
Graph Cuts is a Max-Product Algorithm

Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey
University of Toronto
Toronto, ON M5S 3G4

{dtarlow@cs, inmar@psi, zemel@cs, frey@psi}.toronto.edu

Abstract

The maximum a posteriori (MAP) configu-
ration of binary variable models with sub-
modular graph-structured energy functions
can be found efficiently and exactly by graph
cuts. Max-product belief propagation (MP)
has been shown to be suboptimal on this class
of energy functions by a canonical counterex-
ample where MP converges to a suboptimal
fixed point (Kulesza & Pereira, 2008).
In this work, we show that under a partic-
ular scheduling and damping scheme, MP
is equivalent to graph cuts, and thus opti-
mal. We explain the apparent contradiction
by showing that with proper scheduling and
damping, MP always converges to an optimal
fixed point. Thus, the canonical counterex-
ample only shows the suboptimality of MP
with a particular suboptimal choice of sched-
ule and damping. With proper choices, MP
is optimal.

1 Introduction

Maximum a posteriori (MAP) inference in probabilis-
tic graphical models is a fundamental machine learn-
ing task with applications to fields such as computer
vision and computational biology. There are various
algorithms designed to solve MAP problems, each pro-
viding different problem-dependent theoretical guar-
antees and empirical performance. It is often difficult
to choose which algorithm to use in a particular ap-
plication. In some cases, however, there is a “gold-
standard” algorithm that clearly outperforms compet-
ing algorithms, such as the case of graph cuts for bi-
nary submodular problems.1 A popular and more gen-

1From here on, we drop “graph-structured” and refer
to the energy functions just as binary submodular. Un-
less explicitly specified otherwise, we always assume that
energies are defined on a simple graph.

eral, but also occasionally erratic, algorithm is max-
product belief propagation (MP).

Our aim in this work is to establish the precise re-
lationship between MP and graph cuts, namely that
graph cuts is a special case of MP. To do so, we map
analogous aspects of the algorithms to each other: mes-
sage scheduling in MP to selecting augmenting paths
in graph cuts; passing messages on a chain to push-
ing flow through an augmenting path; message damp-
ing to limiting flow to be the bottleneck capacity of
an augmenting path; and letting messages reinforce
themselves on a loopy graph to connected components
decoding scheme of graph cuts.

This equivalence implies strong statements regarding
the optimality of MP on binary submodular energies
defined on graphs with arbitrary topology, which may
appear to contradict much of what is known about
MP—all empirical results showing MP to be subopti-
mal on binary submodular problems, and the theoret-
ical results of Kulesza and Pereira (2008); Wainwright
and Jordan (2008) which show analytically that MP
converges to the wrong solution. We analyze this is-
sue in depth and show there is no contradiction, but
implicit in the previous analysis and experiments is a
suboptimal choice of scheduling and damping, leading
the algorithms to converge to bad fixed points. Our
results give a more complete characterization of these
issues, showing (a) there is always an optimal fixed
point for binary submodular energy functions (exis-
tence), and (b) with proper scheduling and damping
MP can always be made to converge to an optimal
fixed point (construction).

The existence of the optimal MP fixed point can alter-
natively be derived as a consequence of the analysis of
the zero temperature limit of convexified sum-product
in Weiss et al. (2007) along with the well-known fact
that the standard linear program relaxation is tight
for binary submodular energies. Our proof of the ex-
istence of the fixed point, then, is an alternative, more
direct proof. However, we believe our construction of

the fixed point to be novel and significant, particu-
larly due to the fact that the construction comes from
simply running max-product within the standard algo-
rithmic degrees of freedom of damping and scheduling.

Our analysis is significant for many reasons. Two of
the most important are as follows. First, it shows
that previous constructions of MP fixed points for bi-
nary submodular energy functions critically depend on
the particular schedule, damping, and initialization.
Though there exist suboptimal fixed points, there also
always exist optimal fixed points, and with proper
care, the bad fixed points can always be avoided. Sec-
ond, it simplifies the space of MAP inference algo-
rithms, making explicit the connection between two
popular and seemingly distinct algorithms. The map-
ping improves our understanding of message schedul-
ing and gives insight into how graph cut-like algo-
rithms might be developed for more general settings.

2 Background and Notation

We are interested in finding maximizing assignments of
distributions P (x)∝e−E(x) where x = {x1, . . . , xM} ∈
{0, 1}M . We can equivalently seek to minimize the
energy E, and for the sake of exposition we choose to
present the analysis in terms of energies2.

We restrict our attention to submodular energy func-
tions over binary variables. Graph-structured energy
functions are defined on a simple graph, G = (V, E),
where each node is associated with a variable x. Po-
tential functions Θi and Θij map configurations of in-
dividual variables and pairs of variables whose corre-
sponding nodes share an edge, respectively, to real val-
ues. We write this energy function as

E(x; Θ) =
∑

i∈V
Θi(xi) +

∑

ij∈E
Θij(xi, xj). (1)

E is said to be submodular if and only if for all ij ∈ E ,
Θij(0, 0)+Θij(1, 1) ≤ Θij(0, 1)+Θij(1, 0). We use the
shorthand notation [θ0

i , θ1
i] = [Θi(0),Θi(1)].

When E is submodular, it is always possible to repre-
sent all pairwise potentials in the canonical form

[
Θij(0, 0) Θij(0, 1)
Θij(1, 0) Θij(1, 1)

]
=

[
0 θ01

ij

θ10
ij 0

]

with θ01
ij , θ10

ij ≥ 0 without changing the energy of any
assignment. Further, by adding a constant κi to θ0

i

and θ1
i , we can ensure that one entry of each unary

2This makes “max-product” a bit of a misnomer, since
in reality, we will be analyzing min-sum belief propagation.
The two are equivalent, however, so we will use “max-
product” (MP) throughout, and it should be clear from
context when we mean “min-sum”.

potential is non-negative, and that the other is 0. This
will not change the optimal assignment. We assume
that energies are expressed in this form throughout.3
Note that θ01

ij and θ10
ji refer to the same quantity.

