
GAN Frontiers/Related Methods

Improving GAN Training
Improved Techniques for Training GANs (Salimans, et. al 2016)

CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu)

Training GANs is Difficult

● General Case is hard to solve
○ Cost functions are non-convex
○ Parameters are continuous
○ Extreme Dimensionality

● Gradient descent can’t solve everything
○ Reducing cost of generator could increase cost of

discriminator
○ And vice-versa

Simple Example

● Player 1 minimizes f(x) = xy
● Player 2 minimizes f(y) = -xy
● Gradient descent enters a

stable orbit
● Never reaches x = y = 0

(Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 2016. MIT Press)

Working on
Converging

● Feature Mapping
● Minibatch Discrimination
● Historical Averaging
● Label Smoothing
● Virtual Normalization

Feature Matching

● Generate data that matches the statistics of real data
● Train generator to match expected value of intermediate

discriminator layer:

(Where f(x) is some activations of an intermediate layer)

● Still no guarantee of reaching G*
● Works well in empirical tests

Minibatch Discrimination

● Discriminator looks at generated
examples independently

● Can’t discern generator collapse
● Solution: Use other examples as

side information
● KL divergence does not change
● JS favours high entropy

(Ferenc Huszár - http://www.inference.vc/understanding-minibatch-discrimination-in-gans/)

And More...

● Historical Averaging:
● Label Smoothing:

○ e.g., 0.1 or 0.9 instead of 0 or 1
○ Negative values set to zero

● Virtual Batch Normalization:
○ Each batch normalized w.r.t a fixed reference
○ Expensive, used only in generator

Assessing Results

Ask Somebody

● Solution: Amazon Mechanical Turk
● Problem:

○ “TASK IS HARD.”
○ Humans are slow, and unreliable,

and …
● Annotators learn from mistakes

(http://infinite-chamber-35121.herokuapp.com/cifar-minibatch/)

Inception Score

● Run output through Inception Model
● Images with meaningful objects should have a label

distribution (p(y|x)) with low entropy
● Set of output images should be varied
● Proposed score:

● Requires large data sets (>50,000 images)

Semi-Supervised
Learning

Semi-Supervision

● We can incorporate generator output into any classifier
● Include generated samples into data set
● New “generated” label class

○ [Label1, Label2, …, Labeln, Generated]
● Classifier can now act as our discriminator

(Odena, “Semi-Supervised Learning with Generative Adversarial Networks” -- https://arxiv.org/pdf/1606.01583v1.pdf)

Experimental
Results

Generating from MNIST
Semi-Supervised generation without (left) and with (right) minibatch discrimination

Generating from ILSVRC2012
Using DCGAN to generate without (left) and with (right) improvements

Where to go from
here

Further Work

● Mini-batch Discrimination in action: https://arxiv.org/pdf/1609.05796v1.pdf
○ Generating realistic images of galaxies for telescope calibration

● MBD for energy based systems:
○ https://arxiv.org/pdf/1609.03126v2.pdf

https://arxiv.org/pdf/1609.05796v1.pdf
https://arxiv.org/pdf/1609.03126v2.pdf
https://arxiv.org/pdf/1609.03126v2.pdf

Adversarial Autoencoders (AAEs)
Adversarial Autoencoders (Makhzani, et. al 2015)

CSC 2541 (07/10/2016) Jake Stolee (jstolee@cs.toronto.edu)

Variational Autoencoders (VAEs)

● Maximize the variational lower bound (ELBO) of log p(x):

} }
Reconstruction qualityDivergence of q from prior

(regularization)

Motivation: an issue with VAEs

● After training a VAE, we can feed samples from the latent
prior (p(z)) to the decoder (p(x|z)) to generate data points

● Unfortunately, in practice, VAEs often leave “holes” in the
prior’s space which don’t map to realistic data samples

From VAEs to Adversarial Autoencoders (AAEs)

● Both turn autoencoders into generative models
● Both try to minimize reconstruction error
● A prior distribution p(z) is imposed on the encoder (q(z)) in

both cases, but in different ways:
○ VAEs: Minimizes KL(q(z)||p(z))
○ AAEs: Uses adversarial training (GAN framework)

Adversarial Autoencoders (AAEs)

● Combine an autocoder with a GAN
○ Encoder is the generator, G(x)
○ Discriminator, D(z), trained to differentiate between samples from prior

p(z) and encoder output (q(z))

● Autoencoder portion attempts to minimize reconstruction
error

● Adversarial network guides q(z) to match prior p(z)

Autoencoder

Adversarial Net

Training
● Train jointly with SGD in two phases
● “Reconstruction” phase (autoencoder):

○ Run data through encoder and decoder, update both based on
reconstruction loss

● “Regularization” phase (adversarial net):
○ Run data through encoder to “generate” codes in the latent space

■ Update D(z) based on its ability to distinguish between samples from
prior and encoder output

■ Then update G(x) based on its ability to fool D(z) into thinking codes
came from the prior, p(z)

Resulting latent spaces of AAEs vs VAEs

AAE vs VAE on MNIST (held out images in latent space)
● First row: Spherical 2-D Gaussian prior
● Second row: MoG prior (10 components)

Possible
Modifications

Incorporating Label Info

Incorporating Label Info

Possible
Applications

Example Samples

Unsupervised Clustering

Disentangling Style/Content

http://www.comm.utoronto.ca/~makhzani/adv_ae/svhn.gif

More Applications...
● Dimensionality reduction
● Data visualization
● …

(see paper for more)

Further reading
Nice blog post on AAEs: http://hjweide.github.io/adversarial-autoencoders

Thanks!

