
Randomized Optimum Models for Structured Prediction

Daniel Tarlow Ryan P. Adams Richard S. Zemel
University of Toronto

Dept. of Computer Science
School of Engineering & Applied Sciences

Harvard University
University of Toronto

Dept. of Computer Science

Abstract

One approach to modeling structured dis-
crete data is to describe the probability of
states via an energy function and Gibbs dis-
tribution. A recurring difficulty in these
models is the computation of the partition
function, which may require an intractable
sum. However, in many such models, the
mode can be found efficiently even when
the partition function is unavailable. Re-
cent work on Perturb-and-MAP (PM) mod-
els (Papandreou and Yuille, 2011) has ex-
ploited this discrepancy to approximate the
Gibbs distribution for Markov random fields
(MRFs). Here, we explore a broader class of
models, called Randomized Optimum mod-
els (RandOMs), which include PM as a spe-
cial case. This new class of models encom-
passes not only MRFs, but also other models
that have intractable partition functions yet
permit efficient mode-finding, such as those
based on bipartite matchings, shortest paths,
or connected components in a graph. We
develop likelihood-based learning algorithms
for RandOMs, which, empirical results indi-
cate, can produce better models than PM.

1 Introduction

One of the fundamental frustrations when modeling
high-dimensional phenomena is that it is often easy
to score configurations of data (e.g., using an energy
function), but normalizing the distribution that this
score implies may require enumerating a very large
space (e.g., computing a partition function). When the
normalizing constant is unknown, it becomes difficult
to perform learning and inference, as one cannot assess
which scoring functions give higher probability to the
data. This can be somewhat alleviated when exact

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

data can be generated from the model (Murray et al.,
2006; Adams et al., 2009), but such situations are rare.

A curious computational phenomenon is that there are
important and useful classes of energy-based models in
which summing over all states is difficult, but optimiz-
ing is easy. That is, there are models in which the
Gibbs-based probabilistic interpretation yields an un-
normalizable model, but the configuration that min-
imizes the energy function (the mode, or maximum
a posteriori (MAP) configuration) can be found ex-
actly and efficiently. Two common examples of this
are the graph cut algorithm for finding the mode of
an associative (submodular) binary Markov random
field (Kolmogorov and Zabih, 2004), and the bipartite
matching problem, in which solutions can be found us-
ing the Hungarian algorithm (Munkres, 1957) inO(n3)
time, but computing the normalizing constant is #P -
complete (Valiant, 1979).

The complexity contrast between optimizing and nor-
malizing has led to two different styles of learning in
models of high-dimensional data. The first relies on
optimization, but dispenses with a probabilistic inter-
pretation, instead seeking to ensure that the ground
truth has the optimal score. The energy-based mod-
els championed by LeCun et al. (2006), and struc-
tured SVMs trained via maximum margin methods
(Tsochantaridis et al., 2005) both fall into this cat-
egory. The second approach retains the probabilistic
formulation, but utilizes approximate inference, such
as loopy belief propagation, pseudo-likelihood, or sam-
pling, to approximate the enumeration that is required
for computing the probability of the data.

Our aim is to bridge this gap, developing probabilis-
tic models that avoid sampling over complex discrete
spaces, and the approximations required by enumer-
ation. Recent work by Papandreou and Yuille (2011)
has taken a step in this direction, in the particular case
of Markov random fields. These authors reformulate
a Gibbsian probabilistic model as injecting local noise
into the energy function followed by mode-finding un-
der the perturbed objective. They call this approach
Perturb-and-MAP, and consider factorized noise injec-



Randomized Optimum Models for Structured Prediction

tion based on the Gumbel distribution, which aims
to approximate the Gibbs distribution implied by the
original Markov random field.

In this paper, we develop a broader class of Random-
ized Optimum models (RandOMs), which are prob-
abilistic models that exploit efficient optimization.
RandOMs generalize previous work along three dif-
ferent axes. First, this new approach can be used to
develop probabilistic models for complex structured
spaces that are not typically modeled probabilistically,
but in which global optima can be computed efficiently.
We prove representational limitations to standard ran-
dom field models and show that RandOMs can be
used in a case where the standard graphical modeling
representation fails. Second, we disconnect from at-
tempting to approximate the Gibbs distribution and
explore other ways of moving from an energy func-
tion to a probability distribution over structured out-
puts. Third, we develop new maximum likelihood-
based learning schemes with different tradeoffs be-
tween efficiency and representation of uncertainty.

In total, we continue further in the direction of devel-
oping models that allow a better balance of probabilis-
tic rigor with computational tractability. We see three
main benefits to the approach: (a) it allows proper
probabilistic modeling of structured domains: support
is only given to configurations that satisfy domain-
specific constraints; (b) an exact sample can be drawn
from the models in polynomial time, without the need
for a Markov chain; and (c) we believe our novel learn-
ing approaches to be a promising direction forward
for learning with discrete output spaces that are more
complex than are typically addressed by structured
output learning. A key point related to the tractabil-
ity of our approach is that we will map the complex
discrete space into a well-behaved continuous latent
space, then perform the difficult computations in the
continuous space, where we can leverage powerful com-
putational tools and concepts.