2.1 Graph Cuts

Graph cuts is a well-known algorithm for minimiz-
ing graph-structured binary submodular energy func-
tions. It is known to converge to the optimal solu-
tion in low-order polynomial time by transformation
into a maximum network flow problem. The energy
function is converted into a weighted directed graph
GC = (VGC , EGC , C), where C is an edge function that
maps each directed edge (i, j) ∈ EGC to a non-negative
real number representing the initial capacity of the
edge. One non-terminal node vi ∈ VGC is constructed
for each variable xi ∈ V, and two terminal nodes, a
source s, and a sink t, are added to VGC . Undirected
edges in E are mapped to two directed edges in EGC ,
one per direction. The initial capacity of the directed
edge (i, j) ∈ EGC is set to θ01

ij , and the initial capac-
ity of the directed edge (j, i) ∈ EGC is set to θ10

ij . In
addition, directed edges are created from the source
node to every non-terminal node, and from every non-
terminal node to the sink node. The initial capacity
of the terminal edge from s to vi is set to be θ1

i , and
the initial capacity of the terminal edge from vi to t
is set to be θ0

i . We assume that the energy function
has been normalized so that one of the initial terminal
edge capacities is 0 for every non-terminal node.

Residual graph: Throughout the course of an aug-
menting paths-based max-flow algorithm, residual ca-
pacities (or equivalently hereafter, capacities) are
maintained for each directed edge. The residual capac-
ity is the amount of flow that can be pushed through an
edge either by using unused capacity or by reversing
flow that has been pushed in the opposite direction.
Given a flow of fij from vi to vj via edge (i, j) and
a flow of fji from vj to vi via edge (j, i), the residual
capacity is rij = θ10

ij − fij + fji. An augmenting path
is a path from s to t through the residual graph (the
graph with edge capacities given by r) that has posi-
tive capacity. We call the minimum residual capacity
of any edge along an augmenting path the bottleneck
capacity for the augmenting path.

Two phases of graph cuts: Augmenting path algo-
rithms for graph cuts proceed in two phases. In Phase
1, flow is pushed through augmenting paths until all
source-connected nodes (i.e., those with an edge from
source to the node with positive capacity) are sepa-
rated from all sink-connected nodes (i.e., those with

3See Kolmogorov and Zabih (2002) for a more thorough
discussion of representational matters.

an edge to the sink with positive capacity). In Phase
2, to determine assignments, a connected components
algorithm is run to find all nodes that are reachable
from the source and sink, respectively.

Phase 1 – Reparametrization: The first phase
can be viewed as reparameterizing the energy function,
moving mass from unary and pairwise potentials to
other pairwise potentials and from unary potentials
to a constant potential (Kohli & Torr, 2007). The
constant potential is a lower bound on the optimum.

We begin by rewriting (1) as

E(x; Θ) =
∑

i∈V
θ0

i (1− xi) +
∑

i∈V
θ1

i xi +
∑

ij∈E
θ01

ij (1− xi)xj

+
∑

ij∈E
θ10

ij xi(1− xj) + θconst, (2)

where we added a constant term θconst, initially set to
0, to E(x; Θ) without changing the energy.

A reparametrization is a change in potentials from Θ
to Θ̃ such that E(x; Θ) = E(x; Θ̃) for all assignments
x. Pushing flow corresponds to factoring out a con-
stant, f , from some subset of terms and applying the
following algebraic identity to terms from (2):

f · [x1 + (1− x1)x2 + . . . + (1− xN−1)xN + (1− xN)]
= f · [x1(1− x2) + . . . + xN−1(1− xN) + 1] .

By ensuring that f is positive (choosing paths that
can sustain flow), the constant potential can be made
to grow at each iteration. When no paths exist with
nonzero f , θconst is the optimal energy value (Ford &
Fulkerson, 1956).

In terms of the individual coefficients, pushing flow
through a path corresponds to reparameterizing en-
tries of the potentials on an augmenting path:

θ1
1 := θ1

1 − f (3)
θ0

N := θ0
N − f (4)

θ01
ij := θ01

ij − f for all ij on path (5)

θ10
ij := θ10

ij + f for all ij on path (6)
θconst := θconst + f . (7)

Phase 2 – Connected Components: After no more
paths can be found, most nodes will not be directly
connected to the source or the sink by an edge that
has positive capacity in the residual graph. In order
to determine assignments, information must be propa-
gated from nodes that are directly connected to a ter-
minal via positive capacity edges to other non-terminal
nodes. A connected components procedure is run, and
any node that is (possibly indirectly) connected to the
sink is assigned label 0, and any node that is (possi-
bly indirectly) connected to the source is given label

1. Nodes that are not connected to either terminal
can be given an arbitrary label without changing the
energy of the configuration, so long as within a con-
nected component the labels are consistent. In prac-
tice, terminal-disconnected nodes are given label 0.

2.2 Strict Max-Product Belief Propagation

Strict max-product belief propagation (Strict MP) is
an iterative, local, message passing algorithm that can
be used to find the optimal MAP configuration of a
distribution specified by a tree-structured graphical
model. The algorithm can equally be applied to loopy
graphs. Employing the energy function notation, the
algorithm is usually referred to as min-sum. Using the
factor-graph representation (Kschischang et al., 2001),
the iterative updates on simple graph-structured ener-
gies involve sending messages from factors to variables

mΘi→xi(xi) = Θi(xi) (8)

mΘij→xj (xj) =min
xi

[
Θij(xi, xj) + mxi→Θij (xi)

]
(9)

and from variables to factors, mxi→Θij (xi) =∑
i′∈N (i)\{j} mΘi′i→xi(xi), where N (i) is the set of

neighbor variables of i in G. In Strict MP, we require
that all messages are updated in parallel in each it-
eration. Assignments are typically decoded from be-
liefs as x̂i = arg minxi bi(xi), where bi(xi) = Θi(xi) +∑

j∈N (i) mΘji→xi(xi). Pairwise beliefs are defined as
bij(xi, xj) = Θij(xi, xj)+mxi→Θij (xi)+mxj→Θij (xj).4
We use the notation FG = (G,Θ,m) to contain the
factor graph structure, potentials, and messages.

2.3 Max-Product Belief Propagation

In practice, Strict MP does not converge well, so a
combination of damping and asynchronous message
passing schemes is typically used. Message damping
with strength γ defines a new message to be γ times
the old message plus 1− γ times the newly computed
message. Thus, MP is actually a family of algorithms.
We formally define the family as follows:
Definition 1 (Max-Product Belief Propagation (MP)
). MP is a message passing algorithm that computes
messages as in Section 2.2. Messages may be initial-
ized arbitrarily, scheduled in any (possibly dynamic)
ordering, and damped in any (possibly dynamic) man-
ner, so long as the fixed points of the algorithm are the
same as the fixed points of Strict MP.

We believe this definition to be broad enough to con-
tain most algorithms that are considered to be max-

4Note that we only need message values to be correct up
to a constant, so it is common practice to normalize mes-
sages and beliefs so that the minimum entry in a message
or belief vector is 0.

product, yet restrictive enough to exclude e.g., fun-
damentally different linear program-based algorithms
like tree-reweighted max-product.

