GAN Frontiers/Related Methods

Improving GAN Training

Improved Techniques for Training GANs (Salimans, et. al 2016)

CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu)

Training GANs is Difficult

- General Case is hard to solve
 - Cost functions are non-convex
 - Parameters are continuous
 - Extreme Dimensionality
- Gradient descent can't solve everything
 - Reducing cost of generator could increase cost of discriminator
 - \circ And vice-versa

Simple Example

- Player 1 minimizes f(x) = xy
- Player 2 minimizes f(y) = -xy
- Gradient descent enters a stable orbit
- Never reaches x = y = 0

(Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 2016. MIT Press)

Working on Converging

- Feature Mapping
- Minibatch Discrimination
- Historical Averaging
- Label Smoothing
- Virtual Normalization

Feature Matching

- Generate data that matches the statistics of real data
- Train generator to match expected value of intermediate discriminator layer:

$$||\mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}} \mathbf{f}(oldsymbol{x}) - \mathbb{E}_{oldsymbol{z} \sim p_{oldsymbol{z}}(oldsymbol{z})} \mathbf{f}(G(oldsymbol{z}))||_2^2$$

(Where f(x) is some activations of an intermediate layer)

- Still no guarantee of reaching G*
- Works well in empirical tests

Minibatch Discrimination

- Discriminator looks at generated examples independently
- Can't discern generator collapse
- Solution: Use other examples as side information
- KL divergence does not change
- JS favours high entropy

And More...

- Historical Averaging: $|| \theta \frac{1}{t} \sum_{i=1}^{t} \theta[i] ||^2$
- Label Smoothing:
 - $\circ~$ e.g., 0.1 or 0.9 instead of 0 or 1
 - Negative values set to zero
- Virtual Batch Normalization:
 - Each batch normalized w.r.t a fixed reference
 - Expensive, used only in generator

Assessing Results

Ask Somebody

- Solution: Amazon Mechanical Turk
- Problem:
 - "TASK IS HARD."
 - Humans are slow, and unreliable, and ...
- Annotators learn from mistakes

(http://infinite-chamber-35121.herokuapp.com/cifar-minibatch/)

Your score on this question is 6/9

Inception Score

- Run output through Inception Model
- Images with meaningful objects should have a label distribution (p(y|x)) with low entropy
- Set of output images should be varied
- Proposed score:

 $\exp(\mathbb{E}_{\boldsymbol{x}} \mathrm{KL}(p(y|\boldsymbol{x})||p(y)))$

• Requires large data sets (>50,000 images)

Semi-Supervised Learning

Semi-Supervision

- We can incorporate generator output into any classifier
- Include generated samples into data set
- New "generated" label class
 [Label₁, Label₂, ..., Label_n, Generated]
- Classifier can now act as our discriminator

(Odena, "Semi-Supervised Learning with Generative Adversarial Networks" -- https://arxiv.org/pdf/1606.01583v1.pdf)

Experimental Results

Generating from MNIST

Semi-Supervised generation without (left) and with (right) minibatch discrimination

Generating from ILSVRC2012

Using DCGAN to generate without (left) and with (right) improvements

Where to go from here

Further Work

• Mini-batch Discrimination in action: <u>https://arxiv.org/pdf/1609.05796v1.pdf</u>

• Generating realistic images of galaxies for telescope calibration

- MBD for energy based systems:
 - https://arxiv.org/pdf/1609.03126v2.pdf

Adversarial Autoencoders (AAEs)

Adversarial Autoencoders (Makhzani, et. al 2015)

CSC 2541 (07/10/2016)

Jake Stolee (jstolee@cs.toronto.edu)

Variational Autoencoders (VAEs)

• Maximize the variational lower bound (ELBO) of $\log p(x)$:

$$\mathcal{L}(\phi, \theta, \mathbf{x}) = -D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log p_{\theta}(\mathbf{x}|\mathbf{z}))$$
Divergence of *q* from prior (regularization) Reconstruction quality

Motivation: an issue with VAEs

- After training a VAE, we can feed samples from the latent prior (p(z)) to the decoder (p(x|z)) to generate data points
- Unfortunately, in practice, VAEs often leave "holes" in the prior's space which don't map to realistic data samples

From VAEs to Adversarial Autoencoders (AAEs)

- Both turn autoencoders into generative models
- Both try to minimize reconstruction error
- A prior distribution p(z) is imposed on the encoder (q(z)) in both cases, but in different ways:
 - VAEs: Minimizes KL(q(z)||p(z))
 - AAEs: Uses adversarial training (GAN framework)

Adversarial Autoencoders (AAEs)

- Combine an autocoder with a GAN
 - Encoder is the generator, G(x)
 - Discriminator, D(z), trained to differentiate between samples from prior p(z) and encoder output (q(z))
- Autoencoder portion attempts to minimize reconstruction error
- Adversarial network guides q(z) to match prior p(z)

Training

- Train jointly with SGD in two phases
- *"Reconstruction"* phase (autoencoder):
 - Run data through encoder and decoder, update both based on reconstruction loss
- *"Regularization"* phase (adversarial net):
 - Run data through encoder to "generate" codes in the latent space
 - Update D(z) based on its ability to distinguish between samples from prior and encoder output
 - Then update G(x) based on its ability to fool D(z) into thinking codes came from the prior, p(z)

Resulting latent spaces of AAEs vs VAEs

- First row: Spherical 2-D Gaussian prior
- Second row: MoG prior (10 components)

Possible Modifications

Incorporating Label Info

Incorporating Label Info

R 00000000000	000000	11111	1111111111	111 222:	22222222222222
000000000000	000000	11111		111 222	222222222222222
00000000000	000000	11111		111 222:	222222222222222
00000000000	000000	11111		111 222	2222222222222222
00000000000	000000	11111		111 222	2222222222222222
00000000000	000000	11111		111 222:	22222222222222222
00000000000	000000	11111		111 222:	2222222222222222
00000000000	000000	11111	1111111111	111 222:	222222222222222
00000000000	000000	11111		111 222:	2222222222222222
00000000000	000000	11111	111111111	111 222:	222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222
00000000000	000000	11111	111111111	111 222.	2222222222222222

Possible Applications

Example Samples

a

(a) MNIST samples (8-D Gaussian)

(b) TFD samples (15-D Gaussian)

Unsupervised Clustering

Figure 9: Unsupervised clustering of MNIST using the AAE with 16 clusters. Each row corresponds to one cluster with the first image being the cluster head. (see text)

Disentangling Style/Content

http://www.comm.utoronto.ca/~makhzani/adv_ae/svhn.gif

More Applications...

- Dimensionality reduction
- Data visualization

...

(see paper for more)

Further reading

Nice blog post on AAEs: http://hjweide.github.io/adversarial-autoencoders

Thanks!