2 Randomized Optimum models

The goal of the Randomized Optimum model is to
learn families of conditional distributions over highly
structured spaces. The centerpiece of this approach is
to specify these distributions in terms of the minima
of randomized objective functions.

Let Y define a structured space of interest, such as
the space of bipartite matchings, paths on a graph, or
segmentations of a graph. An element y ∈ Y is rep-
resented as the joint assignment of D categorical vari-
ables, y = {y1, . . . , yD}, where yd ∈ Ld = {1, . . . ,Kd},
and Kd is the cardinality of variable d. In the super-
vised setting that we explore here, we wish to construct
a distribution on this space by conditioning upon a

F
-1
(y)

w space

y

!

"(x)

p(w)
(a)

(b)

Figure 1: Overview of model. Starting from right to left:

an observation of structured output y determines the in-

verse mapping set F-1(y), which is denoted by the shaded

region. We then have a region in w space that leads to y

after a discrete optimization algorithm is run. ψ and φ(x)

define a distribution over y via p(w |ψ, φ(x)).

feature space X . The approach we take is to mediate
the interaction between X and Y via real-valued latent
variables w ∈W = RP , which we will discuss in more
detail below. As an example, for paths on a graph,
features may be properties of the edges and vertices.

An overview of the model is shown in Fig. 1. There are
two main components of the model: (a) the mapping
from features to a distribution in latent variable space,
p(w |ψ,φ(x)); (b) the mapping from latent variable
space to observations y. In a standard CRF formu-
lation, the (a) is deterministic while (b) is random.
In the RandOM formulation, these are reversed: (a)
is random, while (b) is deterministic. We discuss the
relationship to standard CRF models more thoroughly
in the Appendix, showing specifically how to map stan-
dard CRF notation into our formulation.

We will assume that there exists some matrix func-
tion φ : X → RF×P such that model parameters ψ ∈
RF can be used in conjunction with φ(x) to define a
distribution over w, which will then be used to define
a distribution over y. Our objective is to find param-
eters ψ that most effectively specify a family of distri-
butions p(y |ψ,φ(x)) =

∫
w p(y |w)p(w |ψ,φ(x))dw,

where y ∈ Y, given labeled data {xn,yn}N
n=1.

In Randomized Optimum models, we define
these distributions via a family of objective func-
tions fw : Y → R which are indexed by the latent
variables w. Then, y comes not from a distribution
given w but is the deterministic optimum of fw(y).
We assume that there is a unique minimum for fw(y)
for each w in W, yielding a simple generative model:

w ∼ p(w |ψ,φ(x)) y = argmin
y′

fw(y′).

Given the features x and the model parameters ψ, a
random objective function is chosen via w. The ob-
served data are then specified as the unique minimum
of this objective. We will denote this minimization as
an implicit function F (w) = argminy′ fw(y′), which
has domain W and codomain Y. We also make heavy



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

use of the inverse set F−1(y), where:

w ∈ F−1(y) ⇒ F (w) = y (1)

The core probabilistic component of this model is the
conditional distribution p(w |ψ,φ(x)). In the gener-
ative model, this is the distribution that determines
which optimization problem will be solved to find the
dependent variable y. Many regression models could
be used for RandOMs, e.g., Hannah et al. (2011); how-
ever, for concreteness, the reader may think of the
model in terms of simple basis function regression with
spherical Gaussian noise and the mean constrained to
the unit hypercube by the logistic function:

w |ψ,φ(x), ν ∼ N (σ(ψTφ(x)), νI) (2)

where σ(u) = (1 + exp{−u})−1. We will always fur-
ther assume that w is restricted to the unit hypercube.

2.1 Optimization Component of Model

Having specified the rest of the general framework, we
turn our attention to the specification of fw(y). In this
paper we will focus on a set of specific cases in which
Randomized Optimum models offer interesting com-
putational advantages over alternative ways to specify
families of distributions over structured spaces. There
are three main requirements when choosing the objec-
tive function fw(y). First, fw(y) should enforce global
constraints. For example, in the bipartite matching
domain, fw should enforce the constraint that each
point is matched to exactly one other point. Second,
the parameterization w should give enough flexibility
to model the domain of interest. By modifying w, we
should be able to prefer favorable structured objects
over unfavorable structured objects. Third, the func-
tion arg miny fw(y) must be efficient to compute.

There are many possible functions fw(y) that satisfy
these requirements for various structured Y. We con-
sider three classes of such functions, noting that not
all function within these classes will be suitable:

A. Standard exponential family models, where

fw(y) = 〈w, ρ(y)〉, (3)

where ρ(y) is the standard sufficient statistic in the ex-
ponential family representation of a MRF. This is the
example considered by Papandreou and Yuille (2011),
specifically in the case of a ferromagnetic Ising model.
This standard CRF model supports efficient optimiza-
tion via graph cuts.