Instances of MP: There has been much work on
scheduling messages, notably including recent work on
dynamic asynchronous scheduling (Elidan et al., 2006;
Sutton & McCallum, 2007), which shows that adap-
tive schedules can lead to improved convergence. An
equally important practical concern is message damp-
ing. Dueck (2010), for example, discusses the impor-
tance of damping in detail with respect to using MP for
exemplar-based clustering (affinity propagation). Our
definition of MP includes these examples.

2.4 Augmenting Path = Chain Subgraph

Our scheduling makes use of dynamically chosen
chains, which are analogous to augmenting paths. For-
mally, an augmenting path is a sequence of nodes

T = (s, vT1 , vT2 , . . . , vTn−1 , vTn , t) (10)

where a nonzero amount of flow can be pushed through
the path. It will be useful to refer to EGC(T) as the
set of edges encountered along T .

Let xT ⊆ x be the variables corresponding to non-
terminal nodes in T . The potentials corresponding to
the edges EGC(T) and the entries of these potentials
are denoted by ΘT and a subset of potential values
θT . Formally,

xT ={xT1 , . . . , xTn}
ΘT =ΘT1 ∪ {ΘTi,Ti+1}n−1

i=1 ∪ΘTn

θT =θ1
T1
∪ {θ01

Ti,Ti+1
}n−1

i=1 ∪ θ0
Tn

. (11)

Note that there are only two unary potentials on a
chain corresponding to an augmenting path, which cor-
respond to terminal edges in EGC(T). It will be useful
to map edges in EGC(T) to edges in the factor graph
representation. We use EFG(T) to denote all edges in
FG between potentials in ΘT and variables in xT .

As an example, an augmenting path T =(s, vi, vj , vk, t)
would be mapped to xT = {xi, xj , xk}, ΘT =
{Θi,Θij ,Θjk,Θk}, and θT ={θ1

i , θ01
ij , θ01

jk, θ0
k} in FG.

3 Augmenting Paths Max-Product

In this section, we present Augmenting Paths Max-
Product (APMP), a particular scheduling and damp-
ing scheme for MP, that—like graph cuts—has two
phases. At each iteration of the first phase, the sched-
uler returns a chain on which to pass messages. Hold-
ing all other messages fixed, messages are passed for-
ward and backward on the chain, with standard mes-
sage normalization applied, to complete the iteration.

Adaptive message damping applied to messages leav-
ing unary factors (described below) ensures that mes-
sages propagate across the chain in a particularly
structured way. Messages leaving pairwise factors and
messages from variables to factors are not damped.
Phase 1 terminates when the scheduler indicates there
are no more messages to send, then in Phase 2, Strict
MP is run until convergence (we guarantee it will con-
verge). The full APMP is given in Algorithm 1.

3.1 Phase 1: Path Scheduling and Damping

For convenience, we use the convention that chains go
from “left” to “right,” where the left-most variable on
a chain corresponding to an augmenting path is xT1 ,
and the right-most variable is xTN . In these terms, a
forward pass is from left to right, and a backward pass
is from right to left.

Suppose that at the end of iteration t−1, the outgoing
message from the unary factor at the start of the chain
used in iteration t, T = T (t), is m(t−1)

ΘT1→xT1
(xT1) =

(0, b)T . The unary factor must have potential (0, d)T

for some d ≥ b to have previously produced a message
of (0, b)T . This implies that passing another message
will leave the structure of the potential unchanged and
will simply increment the b entry by some amount. If
the factor increments its outgoing message in such a
way as to guarantee that b + f ≤ θ01

β for all steps
along T , the messages as shown in Fig. 1 will be com-
puted (see Corollary 1 below). Later analysis will ex-
plain why this is desirable. Accounting for message
normalization, this can be accomplished by limiting
the change ∆m(·) = m(t)(·) − m(t−1)(·) in outgoing
message from the first unary variable on a path to be
∆mΘT1→xT1

(xT1) = (0, f)T . We also constrain the
increment in the backward direction to equal the in-
crement in the forward direction.

Under the constraints, the largest f we can choose is

f = min
(
θ0
TN
−m(t−1)

ΘTN
→xTN

(0), θ1
T1
−m(t−1)

ΘT1→xT1
(1),

min
ij|Θij∈ΘT

[
θ01

ij −m(t−1)
xi→Θij

(1) + m(t−1)
xi→Θij

(0)
])

(12)

which is exactly the bottleneck capacity of the corre-
sponding augmenting path. In other words, limiting
the change in outgoing message value from unary fac-
tors to be the bottleneck capacity of the augmenting
path will ensure that messages increments propagate
through a chain unmodified–that is, when one variable
on the path receives an increment of (0, f)T as xi does
in Fig. 1(b), it will propagate the same increment to
the next variable on the path (xj), as in Fig. 1(c). This
will be proved in Lemma 1.

Damping: The key, simple idea to the damping
scheme is that we want unary factors to increment

x
i x

j

a
1

b
1

a
2

b
2

a
3

b
3

b
1

a
1 b

2

a
2

b
3

a
3

b

a

b

a

a

b

a

b

0 b+f

a 0[]

(a)

xi xj

a
1

b
1

a
3

b
3

b
1

a
1 b

2

a
2

b
3

a
3

b

a

b

a

a

b

a

b

0 b+f

a 0[]
a

2

b
2

+f()

(b)

xi xj

a
1

b
1

a
3

b
3

b
1

a
1 b

2

a
2

b
3

a
3

b

a

b

a

0 b+f

a 0[]
a

2

b
2

+f

a

b+f()
a

b+f()

(c)

xi xj

a
1

b
1

a
3

b
3

b
1

a
1

b
3

a
3

0 b+f

a 0[]
a

2

b
2

+f

a

b+f

a

b+f

b+f

a()
b+f

a()

b
2

+f

a
2

()

(d)

Figure 1: The pairwise potential is in square brackets.
Only messages changed relative to previous subfigure are
shown in parentheses. Let a = a1 + a2 + a3 and b =
b1 + b2 + b3. (a) Start of iteration. The capacity of the
edge ij is f . (b) Inductive assumption that each node on
the augmenting path will receive a message increment of
(0, f)T from the left-neighbor. (c) Passing messages com-
pletes the inductive step where xj receives an incremented
message. (d) Similarly, receiving an incremented message
in the backwards direction then updating messages from j
to i completes the iteration.

their messages by the bottleneck capacity of the cur-
rent chain. The necessary value of f can be achieved
by damping the outgoing message from the first and
last unary potential on each chain. For the first unary
factor, if we previously have message (0, b)T on the
edge, then to produce message (0, b + f)T , we can ap-
ply damping γT1(t) where γT1(t) is chosen by solving
the equation:

γT1(t) · b + (1− γT1(t)) · θ1
T1

= f + b, (13)

yielding γT1(t) =
θ1
T1
−f−b

θ1
T1
−b

. The algorithm never
chooses an augmenting path with 0 capacity, so we
will never get a zero denominator.

