Applications of GANs

- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
- Generative Adversarial Text to Image Synthesis

Using GANs for Single Image Super-Resolution

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

Problem

How do we get a high resolution (HR) image from just one (LR) lower resolution image?

Answer: We use super-resolution (SR) techniques.

Previous Attempts

original

bicubic (21.59dB/0.6423)

SRResNet (23.44dB/0.7777)

SRGAN (20.34dB/0.6562)

SRGAN

original

bicubic (21.59dB/0.6423)

SRResNet (23.44dB/0.7777)

SRGAN (20.34dB/0.6562)

SRGAN - Generator

- G: generator that takes a low-res image I^{LR} and outputs its high-res counterpart I^{SR}
- θ_G: parameters of G, {W_{1:L}, b_{1:L}}
- l^{SR} : loss function measures the difference between the 2 high-res images

$$\hat{\theta}_G = \arg\min_{\theta_G} \frac{1}{N} \sum_{n=1}^{N} l^{SR}(G_{\theta_G}(I_n^{LR}), I_n^{HR})$$

SRGAN - Discriminator

- D: discriminator that classifies whether a high-res image is I^{HR} or I^{SR}
- θ_D: parameters of D

$$\min_{\theta_G} \max_{\theta_D} \mathbb{E}_{I^{HR} \sim p_{\text{train}}(I^{HR})} [\log D_{\theta_D}(I^{HR})] + \\
\mathbb{E}_{I^{LR} \sim p_G(I^{LR})} [\log(1 - D_{\theta_D}(G_{\theta_G}(I^{LR}))]$$

SRGAN - Perceptual Loss Function

Loss is calculated as weighted combination of:

- → Content loss
- → Adversarial loss
- → Regularization loss

SRGAN - Content Loss

Instead of MSE, use loss function based on ReLU layers of pre-trained VGG network. Ensures similarity of content.

- $\phi_{i,i}$: feature map of jth convolution before ith maxpooling
- W_{i,j} and H_{i,j}: dimensions of feature maps in the VGG

$$l_{VGG/i,j}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2$$

SRGAN - Adversarial Loss

Encourages network to favour images that reside in manifold of natural images.

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$

SRGAN - Regularization Loss

Encourages spatially coherent solutions based on total variations.

$$l_{TV}^{SR} = \frac{1}{r^2 W H} \sum_{x=1}^{rW} \sum_{y=1}^{rH} ||\nabla G_{\theta_G}(I^{LR})_{x,y}||$$

SRGAN - Examples

Figure 5: Reference HR image (left: a,b) with corresponding SRResNet (middle left: c,d), SRGAN-MSE (middle: e,f), SRGAN-VGG2.2 (middle right: g,h) and SRGAN-VGG54 (right: i,j) reconstruction results.

SRGAN - Examples

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Work by Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus

Short Background

Conditional Generative Adversarial Nets (CGAN)

Mirza and Osindero (2014)

$$\underset{G}{\mathsf{GAN}} \quad \min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\begin{array}{ll} \mathsf{CGAN} & \min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\underline{\boldsymbol{y}})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z}|\underline{\boldsymbol{y}})))] \end{array}$$

Laplacian pyramid

Burt and Adelson (1983)

Laplacian pyramid

Burt and Adelson (1983)

Laplacian Pyramid Generative Adversarial Network (LAPGAN)

Image Generation

$$\tilde{I}_k = u(\tilde{I}_{k+1}) + \tilde{h}_k = u(\tilde{I}_{k+1}) + G_k(z_k, u(\tilde{I}_{k+1}))$$

Training

Generation: Coarse to fine

Different draws, starting from the same initial 4x4 image

Some thoughts on the method

• The Laplacian Pyramid Framework is independent of the Generative Model

Possible to use a completely different model like Pixel RNN

Some thoughts on the method

The Generative Models at each step can be totally different!

Some thoughts on the method

• The Generative Models at each step can be totally different!

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee

Motivation

Current deep learning models enable us to...

- Learn feature representations of images & text
- Generate realistic images & text

pull out images based on captions

- lack lack generate descriptions based on
- **√** images
- answer questions about image content

"Two pizzas sitting on top of a stove top oven"

Problem - Multimodal distribution

- Many plausible image can be associated with one single text description
- Previous attempt uses Variational Recurrent
 Autoencoders to generate image from text caption
 but the images were not realistic enough.
 (Mansimov et al. 2016)

What GANs can do

- CGAN: Use side information (eg. classes) to guide the learning process
- Minimax game: Adaptive loss function

Multi-modality is a very well suited property for GANs to learn.