B. Exponential family models with combinato-
rial base measure:

fw(y) = 〈w, ρ(y)〉+ η(y). (4)

The function η(y) specifies the support constraints for
the model. That is, it assigns infinite cost in the objec-
tive function to values of y outside the desired sample
space. For example η(y) might encode the requirement
that valid optima for fw(y) be one-to-one matches in
the bipartite matching problem. In the exponential
family view, this can be thought of as the negative log
of the base measure, which would take value infinity for
values of y which should have zero probability. Note
that representing these constraints within a graphical
model formulation often require high order potentials
and can be difficult to work with.

C. Beyond exponential families. These are func-
tions fw(y) that provably cannot be expressed in a
standard graphical model formulation, even when us-
ing high order potentials, yet still admit efficient opti-
mization. We give an example, make the above claim
precise, and provide a proof in the Appendix.

This formulation allows a wide range of Randomized
Optimum models with useful properties on structured
spaces. In the remainder of this section, we examine
two such cases of interest. Two other examples are
given in the Appendix.

2.1.1 Example: Bipartite Matching
In the bipartite matching problem, we have an undi-
rected bipartite graph G = (V, E), with equal-sized
partite sets A ⊆ V and B ⊆ V i.e., A ∩ B = ∅,
A ∪B = V, and J = |A|= |B|. Associated with each
pair (or edge) (ai ∈ A, bj ∈ B) is a real value wij ,
which gives a cost incurred for matching ai to bj . The
objective of bipartite matching is to choose a minimum
cost set of pairs {(ai1 , bj1), . . . , (ai|A| , bj|B|)} such that
each ai and each bj is paired with exactly one element
of the opposing partite set. When (ai, bj) is included
in the matching, we say that ai is matched to bj .

Bipartite matching enforces the concept of 1-to-1 cor-
respondence, so it is not surprising that this structure
arises often in real world problems in a variety of do-
mains. Some notable examples include the problem of
modeling correspondences in computer vision (Torre-
sani et al., 2008); the assignment of workers to jobs in
operations research; or computing word alignment in
natural language processing (Taskar et al., 2005).

To express the bipartite matching problem in Ran-
dOM terms, we let y = {y11, . . . , yJJ} be a length-
J2 boolean vector, where yij denotes the event
that ai is matched to bj . In this case, the suffi-
cient statistic is simply the identity: ρ(y)=y. Then
w = {w11, . . . , wJJ} is a length-J2 real-valued vector,
where wij gives the cost for matching ai to bj . Fi-
nally, η(y) enforces the one-to-one matching constraint
by assigning infinite cost to any y that is not a valid
matching. It should then be clear that



Randomized Optimum Models for Structured Prediction

fw(y) = 〈w, ρ(y)〉+ η(y) =
∑

ij

yijwij + η(y), (5)

and so minimizing fw is equivalent to the minimum
cost bipartite matching problem.

2.1.2 Example: Connected Components
There are many scenarios where observations may
come in the form of a graph-structured clustering
of points. For example, image segmentation can be
thought of as a clustering of pixels over a lattice graph.
One possible model of these outputs is as connected
components, as in (Turaga et al., 2010). A natural
goal is to define a proper probabilistic model of out-
puts generated by such a connected components pro-
cedure. This leads to an example of the third general
type — that which cannot be expressed as a standard
graphical model, even with high order terms. Given
a graph G=(V, E) with non-negative edge weights
w = {wij : (i, j) ∈ E} and a fixed threshold τ , we
wish the minimum cost solution to be to label vari-
ables according to the connected component that they
belong to, where an edge is deemed to exist if and only
if its corresponding weight is above the threshold i.e.
wij > τ . To represent this labeling, we define variables
y = {y1, . . . , y|V|} ∈ {1, . . . , |V|}|V|, and force the label
of all variables within a component to be the minimum
index of any variable within that component. Under
this definition, conditional on a given G and w, there
is a single desired labeling of variables, and all other
labelings are equally undesirable.

More formally, we can describe fw(y) using the fol-
lowing definitions:

P(i, j) is the set of all paths from i to j in G (6)
bij(w) = max

p∈P(i,j)
min

(l,m)∈p
wlm (7)

Ci(w) = {j : i ,= j, bij(w) > τ} (8)

fw(y) =
∑

(i,j)∈E

1{yi=yj} max (0, bij(w)− τ) (9)

+
∑

(i,j)∈E

1{yi %=yj} max (0, τ − bij(w)) + η(y)

η(y) = lim
a→∞

a ·
(

1−
∏

i∈V
[yi = min

j∈Ci(w)
j]

)
. (10)

It should be clear that by assigning y as the result of
a connected components algorithm, fw(y) = 0. All
other assignments have fw(y) > 0, so we can exactly
and efficiently compute the arg-minimum of this fw.
An interesting question is whether there exists an ex-
ponential family representation (i.e., in the form of
Eq. 4) of this model. We will prove that this is impos-
sible via the geometry of the inverse set F−1(y).