Analogous damping is applied in the opposite direc-
tion. This damping will produce the same message in-
crements in the forward and backward direction, which
will be a key property used in later analysis.

SCHEDULE Implementation: The combination
of potentials and messages on the edges contain the
same information as the residual capacities in the
graph cuts residual graph. Using this equivalence, any
algorithm for finding augmenting paths in the graph
cuts setting can be used to find chains to pass mes-
sages on for MP. The terms being minimized over in
Eq. (12) are residual capacities, which are defined in
terms of messages and potentials. Specifically, at the
end of any iteration of the MP algorithm described
in the next section, the residual capacities of edges
between non-terminal nodes can be constructed from

Algorithm 1 Augmenting Paths Max-Product
f(0)←∞
t ← 0
while f(t) > 0 do {Phase 1}
T (t), f(t)← SCHEDULE(FG(t))
γT1(t), γTN (t)← DAMPING(FG(t), T (t), f(t))
FG(t+1)← MP(FG(t), EFG(T (t)), γT1(t), γTN (t))
t ← t + 1

end while
while not converged do {Phase 2}

Run Strict MP(FG)
end while

potentials and current messages m as follows:

rij = θ01
ij −mxi→Θij (1) + mxi→Θij (0). (14)

The difference in messages mxi→Θij (1) −mxi→Θij (0)
is then equivalent to the difference in flows fij − fji

in the graph cuts formulation. The residual capacities
for terminal edges can be constructed from messages
and potentials related to unary factors:

rsi = θ1
i −mΘi→xi(1) (15)

rit = θ0
i −mΘi→xi(0). (16)

3.2 Phase 2: Strict MP

When the scheduler cannot find a positive-capacity
path on which to pass messages, it switches to its sec-
ond phase and passes all messages at all iterations,
with no damping i.e., Strict MP. It continues until
reaching a fixed point. (We will prove in Section 5
that if potentials are finite, it will always converge).
The choice of Strict MP is not essential. The same re-
sult holds for any reasonable scheduling of messages.

4 APMP Phase 1 Analysis

Assume that at the beginning of iteration t, each vari-
able xi ∈ xT (t) has received an incoming message from
its left-neighboring factor Θα, mΘα→xi(xi) = (a, b)T .
We want to show that when each variable receives
an incremented message, (a, b + f)T , the increment
(0, f)T —up to a normalizing constant—will be prop-
agated through the variable and the next factor, Θij ,
to the next variable on the path.

The pairwise potential at the next pairwise factor
along the chain will be Θij . The damping scheme
ensures that θ10

ij ≥ a and θ01
ij ≥ b + f . Lemma 1

shows that under these conditions, factors will propa-
gate messages unchanged.
Lemma 1 (Message-Preserving Factors). When pass-
ing standard MP messages with the factors as above,

θ10
ij ≥ a, and θ01

ij ≥ b + f , the outgoing factor-to-
variable message is equal to the incoming variable-
to-factor message i.e. mΘij→xj = mxi→Θij and
mΘij→xi = mxj→Θij .

Proof. This follows from inserting values in to the mes-
sage updates. See supplementary materials.5.

Lemma 1 allows us to easily compute the values of all
messages passed during the execution of Phase 1 of
APMP and thus the change in beliefs at each variable.

Corollary 1 (Structured Belief Changes). Before and
after an iteration t of Phase 1 APMP, the change in
unary belief at each variable in xT (t) will be (0, 0)T ,
up to a constant normalization.

Proof. Under the APMP damping scheme, the change
in message from the first unary factor in T (t) will be
(0, f)T , and the change in message from the last unary
factor in T (t) will be (f, 0)T where f is as defined in
Eq. (12). Without message normalization, these mes-
sages will propagate unchanged through the pairwise
factors in T (t) by Lemma 1. Variable to factor mes-
sages will also propagate the change unaltered.

Message normalization subtracts a positive constant
c = min(a, b + f) from both entries in a message vec-
tor. Existing message values will only get smaller,
so the message-preserving property of factors will be
maintained. Thus, each variable will receive a message
change of (−cL, f − cL)T from the left and a message
change of (f − cR,−cR)T from the right. The total
change in belief is then (f − cL − cR, f − cL − cR)T ,
which completes the proof.

Fig. 1 illustrates the structured message changes.

4.1 Message Free View

Here, using the reparametrization view of max-
product from Wainwright et al. (2004), we analyze the
equivalent “message-free” version of the first phase of
APMP—one that directly modifies potentials rather
than sending messages. Corollary 1 shows that all
messages in APMP can be analytically computed. We
then use these message values to compute the change
in parameterization due to the messages at each itera-
tion. The main result in this section is that this change
in parameterization is exactly equivalent to that per-
formed by graph cuts.

An important identity, which is a special case of the
junction tree representation (Wainwright et al., 2004),

5Available in Appendix of (Tarlow et al., 2011).

states that we can equivalently view MP on a tree as
reparameterizing Θ according to beliefs b:

∑

i∈V
Θ̃i(xi) +

∑

ij∈E
Θ̃ij(xi, xj)

=
∑

i∈V
bi(xi) +

∑

ij∈E
[bij(xi, xj)− bi(xi)− bj(xj)] (17)

where Θ̃ is a reparametrization i.e. E(x; Θ) = E(x; Θ̃)
∀x. At any point, we can stop and calculate cur-
rent beliefs and apply the reparameterization (i.e., re-
place original potentials with reparameterized poten-
tials and set all messages to 0). This holds even if
factor to variable messages are damped.

“Used” and “Remainder” Energies: To ana-
lyze reparameterizations, we begin by splitting E into
two components: a part that has been used so far,
and a remainder part. The used part is defined as
the energy function that would have produced the cur-
rent messages if no damping were used. The remain-
der is everything else. Since damping is only applied
at unary potentials, we assign all pairwise potentials
to the used component: Θ(U)

ij (xi, xj) = Θij(xi, xj).
The used component of unary potentials is defined as
the current message leaving the factor: Θ(U)

i (xi) =
mΘi→xi(xi). Consequently, the remainder pairwise
potentials are zero, and the remainder unary poten-
tials are Θ(R)

i (xi) = Θi(xi) − Θ(U)
i (xi). We apply the

message-free interpretation to get a reparameterized
version of E(x; Θ(U)) then add in the remainder com-
ponent of the energy unmodified.

