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Intro

@ Policy m maps states (observation) to actions: 7(s) = a

@ Action-Value Function @ gives expected total reward from a state
and action from some policy

Q"(s,a) = E[re1 + yreso + VPress + st =s,ar=a] (1)

@ Optimal Action-Value Function Q* gives best value possible from any
policy

Q*(s,a) = mﬁxE[rtH + Yo+ res +sc =s,ar = a, 1] (2)

= Esr[r—f—’ymax Q*(Slﬂal)’S?a] (3)
a/
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Deep Q Networks (DQN)

Idea: want to replicate successes of Supervised Learning in
Reinforcement Learning.

Q@* is a function, so we can approximate with a Deep Network.

@ Loss Function for Q-learning updates (MSE)

L(w)=E

2
<I’ + v m?X Q(Sla a,a W) - Q(S, 9 W)> ]

Loss is difference between target value (fixed) and current estimate of
Q.

Gradient of Loss

VwL(w)=E [(r + 7 max Q(s',d,w) — Q(s, a, W)) VuwQ(s,a, w)]
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Architecture of DQN
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Architecture of DQN cont.

32 4x4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84
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Stack of 4 previous ] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units
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Architecture of DQN cont..

Hyperparameter Value Description

minibatch size 2 _Number of training cases over which each stochastic gradient descent (SGD) update
is computed.

replay memory size 1000000 SGD updates are sampled from this number of most recent frames.

. The number of most recent frames experienced by the agent that are given as input to

agent history length 4 the Q network.
The frequency (measured in the number of parameter updates) with which the target

target network update frequency 10000 network is updated (this corresponds to the parameter C from Algorithm 1)

discount factor 0.99 Discount factor gamma used in the Q-learning update.

action repeat 4 Repeat each action selected by the agent this many times. Using a value of 4 results

P in the agent seeing only every 4th input frame.

The number of actions selected by the agent between successive SGD updates.

update frequency < Using a value of 4 results in the agent selecting 4 actions between each pair of
successive updates.

learning rate 0.00025 The learning rate used by RMSProp.

gradient momentum 095 Gradient momentum used by RMSProp.

squared gradient momentum 085 q gradient ) used by RMSProp.

min squared gradient 0.01 Constant added to the squared gradient in the denominator of the RMSProp update.

initial exploration 1 Initial value of € in £-greedy exploration

final exploration 01 Final value of € in £-greedy exploration.

final exploration frame 1000000 Thla number of frames over which the initial value of € is linearly annealed to its final
value

5 A uniform random policy is run for this number of frames before learning starts and the
replay start size S0000 resulting experience is used to populate the replay memory.
no-op max 30 Maximum number of “do nothing” actions to be performed by the agent at the start of
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Issues

@ Observations are sequential and correlated (non iid).
e How about destroying the temporal structure?

@ Data distribution depends on policy (action), which may change
drastically with small changes in Q.

e Good policy at some situations will be irrelevant at other situations.
© Gradients are sensitive to scale of Rewards
o Gradient Clipping, restrict reward e.g. r € [—1, 1], batch normalization
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Experience Replay [Lin 1993]

@ Helps with the first two issues (correlated observations, non-stationary
data distribution).

e First, choose action from e-greedy policy, then store (st, at, rt, St+1)
to memory D.

@ Sample a mini-batch of (s, a, r,s’) ~ D and use that to optimize loss.

2
,C(W) = Es,a,r,s/ND (r + mjx Q(slv a/’ W) - Q(Sv a, W)> ]

@ By doing batch learning, we gained some protection from correlated
observations and non-stationary data distribution.

@ However, we have lost the temporal structure of the data.

@ Instead of looking at individual experience samples, we could replay
sequences of experiences (lessons).

Dayeol Choi Deep RL Nov. 4th 2016 8 /13



Fixed Target Q Network

e Often, whenever we update Q(s¢, a;) by increasing it, Q(st+1, at) is
increased for all actions.

e This means our target r + vy max, Q(s, a, w) is also increased.
@ Our updates to @ and our targets are correlated.

@ To fix this correlation, we add a delay between updates to Q and
computation of targets.

@ This is done by computing targets using older sets of parameters, not
the most recent.
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Q-Learning vs DQN

Game \A.Iith replay, .With replay, Wilihout replay, V\..'ithoul replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
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Linear vs. Nonlinear Function Approximator

Effect of replacing a Deep Network with a shallow network with one linear

hidden layer.
Note: Previous work using linear function approximation will sometimes

perform better than shallow network e.g. 129.1 in Enduro.

Game DQN Linear
Breakout 316.8 3.00
Enduro 1006.3 62.0
River Raid 7446.6 2346.9
Seaquest 2894 .4 656.9
Space Invaders 1088.9 301.3
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The learning algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 07 =0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢; =¢(s;)
For t = 1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax, O(¢ (s ).a; )
Execute action a, in emulator and observe reward r, and image x; 4
Set 5,1 =5.4y,% 41 and preprocess ¢, | =¢(s41)
Store transition (tﬁr,a,,rf,q%H 1) inD
Sample random minibatch of transitions (¢‘,af,rf,¢j +1) from D

7 if episode terminates at step j+1

Sety;= 7j+y maxy Q(tf)jH,a’;(J_) otherwise
2
Perform a gradient descent step on (yf - Q((ii-,aj; (J)) with respect to the
network parameters 0
Every C steps reset Q=0
End For
End For
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