3 Inverse Set Geometry

We believe a productive means of thinking about Ran-
dOM models is via the geometry of the inverse map-
ping set F−1(y). It is this geometry that determines
the tractability of a RandOM as fw becomes more
complex. Due to space constraints, discussion of im-
portant geometric properties, along with proofs, will
be discussed in the Appendix. Here, we simply state
the important results:
Proposition 1. When fw(y) is defined as the expo-
nential family (possibly with combinatorial base mea-
sure) as in Eq. 4, F−1(y) is a convex set.
Proposition 2. The inverse set F−1(y) for the con-
nected components problem from Section 2.1.2 is a
star-convex set.
Lemma 1. Let fw(y) be defined as the connected com-
ponents objective in Eq. 9. There is no equivalent ex-
pression of fw(y) in the exponential family form Eq. 4.

4 Learning RandOMs

The maximum likelihood learning objective is to max-
imize the amount of probability mass assigned to
the ground truth labeling by the model. In the
RandOM formulation, because the relationship be-
tween latent variables w and observations y is de-
terministic, this amounts to placing as much mass of
p(w | ψ,φ(x)) as possible inside the F−1(y) sets. In
this section, we design learning algorithms for Ran-
dOMs that take advantage of the structure of F−1(y).

The principal challenge we need to address is how to
handle the unknown latent variable w for each training
case. For any given observed configuration y, there is a
set of w corresponding to objective functions for which
F (w) = y. Recall that this set is the inverse mapping
set F−1(y). The likelihood of ψ requires integrating
over this set:

p({yn}N
n=1 |ψ, {xn}N

n=1)=
N∏

n=1

∫

F−1(yn)
p(wn |ψ,φ(xn)) dwn.

Because the optimization procedure is a many-to-one
mapping, and since exactly integrating over F−1(y) is
intractable (even in the case where F−1(y) is a con-
vex set and p(wn |ψ,φ(xn)) is Gaussian), there are
essentially two practical approaches: approximately
integrate over w using Markov chain Monte Carlo
(MCMC); or find a point estimate for w by solving a
constrained optimization problem. In this section, we
will discuss formulations of both of these approaches
where efficient combinatorial algorithms can be used
to make learning more efficient. An orthogonal issue
that we will not discuss further is the treatment of ψ.
Here, we will find a point estimate, but it would be
straightforward to integrate over it via sampling.



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

4.1 Monte Carlo Expectation Maximization

Although we cannot generally analytically integrate
over the pre-image set, we can nevertheless instantiate
the latent variables {wn}N

n=1 explicitly in a Markov
chain, drawing samples using a specialized MCMC
procedure. This general approach has the property
that it allows for maximal flexibility in the choice
of p(w |ψ,φ(x)), enabling any option that would be
available in the case where the w themselves were the
observations, such as nonparametric mixture models.
We emphasize that sampling over F−1(y) is very dif-
ferent from the typical sampling over a complex dis-
crete space.

More specifically, we write the joint distribution
p(ψ, {wn,yn,xn}N

n=1) as,

p(ψ)
N∏

n=1

p(wn |ψ,φ(xn))1{wn∈F−1(yn)} (11)

Note that p(ψ, {wn,yn,xn}N
n=1) has two parts. The

first part, p(ψ)
∏N

n=1 p(wn |ψ,φ(xn)), is any standard
regression model for wn given inputs xn, using param-
eters ψ. The non-standard part of this formulation
comes from the second part — the indicator function
1{wn∈F−1(yn)}, which constrains each wn to lie in the
inverse mapping set F−1(yn) by assigning zero prob-
ability to any wn that lies outside the set. One of the
main operations that we will need to repeatedly per-
form during learning is to check whether a given wn

lies within F−1(yn). This “set membership” query
could be done simply by running the optimization al-
gorithm associated with the RandOM. We will discuss
a much more efficient strategy, and its tailoring specif-
ically to slice sampling, in Section 4.1.1.

Monte Carlo expectation maximization (MCEM) (Wei
and Tanner, 1990) alternates between computing a
Monte Carlo estimate of the expected complete data
log likelihood (the E-step) and maximizing ψ given
this approximation (the M-step). In MCEM itera-
tion t, we use the procedure described in Section 4.1.1
to generate K samples of the latent variables wn

using the current parameter estimate ψ(t): w(t)
n,k ∼

p(wn |ψ(t),xn) · 1{wn∈F−1(yn)}. These samples are
then used to estimate the complete data log likelihood:

Ew(t) [ ln p({yn,wn}N
n=1 |ψ, {xn}N

n=1) ]

≈
N∑

n=1

ln

{
1
K

K∑

k=1

p(w(t)
n,k |ψ,φ(xn))

}
. (12)

This Monte Carlo approximation to the E-step is then
used in the M-step to find the new parameter settings:

ψ(t+1) = argmax
ψ

N∑

n=1

ln

{
1
K

K∑

k=1

p(w(t)
n,k |ψ,φ(xn))

}
.

In each E-step, the Markov chain for each latent vari-
able is initialized to its ending value from the previous
step. As the inverse mapping does not change dur-
ing updates to ψ, the new starting location for wn is
guaranteed to lie within F−1(yn). In the experimental
section, we explore the effect of varying the number of
samples to draw in each E-step, considering the case
of using as few as 1 sample per instance per iteration.