Analyzing Beliefs: The parameterization in Eq. (17)
depends on unary and pairwise beliefs. We consider
the change in beliefs from that defined by messages at
the start of an iteration of APMP to that defined by
messages at the end of an iteration. There are three
cases to consider.

Case 1 Variables and potentials not in or neighboring
xT (t) will not have any potentials or adjacent beliefs
changed, so the reparametrization will not change.

Case 2 Potentials neighboring x ∈ xT (t) but not in
EFG(T (t)) could possibly be affected by the belief at
a variable in xT (t), since the belief at an edge depends
on the beliefs at variables at each of its endpoints.
However, by Corollary 1, after applying standard nor-
malization, this belief does not change after a forward
and backward pass of messages, so overall they are
unaltered.

Case 3 We now consider the belief of potentials
Θ(U)

ij ∈ Θ(U)
T (t). This is the most involved case, where

the parametrization does change, but it does so in a
very structured way.

Lemma 2. The change in pairwise belief on the cur-
rent augmenting path T (t) from the beginning of an
iteration t to the end of an iteration is

∆bij(xi, xj) =
[

0 −f
+f 0

]
+ f ij ∈ T (t). (18)

Proof. This follows from applying the standard repa-
rameterization (17) to messages before and after an
iteration of Phase 1 APMP. See supplementary mate-
rial for details.

Unary Reparameterizations: As discussed above,
the used part of the energy is grouped with messages
and reparameterized as standard, while the remainder
part is left unchanged and is added in at the end:

Θ̃i(xi) = bi(xi; Θ(U)) + Θ(R)
i (xi). (19)

Parameterizations defined in this way are proper repa-
rameterizations of the original energy function.

Lemma 3. The changes in parameterization during
iteration t of Phase 1 APMP at variables xT1 and xTN

respectively are (0,−f)T and (−f, 0)T . The change in
all other unary potentials is (0, 0)T .

Proof. The Phase 1 damping scheme ensures that the
message leaving the first factor on T = T (t) is in-
cremented by (0, f)T . This means that Θ(U)

T1
(xT1) is

incremented by (0, f)T , so Θ(R)
T1

(xT1) is decremented
by (0, f)T to maintain the decomposition constraint.
Unary beliefs do not change, so the new parameteriza-
tion is then ∆ΘT1(xT1) = ∆bxT1

(xT1)+∆Θ(R)
xT1

(xT1) =
(0,−f)T . A similar argument holds for ∆ΘxTN

.

The only unary potentials involved in an iteration of
APMP are endpoints of T (t), so no other Θ(R) values
will change. The total change in parameterization at
non-endpoint unary potentials is then (0, 0)T .

Full Reparameterizations: Finally, we are ready
to prove our first main result.

Theorem 1. The difference between two
reparametrizations induced by the messages in
Phase 1 APMP, before and after passing messages on
the chain corresponding to augmenting path T (t), is
equal to the difference between reparametrizations of
graph cuts before and after pushing flow through the
equivalent augmenting path.

Proof. The change in unary parameterization is given
by Lemma 3. The change in pairwise parameterization
is ∆Θij(xi, xj) = ∆bij(xi, xj) − ∆bi(xi) − ∆bj(xj) =
∆bij(xi, xj), where ∆bij(xi, xj) is given by Lemma 2.

[]0

0

[]0

b

[]b

0

b

0

b

0

0

b

0

b

0

b

b

0

[]0

0

(a)

[]b

0

[]0

b[]0

b

[]b

0

b

0

b

0

0

b

0

b

0

b

b

0

0

b

0

b

0

b

b

0

b

0

b

0

(b)

Figure 2: Illustration of first two “used” energies and asso-
ciated fixed points constructed by APMP on the problem
from Fig. 4. Potentials Θ(U) are given in square brack-
ets. Messages have no parentheses. Edges with messages
equal to (0, 0), and pairwise potentials, which are assumed
strong, are not drawn to reduce clutter. (a) First energy.
(b) Second energy. Note that both sets of messages give a
max-product fixed point for the respective energy.

Putting the two together, we see that the changes in
potential entries are exactly the same as those per-
formed by graph cuts in (3) - (7):

∆ΘT1(xT1) =
[

0
−f

]
(20)

∆ΘTN (xTN) =
[
−f
0

]
(21)

∆ΘTi(xTi) =
[

0
0

]
i += 1, N (22)

∆ΘTi,Tj (xTi , xTj) =
[

0 −f
+f 0

]
ΘTi,Tj ∈ ΘT (t). (23)

This completes the proof of equivalence between Phase
1 APMP and Phase 1 of graph cuts.

Fig. 2 shows Θ(U) and Phase 1 APMP messages from
running two iterations on the example from Fig. 4.

5 APMP Phase 2 Analysis

We now consider the second phase of APMP. Through-
out this section, we will work with the reparameterized
energy that results from applying the equivalent repa-
rameterization view of MP at the end of APMP Phase
1—that is, we have applied the reparameterization to
potentials, and reset messages to 0. All results could
equivalently be shown by working with original po-
tentials and messages at the end of Phase 1, but the
chosen presentation is simpler.

At this point, there are no paths between a unary po-
tential of the form (0, a)T , a > 0 and a unary poten-
tial of the form (b, 0)T , b > 0 with nonzero capacity.
Practically, as in graph cuts, breadth first search could
be used at this point to find an optimal assignment.
However, we will show that running Strict MP leads to

[]0
0

[]0

* []*

0

[]*

0
[]0

0

[]0

*

[]*
0

[]*
0

Figure 3: A decomposition into three homogeneous is-
lands. The left-most and right-most islands have beliefs of
the form (∗, 0)T , while the middle has beliefs of the form
(0, ∗)T . Non-touching cross-island lines indicate that mes-
sages passed from one island to another will be identically
0 after any number of internal iterations of message passing
within an island.

convergence to an optimal fixed point. This proves the
existence of an optimal MP fixed point for any binary
submodular energy and gives a constructive algorithm
(APMP) for finding it.

Our analysis relies upon the reparameterization at the
end of Phase 1 defining what we term homogeneous
islands of variables.

Definition 2. A homogeneous island is a set of vari-
ables xH connected by positive capacity edges such that
each variable xi ∈ xH has normalized beliefs (αi, βi)T

where either ∀i.αi = 0 or ∀i.βi = 0. Further, after any
number of rounds of message passing amongst vari-
ables within the island, any message mΘij→xj (xj) from
a variable inside the island xi to a variable outside the
island xj is identically 0, and vice versa.

Define variables inside a homogeneous island with
nonzero unary potentials to be the seeds of the island.
Fig. 3 shows an illustration of homogeneous islands.
Homogeneous islands allow us to analyze messages in-
dependently within each island, without considering
cross-island messages.