The Model - Basic CGAN

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{x \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

The Model - Variations

GAN-CLS

In order to distinguish different error sources:

Present to the discriminator network <u>3</u> different types of input. (instead of 2)

Algorithm

- 1: **Input:** minibatch images x, matching text t, mismatching \hat{t} , number of training batch steps S
- 2: for n=1 to S do
- 3: $h \leftarrow \varphi(t)$ {Encode matching text description}
- 4: $\hat{h} \leftarrow \varphi(\hat{t})$ {Encode mis-matching text description}
- 5: $z \sim \mathcal{N}(0,1)^Z$ {Draw sample of random noise}
- 6: $\hat{x} \leftarrow G(z, h)$ {Forward through generator}
- 7: $s_r \leftarrow D(x, h)$ {real image, right text}
- 8: $s_w \leftarrow D(x, \hat{h})$ {real image, wrong text}
- 9: $s_f \leftarrow D(\hat{x}, h)$ {fake image, right text}
- 10: $\mathcal{L}_D \leftarrow \log(s_r) + (\log(1 s_w) + \log(1 s_f))/2$
- 11: $D \leftarrow D \alpha \partial \mathcal{L}_D / \partial D$ {Update discriminator}
- 12: $\mathcal{L}_G \leftarrow \log(s_f)$
- 13: $G \leftarrow G \alpha \partial \mathcal{L}_G / \partial G$ {Update generator}
- 14: end for

The Model - Variations cont.

GAN-INT

In order to generalize the output of G:

Interpolate between training set embeddings to generate new text and hence fill the gaps on the image data manifold.

Updated Equation

$$\begin{aligned} & \min_{G} \; \max_{D} V(D,G) = \\ & = \; \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] \\ & + \; \mathbb{E}_{x \sim p_{z}(z)}[\log(1-D(G(z)))] + \\ & \mathbb{E}_{t_{1},t_{2} \sim p_{data}}[\log(1-D(G(z,\beta t_{1}+(1-\beta)t_{2})))] \\ & \quad \{ \text{fake image, fake text} \} \end{aligned}$$

GAN-INT-CLS: Combination of both previous variations

Disentangling

- Style is background, position & orientation of the object, etc.
- Content is shape, size & colour of the object, etc.

 Introduce S(x), a style encoder with a squared loss function:

$$\mathcal{L}_{style} = \mathbb{E}_{t,z \sim \mathcal{N}(0,1)} ||z - S(G(z,\varphi(t)))||_2^2$$

 Useful in generalization: encoding style and content separately allows for different new combinations

Training - Data (separated into <u>class-disjoint</u> train and test sets)

Caltech-UCSD Birds

Oxford Flowers

MS COCO

Training – Results: Flower & Bird

GT

these flowers have petals that start off white in color and end in a dark purple towards the tips.

GAN

GAN - CLS

GAN - INT

GAN - INT - CLS

a tiny bird, with a tiny beak, tarsus and feet, a blue crown, blue coverts, and black cheek patch

Training – Results: MS COCO

a large blue octopus kite flies above the people having fun at the beach.

a toilet in a small room with a window and unfinished walls.

a man in a wet suit riding a surfboard on a wave.

Mansimov et al.

A herd of elephants flying in the blue skies.

A toilet seat sits open in the grass field.

A person skiing on sand clad vast desert.

Training – Results Style disentangling

Text descriptions Images (content) (style)

4444

The bird has a **yellow breast** with **grey** features and a small beak.

This is a large white bird with black wings and a red head.

A small bird with a **black head and** wings and features grey wings.

This bird has a **white breast**, brown and white coloring on its head and wings, and a thin pointy beak.

A small bird with **white base** and **black stripes** throughout its belly, head, and feathers.

A small sized bird that has a cream belly and a short pointed bill.

This bird is **completely red**.

This bird is completely white.

This is a **yellow** bird. The **wings are bright blue**.

$$s \leftarrow S(x)$$

$$\hat{x} \leftarrow G(s, \varphi(t))$$

Thoughts on the paper

Image quality

Generalization

Future work