4.1.1 Specialized Slice Sampler

Critical to MCEM (and fully-Bayesian inference) is the
task of sampling the latent w. In this section, we will
discuss why this problem is particularly well suited
to slice sampling (Neal, 2003), and we will show how
dynamic combinatorial algorithms and the inner work-
ings of slice sampling can be made to work synergisti-
cally together. For a detailed review of slice sampling,
we recommend Neal (2003). We assume familiarity of
basic slice sampling, and give a detailed description of
our implementation of slice sampling, specialized for
the case of bipartite matching models, in Algorithm 2
(see Appendix). The same principles apply for other
RandOMs. Here we discuss the non-standard proper-
ties of our specialized slice sampler.

First, we maintain algorithmic state Ay throughout
the execution of the sampling algorithm. Whenever
we make a set membership query (In-Inverse-Set in
Alg. 2), we warm-start from the solution of the pre-
vious call, using dynamic combinatorial optimization
e.g. for bipartite matching problems, we use the dy-
namic Hungarian algorithm of Korsah et al. (2007).

Second, we re-sample blocks of w so as to be compati-
ble with the dynamic combinatorial algorithm. In the
bipartite matching case, we resample a subset of di-
mensions of w at a time, where the subset corresponds
to the terms that define the costs for a single row of
the bipartite matching cost matrix. With this choice,
the dynamic Hungarian algorithm can check inverse
set membership in worst case O(J2) time rather than
the worst case O(J3) time that would be required if all
entries of w changed. More importantly, empirically,
the membership checks after a single row update often
behave as O(1) or O(J), depending on how many val-
ues of F (w) change as a result of the modification. If
we modify w without leaving the F−1(y) set, then by
definition, F (w) has not changed, making the dynamic
algorithm very fast. When the sampler does step out-
side F−1(y), it is typically by a small amount, leading
to a new F (w) that is not far from y. One elaboration
that we leave to future work is whether the call to the
dynamic combinatorial algorithm can be halted early
as soon as the solution is provably different from y.

Third, many set membership queries are avoided alto-
gether. This can be done whenever the intersection of



Randomized Optimum Models for Structured Prediction

F−1(y) with the subspace in which we are resampling
is a convex set. This is clearly the case when F−1(y)
is itself a convex set. Even in cases where F−1(y) is
not a convex set, it may be that the intersection with
the resampling subspace is convex. We can avoid cer-
tain set membership calls by the following reasoning:
we are guaranteed inductively that the initial point w
lies within F−1(w). The alternative points that we en-
counter during slice sampling all lie on the line w+α·s
for some α ∈ R. Thus, if we observe that w+α·s also
lies within F−1(w), then we can infer that w+α′ ·s
lies within F−1(w) for all values α′∈ [α, 0] (if α<0) or
α′∈ [0, α] (if α>0). When we encounter a point that
can be proven to lie within F−1(w), there is clearly no
reason to issue a set membership query.

When p(w |ψ,φ(x)) is log concave and F−1(w) is
a convex set, then the restriction of p(w |ψ,φ(x))
to F−1(w) will also be log concave. Practically, this
means that the slice sampler will never have to tra-
verse difficult energy barriers to reach any part of the
space. From a theoretical point of view, it guarantees
that that the slice sampler is “perfect” in that each
step is drawing a uniform sample from the slice and is
not simply leaving the uniform distribution invariant.

4.2 Hard EM

Rather than integrating
∫

p(w |y,ψ,φ(x))dw in the
E-step, we can instead maximize over w. This yields a
“hard EM” algorithm, in which the E-step seeks the w
in F−1(y) with maximum density p(w | ψ,φ(x)):

argmax
w

p(w |y,ψ,φ(x)) = argmax
w∈F−1(y)

p(w |ψ,φ(x)).

The methods presented in this section assume that fw

is defined as the exponential family form of Eq. 4,
so F−1(y) is a convex polytope. If p(w |ψ,φ(x)) is
log-concave in w, the E-step is a convex optimization
problem, constrained to a convex polytope. In the
case that p(w | ψ,φ(x)) is Gaussian distributed, the
optimization problem is a quadratic program (QP):

min.w (w − ŵ)T (w − ŵ) (13)
s.t. fw(y) ≤ fw(y′) ∀y′ ,= y, (14)

where ŵ is the mode of p(w | ψ,φ(x)).

The difficulty is that the number of constraints needed
to define F−1(y) (and thus the QP) is often exponen-
tial in |y|. For all but small problems, it is intractable
to explicitly instantiate the QP. However, as an effi-
cient separation algorithm exists, the problem can be
optimized by a cutting planes approach.