Lemma 4. At the end of Phase 1, the messages of
APMP define a collection of homogeneous islands.

Proof. This is essentially equivalent to how the max-
flow min-cut theorem proves that the Ford-Fulkerson
algorithm has found a minimum cut when no more
augmenting paths can be found. The boundaries be-
tween islands are the locations of the cuts. See sup-
plementary material.

Lemma 4 lets us analyze Strict MP independently
within each homogeneous island, because it shows that
no non-zero messages will cross island boundaries.
Thus, we can prove that internally, each island will
reach a MP fixed point:

Lemma 5 (Internal Convergence). Iterating Strict
MP inside a homogeneous island of the form (α, 0)T

(or (0, β)T)) will lead to a fixed point where beliefs are

of the form (α′i, 0)T , α′i ≥ 0 (or (0, β′i)T , β′i ≥ 0) at
each variable in the island.

Proof. (Sketch) We prove the case where the unary po-
tentials inside the island have form (αi, 0)T . The case
where they have form (0, βi)T is entirely analogous.

At the beginning of Phase 2, all unary potentials will
be of the form (α, 0)T , α ≥ 0. By the positive-capacity
edge connectivity of homogeneous islands property,
messages of the form (α, 0)T , α > 0 will eventually
be propagated to all variables in the island by Strict
MP. In addition, messages can only reinforce (and not
cancel) each other. For example, in a single loop ho-
mogeneous island, messages will cycle around the loop,
getting larger as unary potentials are added to incom-
ing messages and passed around the loop. Messages
will only stop growing when the the variable-to-factor
messages become stronger than the pairwise potential.

On acyclic island structures, Strict MP will obviously
converge. On loopy graphs, messages will be monoton-
ically increasing until they are capped by the pairwise
potentials (i.e., the pairwise potential is saturated).
The rate of message increase is lower bounded by some
constant (that depends on the strength of unary po-
tentials and size of loops in the island graph, which are
fixed), so the sequence will converge when all pairwise
potentials are saturated.

We can now prove our second main result:

Theorem 2 (Convergence and Optimality of
APMP Fixed Point). APMP converges to an optimal
fixed point on binary submodular energy functions.

Proof. After running Phase 2 of APMP, Lemma 5
shows that each homogeneous island will converge to
a fixed point where beliefs at all variables in the island
can be decoded to give the same assignment as the
initial seed of the island. This is the same assignment
as the optimal graph cuts-style connected components
decoding would yield. Cross-island messages are all
zero, and if a variable is not in an island, it has zero
potential, sends and receives all zero messages, and
can be assigned arbitrarily. Thus, we are globally at
a MP fixed point, and beliefs can be decoded at each
variable to give the optimal assignment.

Finally, we return to the canonical example used to
show the suboptimality of MP on binary submodular
energies. The potentials and messages defining a sub-
optimal fixed point, which is reached by certain subop-
timal scheduling and damping schemes, are illustrated
in Fig. 4 (a). If, however, we run APMP, Phase 1 ends
with the messages shown in Fig. 2(b) and Phase 2 con-
verges to the fixed point shown in Fig. 4 (b). Decoding

 0

b+2!-2a

1

2

4

3

[]a

0

[]0

b[]0

b

[]a

0

a
0

a

!

0

!

 0

b+2!-a

a

!

a
0

0
b

0
b

 0

!-a

 0

b+2!-a

0

!

 0

b+2!-2a

 0

b+2!-a

0

!

0

!

a

!

 0

!-a

 0

b+2!-a

 0

!-a

a

!

 0

!-a

0

!

0

!

(a) Bad Fixed Point

1

2

4

3

[]a

0

[]0

b[]0

b

[]a

0

!+a

0

a
0

!

0!

0

!

0

!+a

0

2!

b
2!

b

!

0

!

0

!

0

!

02!

b

2!

b

2!

b

!+a

0

!

0

!

0

!+a

0

!

0

2!

b

a
0

0
b

0
b

(b) Optimal Fixed Point

Figure 4: The canonical counterexample used to show that
MP is suboptimal on binary submodular energy functions.
Potentials are given in square brackets. Messages have
no parentheses. Pairwise potentials are symmetric with
strength λ, and λ > 2a > 2b, making the optimal as-
signment (1, 1, 1, 1). (a) The previously analyzed fixed
point. Beliefs at 1 and 4 are (a, 2λ)T , and at 2 and 3
are (0, b+3λ−2a)T , which gives a suboptimal assignment.
(b) We introduce a second fixed point. Beliefs at 1 and 4
are (2λ + a, 0)T , and at 2 and 3 are (3λ, b)T , which gives
the optimal assignment. Our new scheduling and damping
scheme guarantees MP will find an optimal fixed point like
this for any binary submodular energy function.

beliefs from the messages in Fig. 4 (b) indeed gives the
optimal assignment of (1, 1, 1, 1).

6 Convergence Guarantees

Previously several variants of message passing algo-
rithms for MAP inference have been theoretically an-
alyzed. There are generally two classes of results:
(a) guarantees about the optimality or partial opti-
mality of solutions, assuming that the algorithm has
converged to a fixed point; and (b) guarantees about
the monotonicity of the updates with respect to some
bound and whether the algorithm will converge.

Notable optimality guarantees exist for TRW algo-
rithms (Kolmogorov & Wainwright, 2005) and MPLP
(Globerson & Jaakkola, 2008). Kolmogorov and Wain-
wright (2005) prove that fixed points of TRW satis-
fying a weak tree agreement (WTA) condition yield
optimal solutions to binary submodular problems.
Globerson and Jaakkola (2008) show that if MPLP
converges to beliefs with unique optimizing values,
then the solution is optimal.

Convergence guarantees for message passing algo-
rithms are generally significantly weaker. MPLP is
a coordinate ascent algorithm so is guaranteed to con-
verge; however, in general it can get stuck at subopti-
mal points where no improvement is possible via up-
dating the blocks used by the algorithm. Somewhat

similarly, TRW-S is guaranteed not to decrease a lower
bound. In the limit where the temperature goes to 0,
convexified sum-product is guaranteed to converge to a
solution of the standard linear program relaxation, but
this is not numerically practical to implement (Weiss
et al., 2007). However, even for binary submodular
energies, we are unaware of results that guarantee con-
vergence for convexified belief propagation, MPLP, or
TRW-S in polynomial time.

