuri Burda Ruslan Salakhutdinov

Decoder-based generative models

• Define a generative process:

• sample latent variables z from a simple (fixed) prior p(z)

• pass them through a decoder network to get x = f(z)

• Examples:

• variational autoencoders (Kingma and Welling, 2014)

• generative adversarial networks (Goodfellow et al., 2014)

• generative moment matching networks (Li et al., 2015; Dziugaite et al., 2015)

• nonlinear independent components estimation (Dinh et al., 2015)

Decoder-based generative models

• Variational autoencoder (VAE)

• Train both a generator (decoder) and a recognition network (encoder)

• Optimize a variational lower bound on the log-likelihood

• Generative adversarial network (GAN)

• Train a generator (decoder) and a discriminator

• Discriminator wants to distinguish model samples from the training data

• Generator wants to fool the discriminator

• Generative moment matching network (GMMN)

• Train a generative network such that certain statistics match between the
generated samples and the data

Decoder-based generative models

Denton et al. (2015) Radford et al. (2016)

Some impressive-looking samples:

But how well do these models capture the distribution?

Decoder-based generative models

Looking at samples can be misleading:

Decoder-based generative models

GAN, 10 dim GAN, 50 dim,
200 epochs

GAN, 50 dim,
1000 epochs

LLD = 328.7 LLD = 543.5 LLD = 625.5

Evaluating decoder-based models

• Want to quantitatively evaluate generative models in terms of the
probability of held-out data

• Problem: a GAN or GMMN with k latent dimensions can only
generate within a k-dimensional submanifold!

• Standard (but unsatisfying) solution: impose a spherical Gaussian
observation model

• tune on a validation set

• Problem: this still requires computing an intractable integral:

p�(x | z) = N (f(z),�I)

�

p�(x) =
�

p(z) p�(x | z) dz

Evaluating decoder-based models

• For some models, we can tractably compute log-likelihoods, or at
least a reasonable lower bound

• Tractable likelihoods for models with reversible decoders (e.g. NICE)

• Variational autoencoders: ELBO lower bound

• Importance Weighted Autoencoder

• In general, we don’t have accurate and tractable bounds

• Even in the cases of VAEs and IWAEs, we don’t know how
accurate the bounds are

log p(x) � Eq(z | x)[log p(x | z)]�DKL(q(z | x) � p(z))

log p(x) � Eq(z | x)

�
log

p(x, z)
q(z | x)

�

Evaluating decoder-based models

• Currently, results reported using kernel density estimation (KDE)

• Can show this is a stochastic lower bound:

• Unlikely to perform well in high dimensions

• Papers caution the reader not to trust the results

z(1), . . . , z(S) � p(z)

E[log p̂�(x)] � log p�(x)

p̂�(x) =
1
S

S�

s=1

p�(x | z(s))

Evaluating decoder-based models

• Our approach: integrate out latent variables using AIS, with
Hamiltonian Monte Carlo (HMC) as the transition operator

• Validate the accuracy of the estimates on simulated data using BDMC

• Experiment details

• Real-valued MNIST dataset

• VAEs, GANs, GMMNs with the following decoder architectures:

• 10-64-256-256-1024-784

• 50-1024-1024-1024-784

• Spherical Gaussian observations imposed on all models (including VAE)

How accurate are AIS and KDE?

101 102 103

Seconds

50

100

150

200

250

300

350
Lo

g-
lLk

el
Lh

oo
d
AIS vs. KDo

KDo

AIS forward
AIS Kackward

(GMMN-50)

How accurate is the IWAE bound?

101 102 103 104

6econds

−88.0

−87.5

−87.0

−86.5

−86.0

−85.5
Lo

g-
lLk

el
Lh

oo
d
AIS vs. IWAo

IWAo

AIS

AIS+encoder

Estimation of variance parameter

0.005 0.010 0.015 0.020 0.025
VarLance

−400

−200

0

200

400

600

Lo
g

-l
Lk

e
lLh

o
o
d

tAN50 with vyrring vyriynce

Tryin AIS

Vylid AIS
Tryin KDE

Vylid KDE

Comparison of different models

For GANs and GMMNs, no statistically significant difference
between training and test log-likelihoods!

These models are not just memorizing training examples.

Larger model ==> much higher log-likelihood

VAEs achieve much higher log-likelihood than GANs and GMMNs

AIS estimates are accurate (small BDMC gap)

Training curves for a GMMN

1000 4000 6000 8000 10000
numEer of Epochs

200

300

400

500

600
Lo

g-
lLk

el
Lh

oo
d

tMMN50 training curves

Train AIS
Valid AIS
Train KDE
Valid KDE

Training curves for a VAE

100200 400 600 800 1000
numEer of Epochs

400

600

800

1000

1200

Lo
g

-l
Lk

e
lLh

o
o
d

VAE50 training curves

Train AIS

Valid AIS
Train KDE

Valid KDE

Train IWAE

Valid IWAE

Missing modes

The GAN seriously misallocates probability mass between modes:

200 epochs 1000 epochs

But this effect by itself is too small to explain why it underperforms
the VAE by over 350 nats

Missing modes

• To see if the network is missing modes, let’s visualize posterior
samples given observations.

• Use AIS to approximately sample z from p(z | x), then run the
decoder

• Using BDMC, we can validate the accuracy of AIS samples on
simulated data

Missing modes

data

GAN-10
VAE-10

GMMN-10
GAN-50
VAE-50

GMMN-50

Visualization of posterior samples for validation images

Missing modes

data

GAN-10
VAE-10

GMMN-10
GAN-50
VAE-50

GMMN-50

Posterior samples on training set

Missing modes

Conjecture: the GAN acts like a frustrated student

200 epochs 1000 epochs

Conclusions

• AIS gives high-accuracy log-likelihood estimates on MNIST (as validated
by BDMC)

• This lets us observe interesting phenomena that are invisible to KDE

• GANs and GMMNs are not just memorizing training examples

• VAEs achieve substantially higher log-likelihoods than GANs and GMMNs

• This appears to reflect failure to model certain modes of the data distribution

• Recognition nets can overfit

• Networks may continue to improve during training, even if KDE
estimates don’t reflect that

• Will be interesting to measure the effects of other algorithmic
improvements to these networks