From an algorithmic perspective, we have arrived at an
algorithm that bears some resemblance to a standard
structural SVM formulation (Tsochantaridis et al.,

Algorithm 1 Hard EM+Margin: E-step
w ← ŵ S ← ∅ // Active set of constraints.
while 1 do

y′ ← arg minŷ #=y fw(ŷ)

if y′ ∈ S then
break

else
S ← S ∪ {y′}

end if
w ← arg minw′,ξ≥0(w′ − ŵ)T (w′ − ŵ)− Cξ

s.t. fw′ (y) ≤ fw′ (y
′)− ξ ∀y′ ∈ S

end while

2005). The most obvious similarity is that both ap-
proaches involve formulating a QP that optimizes over
model parameters, where the QP constraints are of the
form that the ground truth y has better objective than
all other assignments y′. To find violated constraints
in the QP formulation of structural SVMs (or to find
subgradients in the empirical risk minimization formu-
lation) the same inner loop is used as in this hard EM
formulation. The main difference in the inner loop is
that the objective of the hard EM QP encourages w′

to be near ŵ, the mode of p(w |ψ,φ(x)), versus the
QP objective that encourages that w′ be near 0.

The second major difference is that the QP variables in
this hard EM formulation are latent variables w, while
the variables in the QP from the structural SVM for-
mulation are more analogous to our ψ parameters. In
fact, we could make the connection to the structural
SVM formulation clearer by making the additional as-
sumption that the relationship between ψ and w is
deterministically set to wn = ψT φ(xn). In this case,
the QPs for all data cases n must be combined into
one QP and solved simultaneously, like in a structural
SVM algorithm. Mediating the interaction of ψ and
y via random w allows for the probabilistic nature of
the RandOM approach.

A practical problem with this hard EM algorithm is
that the solutions w often lie on the boundary of the
polytope F−1(y). This leads to undesirable behavior
in the M-step, where significant mass is placed outside
F−1(y). To counteract this bias, we modify the QP
objective to encourage finding points that have high
density under p(w |ψ,φ(x)) but that are deeper inside
F−1(y). We do this by adding a margin term to the
QP objective, leading to the modified Hard EM QP
given in Alg. 1. There, C is a parameter that trades
off the margin between w and the boundary of F−1(y)
with maximizing p(w |ψ,φ(x)).

5 Experimental Evaluation
The main experimental questions we focus on concern
the representational capabilities of Randomized Opti-
mum models. We ran two sets of experiments. First,
we experimented with synthetic data, and second, we
applied a bipartite matching RandOM to a real-world
lung CT scan registration task from medical imaging.



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

The goal is to learn to align landmarks in 3D lung
volumes between two phases of the respiratory pro-
cess. We show that RandOMs achieve higher accuracy
than not only the Perturb-and-MAP models, but also
a max-margin model trained structural SVM on the
same features.

Evaluation: To evaluate the probability assigned to
a data point (x,y) by the model, we draw samples
yk from p(y |ψ,φ(x)) using learned parameters ψ,
and we count the fraction of samples that match the
ground truth, i.e. 1

K

∑
k 1{yk=yn}. For our experi-

ments here, we use K=10000.

Synthetic Matching Experiments: We gener-
ated synthetic data sets for bipartite matching models
by sampling J landmark points (set A) uniformly in
the 2D box [−1, 1]2. For each point, we also gener-
ated a real-valued size and 3D color vector in RGB
space. We then generated J target points (set B)
by associating one point in B with one point in A,
then drawing the properties of B by perturbing the
associated point in A. In Dataset 1, we color the
points in B to be uniformly random (so color be-
comes an irrelevant feature), while noisily drawing
size and position from a distribution centered at the
value for the associated point in A. In Dataset 2,
we use a multimodal generation process; with proba-
bility 1

2 , we follow a similar procedure as above, but
only set position to be relevant, and with probabil-
ity 1

2 set only color to be relevant. The features
{φfij(x)|f ∈{position, color, size}} are length-J2 real
vectors, where there is an entry for each (i ∈ A, j ∈ B)
pair. We set the entry of φfij(x) corresponding to
(i, j) to be the squared distance between ai and bj

along dimension f .

Results for the first data set are shown in Fig. 2. PM
denotes Perturb-and-MAP, HEM denotes Hard EM,
MCEM denotes Monte Carlo EM, and MM denotes
max-margin. In parenthesis are the parameter setting,
denoting the margin parameter, or the number of sam-
ples per iteration per instance. Comparing the MCEM
algorithms to PM, we see that MCEM slightly outper-
forms PM, but that both do a good job in assigning
mass to all training points. This is interesting, because
it shows that Randomized Optimum models that do
not attempt to approximate the standard Gibbs dis-
tribution can still have good representational power.

Quantitative results for both synthetic data sets are
shown in Fig. 3. We compare the probability assigned
to the data by each algorithm with several parameter
settings. If the probability assigned to an instance
was small enough that no samples were drawn that
exactly matched the ground truth, then we remove
that instance’s contribution from the log probability

(a) “Unimodal” data set. (b) “Multimodal” dataset.

Figure 2: Distribution of probability mass placed on the
data by different learning algorithms. Along the x-axis are
different training examples. The height of the bar shows
the fraction of samples drawn from the model that matched
the ground truth. J = 5, and N = 10.

(otherwise it would go to −∞) and report this failure
in the second column. Plots of how the log probability
is assigned to data instances are shown in Fig. 2.