Our analysis reveals schedules and message passing up-
dates that guarantee convergence in low order polyno-
mial time to a state where an optimal assignment can
be decoded for binary submodular problems. This fol-
lows directly from analysis of max-flow algorithms. By
using shortest augmenting paths, the Edmonds-Karp
algorithm converges in O(|V||E|2) time (Edmonds &
Karp, 1972). Analysis of the convergence time of
Phase 2 is slightly more involved. Given an island with
a large single loop of M variables, with strong pairwise
potentials (say strength λ) and only one small nonzero
unary potential, say (α, 0)T , convergence will take on
the order of M ·λ

α time, which could be large. In prac-
tice, though, we can reach the same fixed point by
modifying nonzero unary potentials to be (λ, 0)T , in
which case convergence will take just order M time.
Interestingly, this modification causes Strict MP to
become equivalent to the connected components al-
gorithm used by graph cuts to decode solutions.

7 Related Work

Close relationships exist among many MAP inference
algorithms. Here we discuss the relationships between
some of the more notable and similar algorithms.
APMP is closely related to dual block coordinate
ascent algorithms discussed in (Sontag & Jaakkola,
2009)—Phase 1 of APMP can be seen as block co-
ordinate ascent in the same dual. Interestingly, even
though both are optimal ascent steps, APMP reparam-
eterizations are not identical to those of the sequential
tree-block coordinate ascent algorithm in (Sontag &
Jaakkola, 2009) when applied to the same chain.

Graph cuts is also highly related to the Augmenting
DAG algorithm (Werner, 2007). Augmenting DAGs
are more general constructs than augmenting paths,
so with a proper choice of schedule, the Augmenting
DAG algorithm could also implement graph cuts. Our
work follows in the spirit of RBP (Elidan et al., 2006),
in that we consider dynamic schedules for MP. RBP is
more general; our analysis is much stronger.

Finally, our work is also related to the COMPOSE
framework of Duchi et al. (2007). In COMPOSE, spe-
cial purpose algorithms are used to compute MP mes-
sages for certain combinatorial-structured subgraphs,

including binary submodular ones. We show here that
special purpose algorithms are not needed: the inter-
nal graph cuts algorithm can be implemented purely in
terms of max-product. Given a problem that contains
a graph cut subproblem but also has other high order
or nonsubmodular potentials, our work shows how to
interleave solving the graph cuts problem and passing
messages elsewhere in the graph.

8 Conclusions

While the proof of equivalence to graph cuts is mod-
erately involved, the APMP algorithm is a simple spe-
cial case of MP. The analysis technique is novel: rather
than relying on the computation tree model for anal-
ysis, we directly mapped the operations being per-
formed by the algorithm to a known combinatorial al-
gorithm. It would be interesting to consider whether
there are other cases where the MP execution might
be mapped directly to a combinatorial algorithm.

We have proven strong statements about MP fixed
points on binary submodular energies. The analysis
has a similar flavor to that of Weiss (2000), in that we
construct fixed points where optimal assignments can
be decoded, but where the magnitudes of the beliefs
do not (generally) correspond to meaningful quanti-
ties. The strategy of isolating subgraphs might apply
more broadly. For example, if we could isolate single
loop structures as we isolate homogeneous islands in
Phase 1, a second phase might then be used to find
optimal solutions in non-homogeneous, loopy regions.
An alternate view of Phase 1 is that it is an intelligent
initialization of messages for Strict MP in Phase 2. In
this light, our results show that initialization can prov-
ably determine whether MP is suboptimal or optimal
in the case of binary submodular energy functions.

The connection to graph cuts simplifies the space of
MAP algorithms. There are now precise mappings
between ideas from graph cuts and ideas from belief
propagation (e.g., augmenting paths to scheduling).

A broad, interesting direction of future work is to fur-
ther investigate how insights related to graph cuts can
be used to improve inference in the more general set-
tings of multilabel, nonsubmodular, and high order
energy functions. At a high level, APMP separates
the concerns of improving the dual objective (Phase
1) from concerns regarding decoding solutions (Phase
2). In loopy MP, this delays overcounting of messages
until it is safe to do so. We believe that this and other
concepts presented here will generalize. We are cur-
rently exploring the non-binary, non-submodular case.

Acknowledgements
We thank Pushmeet Kohli for several insightful con-
versations and anonymous reviewers for valuable sug-

gestions that led to improvements in the paper.

References

Duchi, J., Tarlow, D., Elidan, G., & Koller, D. (2007). Us-
ing combinatorial optimization within max-product
belief propagation. In NIPS.

Dueck, D. (2010). Affinity propagation: Clustering data
by passing messages. Unpublished doctoral disserta-
tion, University of Toronto.

Edmonds, J., & Karp, R. M. (1972). Theoretical improve-
ments in algorithmic efficiency for network flow prob-
lems. Journal of the ACM , 19 , 248264.

Elidan, G., McGraw, I., & Koller, D. (2006). Residual
belief propagation: Informed scheduling for asyn-
chronous message passing. In UAI.

Ford, L. R., & Fulkerson, D. R. (1956). Maximal flow
through a network. Canadian Journal of Mathemat-
ics, 8 , 399-404.

Globerson, A., & Jaakkola, T. (2008). Fixing max product:
Convergent message passing algorithms for MAP
LP-relaxations. In NIPS.

Kohli, P., & Torr, P. H. S. (2007). Dynamic graph cuts for
efficient inference in markov random fields. PAMI ,
29 (12), 2079–2088.

Kolmogorov, V., & Wainwright, M. (2005). On the op-
timality of tree-reweighted max-product message-
passing. In UAI (p. 316-32).

Kolmogorov, V., & Zabih, R. (2002). What energy func-
tions can be minimized via graph cuts? In ECCV
(p. 65-81).

Kschischang, F., Frey, B. J., & Loeliger, H.-A. (2001). Fac-
tor Graphs and the Sum-Product Algorithm. IEEE
Transa. Info. Theory, 47 (2), 498 – 519.

Kulesza, A., & Pereira, F. (2008). Structured learning with
approximate inference. In NIPS.

Sontag, D., & Jaakkola, T. (2009). Tree block coordinate
descent for map in graphical models. In Artificial
Intelligence and Statistics (AISTATS).

Sutton, C., & McCallum, A. (2007). Improved dynamic
schedules for belief propagation. In UAI.

Tarlow, D., Givoni, I. E., Zemel, R. S., & Frey,
B. J. (2011). Interpreting Graph Cuts as a Max-
Product Algorithm (Tech. Rep.). (Available at
http://arxiv.org/abs/1105.1178)

Wainwright, Jaakkola, T., & Willsky, A. (2004). Tree con-
sistency and bounds on the performance of the max-
product algorithm and its generalizations. Statistics
and Computing , 14 (2).

Wainwright, & Jordan. (2008). Graphical models, expo-
nential families, and variational inference. Founda-
tions and Trends in Machine Learning.