Amongst the Hard EM (HEM) algorithms, we see that
including the term that rewards increasing the margin
does improve performance. Increasing the term to be
very large encourages finding the point that has largest
margin, regardless of where mass of the distribution
p(w | ψ,φ(x)) lies. This causes the model to place
nonzero mass on every instance, but it must increase
its uncertainty, so the amount of mass placed on each
instance decreases. We believe the reason why some
data points are given negligible mass is because the E
step is not guaranteed to find a point inside F−1(y)
if the cutting planes algorithm is only run for a small
number of iterations (as is done in these experiments).

As is particularly evident in the “multimodal” setting,
the max-margin approach cannot always find a setting
of ψ that perfectly separates the ground truths from
all other assignments. In geometric terms, the sub-
spaces spanned by the rows of φ(xn) do not intersect
F−1(yn) for all n. While the probabilistic algorithms
are able to place mass in all inverse mapping sets using
distributions in w space, the MM approach is not.

In both experiments, PM and MCEM achieve the best
performance. Interestingly, while increasing the num-
ber of samples per iteration seems to improve MCEM,
PM does not seem to benefit. In both cases, the
top performing algorithm is MCEM with 100 samples
drawn per instance per iteration in the E step.

Lung CT Registration Task: We obtained volu-
metric CT scans of pairs of lungs at different phases
of the respiratory process, from 10 subjects (Castillo
et al., 2009).1 Included with the data are a set of
hand-labeled landmarks giving ground truth corre-
spondences between points in the pairs of lung vol-

1Available at http://www.dir-lab.com/index.html



Randomized Optimum Models for Structured Prediction

Alg Avg. Log Prob # Prob=0

Max-margin 0 2
PM(1) -0.51 0
PM(10) -0.50 0
PM(50) -0.50 0

HEM(0.0) -0.74 2
HEM(1.0) -1.09 0
HEM(1e5) -1.59 0
MCEM(1) -0.44 0

MCEM(100) -0.44 0
(a) “Unimodal” data

Alg Avg. Log Prob # Prob=0

Max-margin 0 4
PM(1) -1.06 0
PM(10) -1.06 0
PM(50) -1.06 0

HEM(0.0) -1.08 2
HEM(1.0) -1.09 1
HEM(1e5) -1.38 0
MCEM(1) -1.07 0

MCEM(100) -0.97 0
(b) “Multimodal” data

Figure 3: Quantitative results on synthetic data.

umes. We take 30 corresponding landmarks from
each pair of lungs, and we extract several features for
each landmark in each volume. We use a total of 20
features, including 3D position, mean intensity of vary-
ing sized patches around the landmark, standard devi-
ation of intensity in varying sized patches around the
landmark, and the Hessian-based “vesselness” filter of
Frangi et al. (1998) at several scales. As in the syn-
thetic data, for each landmark feature, we compute
φfij(x) for a pair (ai, bj) as the squared difference of
the features for ai and bj along dimension f .

We split the 10 instances into 10 different training sets,
where we train on 9 instances and evaluate based on
predictive performance on the held out 10th instance.
The results are averaged over the 10 splits and are re-
ported in Fig. 4. The columns show the fraction of pre-
dicted pairs that are correct (the “score”), along with
average probability assigned to the test data, and av-
erage log probability assigned to the test data. Paren-
theses in the last column give the number of cases
where the model assigned low enough probability to
the test data such that we drew no samples that ex-
actly matched the true test labeling.

We compare MCEM to PM and max-margin baselines.
Here, though MCEM displays a small amount of over-
confidence, it outperforms both baselines in overall
score; that is, the Randomized Optimum models pro-
duce the most accurate predictions on this task.

6 Discussion and Related Work

To our knowledge, the line of work that includes Pa-
pandreou and Yuille (2011) and this work is unique in

Avg. Avg. Avg.
Alg Score Prob Log Prob

Max-margin 91.0% .400 0 (6)
PM(1) 95.0% .538 -1.52 (0)
PM(10) 94.9% .543 -1.54 (0)

MCEM(1) 98.8% .837 -1.67 (2)
MCEM(5) 96.8% .568 -0.62 (1)
MCEM(10) 96.7% .544 -0.56 (1)

Figure 4: Quantitative results on lung CT data.

the technique of defining generative probabilistic mod-
els that include include an explicit optimization pro-
cedure. However, the motivating ideas are present in
several works, which build probabilistic models around
specialized tractable computational structures.

For example, Determinental Point Processes (Kulesza
and Taskar, 2011) define probability models around
the computation of the determinant of a matrix.
Domke (2011) defines probability models around a
fixed number of iterations of belief propagation. Nei-
ther of these computations is a discrete optimization
of the type we consider, but the spirits are similar.

There is also work on learning under the assumption
that test-time inference will involve running a discrete
optimization procedure. Structured output SVMs are
perhaps the most popular, and they have been widely
applied e.g., Taskar et al. (2005); Ratliff et al. (2006);
Szummer et al. (2008); Joachims et al. (2009).