Weiss, Y. (2000). Correctness of local probability propa-
gation in graphical models with loops. Neural Com-
putation, 12 , 1–41.

Weiss, Y., Yanover, C., & Meltzer, T. (2007). MAP esti-
mation, linear programming and belief propagation
with convex free energies. In The 23rd conference on
uncertainty in artificial intelligence.

Werner, T. (2007). A linear programming approach to

max-sum problem: A review. PAMI , 29 (7), 1165–

1179.

A Supplementary Material Accompa-
nying “Graph Cuts is a Max-
Product Algorithm”

We provide additional details omitted from the main paper
due to space limitations.

Lemma 1 (Message-Preserving Factors) When passing
standard MP messages with the factors as above, θ10

ij ≥ a,
and θ01

ij ≥ b + f , the outgoing factor-to-variable message
is equal to the incoming variable-to-factor message i.e.
mΘij→xj = mxi→Θij and mΘij→xi = mxj→Θij .

Proof. This follows simply from plugging in values to the
message updates. We show the i to j direction.

mxi→Θij (xi) =

„
a

b + f

«

mΘij→xj (xj) = min
xi

ˆ
Θij(xi, xj) + mxi→Θij (xi)

˜

= min
xi

ˆ
θ10

ij · xi(1− xj) + θ01
ij · (1− xi)xj

+ a · (1− xi) + (b + f) · xi]

mΘij→xj (0) = min(θ10
ij + b + f, a) = a

mΘij→xj (1) = min(a + θ01
ij , b + f) = b + f

mΘij→xj (xj) =

„
a

b + f

«

where the final evaluation of the min functions used the
assumptions that θ10

ij ≥ a and θ01
ij ≥ b + f .

Lemma 2 The change in pairwise belief on the current
augmenting path T (t) from the beginning of an iteration t
to the end of an iteration is

∆bij(xi, xj) =

»
0 −f

+f 0

–
+ f ij ∈ T (t). (24)

Proof. At the start of the iteration, message
mxi→Θij (xi) = (a, b)T for some a, b. As mentioned
in the proof of Corollary 1, during APMP, mxj→Θij (xj)
will be incremented by exactly the same values as
mxi→Θij (xi), except in opposite positions. All messages

are initialized to 0, so mxj→Θij (xj) = (b, a)T . The initial
belief is then

binit
ij (xi, xj) =

»
a + b θ01

ij + 2a
θ10

ij + 2b a + b

–
(25)

=

»
0 θ01

ij + a− b
θ10

ij + b− a 0

–
+ κ1. (26)

After passing messages on T (t), mxi→Θij (xi) = (a, b+f)T

and mxj→Θij (xj) = (b + f, a)T . The new belief is

bfinal
ij (xi, xj) =

»
a + b + f θ01

ij + 2a
θ10

ij + 2b + 2f a + b + f

–
(27)

=

»
0 θ01

ij + a− b− f
θ10

ij + b− a + f 0

–
+ κ2.

(28)

Here κ1 = a+ b and κ2 = a+ b+ f . Subtracting the initial
belief from the final belief finishes the proof:

∆bij(xi, xj) =

»
0 −f
f 0

–
+ f . (29)

Messages at the end of Phase 1 define homogeneous
islands:

We prove that messages at the end of Phase 1 define ho-
mogeneous islands in two parts:

Lemma 6 (Binary Mask Property). If a pairwise fac-
tor Θij computes outgoing message mΘij→j(xj) = (0, 0)T

given incoming message mi→Θij (xi) = (α, 0)T for some

α > 0, then it will compute the same (0, 0)T outgo-
ing message given any incoming message of the form,
mi→Θij (xi) = (α′, 0)T , α′ ≥ 0. (The same is true of mes-
sages with a zero in the opposite position.)

Proof. This essentially follows from plugging in values to
message update equations. Suppose mi→Θij (xi) = (α, 0)T

and mΘij→j(xj) = (0, 0)T . Plugging into the message up-
date equation, we see that,

mΘij→xj (xj) = min
xi

ˆ
Θij(xi, xj) + mxi→Θij (xi)

˜

= min
xi

ˆ
θ10

ij · xi(1− xj) + θ01
ij · (1− xi)xj

+ α · (1− xi)]

mΘij→xj (0) = min(θ10
ij , α)

mΘij→xj (1) = min(α + θ01
ij , 0) = 0

mΘij→xj (xj) =

„
min(θ10

ij , α)
0

«
.

In order for this to evaluate to (0, 0)T when α > 0, θ01
ij

must be 0. Since θ01
ij = 0, no matter what value of α′ ≥ 0

we are given, it is clear that min(θ10
ij , α′) = 0.

Lemma 7 (Iterated Homogeneity). Homogeneous islands
of type (α, 0) (or (0, β)) are closed under passing Strict
MP messages between variables in the island. That is, a
variable that starts with belief (α, 0)T , α ≥ 0 will have belief
(α′, 0)T , α′ ≥ 0 after any number of rounds of message
passing.

Proof. Initially, all beliefs have the form (αi, 0)
T , αi ≥ 0

by definition. Given an incoming message of the form
(α, 0)T , α ≥ 0, a submodular pairwise factor will compute
outgoing message (min(α, θ10

ij), 0)T , where θ10
ij ≥ 0. The

minimum of two non-negative quantities is positive. Vari-
able to factor messages will sum messages of this same
form, and the sum of two non-negative quantities is non-
negative. Thus, all messages passed within the island will
be of the form (α, 0)T , α ≥ 0, which beliefs will be of the
proper form. Lemma 6 shows that edges previously defin-
ing the boundary of the island will still define the boundary
of the island. The case of incoming message (0, β)T is anal-
ogous.

Lemma 4. At the end of Phase 1, the messages of
APMP define a collection of homogeneous islands.

Proof. (Sketch) This is essentially equivalent to the max-
flow min-cut theorem, which proves the optimality of the
Ford-Fulkerson algorithm when no more augmenting paths
can be found. In our formulation, at the end of Phase
1, there are by definition no paths with nonzero capac-
ity, which implies that along any path between a variable
i with belief (α, 0)T , α > 0 and a variable k with belief
(0, β)T , β > 0, there must be a factor-to-variable message
that given incoming message (α, 0)T , α > 0 would produce
outgoing message (0, 0)T . (This is similarly true of oppo-
site direction messages.)

Thus, to define the islands, start at each variable will
nonzero belief, say of the form (α, 0)T , and search out-
wards by traversing each edge iff it would pass a nonzero
message given incoming message (α, 0)T . Merge all vari-
ables encountered along the search into a single homoge-
neous island.