In this paper we have presented a framework for defin-
ing probabilistic models that exploit efficient methods
for optimizing the scoring function. The models de-
rive from a simple generative procedure that allows
a rich class of probabilistic models. While we have
shown how a previous model, Perturb-and-MAP, can
be applied beyond settings typically modeled as condi-
tional random fields, RandOMs are more general than
even the extended version of Perturb-and-MAP. The
learning procedures we provide show how to directly
formulate a maximum likelihood learning objective.
The experimental results show this learning to be both
tractable and successful in a real-world application.

RandOMs trade enumerating an exponential number
of configurations for an integration of the inverse map-
ping polytope. We believe moving the difficult compu-
tations to the continuous latent space is desirable, be-
cause it allows the use of powerful continuous-variable
tools to be used in the context of structured discrete
output spaces.

Finally, we have only begun to explore the representa-
tional power of the framework. RandOMs can readily
incorporate other generative distributions over the la-
tent variables, such as Gaussian Processes, mixture
models, or various nonparametric models. Exploring
these alternatives is a focus of our future work.



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

Acknowledgements

We thank Juan Eugenio Iglesias for help designing fea-
tures for the lungs model, along with help preparing
the data.

References

R. P. Adams, I. Murray, and D. J. C. MacKay. The
Gaussian process density sampler. In NIPS 21, 2009.

R. Castillo, E. Castillo, R. Guerra, V. Johnson,
T. McPhail, A. Garg, and T. Guerrero. A framework
for evaluation of deformable image registration spa-
tial accuracy using large landmark point sets. Phys
Med Biol, 54:1849–1870, 2009.

W. H. Cunningham. Minimum cuts, modular func-
tions, and matroid polyhedra. Networks, 15(2):205–
215, 1985.

J. Domke. Parameter learning with truncated
message-passing. In CVPR, 2011.

A. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever. Multiscale vessel enhancement filtering.
In MICCAI, 1998.

L. A. Hannah, D. M. Blei, and W. B. Powell. Dirich-
let process mixtures of generalized linear models.
JMLR, 12:1923–1953, 2011.

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane
training of structural SVMs. Machine Learning, 77
(1):27–59, 2009.

V. Kolmogorov and R. Zabih. What energy functions
can be minimized via graph cuts? IEEE PAMI, 26
(2):147–159, 2004.

G. Korsah, A. Stentz, and M. Dias. The dynamic Hun-
garian algorithm for the assignment problem with
changing costs. Technical Report CMU-RI-TR-07-
27, Robotics Institute, Pittsburgh, PA, July 2007.

A. Kulesza and B. Taskar. Structured determinantal
point processes. In NIPS 23, 2011.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and
F. Huang. A tutorial on energy-based learning. In
Predicting Structured Data. MIT Press, 2006.

J. Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the Society for In-
dustrial and Applied Mathematics, 5(1):32–38, 1957.

I. Murray, Z. Ghahramani, and D. J. C. MacKay.
MCMC for doubly-intractable distributions. In UAI,
pages 359–366, 2006.

R. M. Neal. Slice sampling. Annals of Statistics, 31
(3):705–767, 2003.

V. Ng. Graph-cut-based anaphoricity determination
for coreference resolution. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, 2009.

G. Papandreou and A. Yuille. Perturb-and-MAP ran-
dom fields: Using discrete optimization to learn and
sample from energy models. In ICCV, 2011.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum
margin planning. In ICML, 2006.

C. Rother, V. Kolmogorov, and A. Blake. Grab-
Cut: interactive foreground extraction using iter-
ated graph cuts. ACM Transactions on Graphics,
23(3):309–314, 2004.

C. Smith. A characterization of star-shaped sets.
American Mathematical Monthly, 75(4), 1968.

M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs
using graph cuts. In ECCV, 2008.

B. Taskar, S. Lacoste-Julien, and D. Klein. A discrim-
inative matching approach to word alignment. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 73–80, 2005.

L. Torresani, V. Kolmogorov, and C. Rother. Fea-
ture correspondence via graph matching: Models
and global optimization. In ECCV. 2008.

I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. JMLR, 6:1453–
1484, 2005.

S. C. Turaga, K. L. Briggman, M. Helmstaedter,
W. Denk, and H. S. Seung. Maximin affinity learn-
ing of image segmentation. In NIPS, 2010.

L. G. Valiant. The complexity of computing the per-
manent. Theoretical Computer Science, 8(2):189–
201, 1979.

Wainwright and Jordan. Graphical models, exponen-
tial families, and variational inference. Foundations
and Trends in Machine Learning, 2008.

H. Wang. Proteins, Interactions, and Complexes: A
Computational Approach. PhD thesis, Department
of Computer Science, Stanford University, 2008.

G. C. G. Wei and M. A. Tanner. A Monte Carlo
implementation of the EM algorithm and the poor
man’s data augmentation algorithms. Journal of the
American Statistical Association, 85(411):pp. 699–
704, 1990.



Randomized Optimum Models for Structured Prediction

Randomized Optimum Models for
Structured Prediction — Appendix

7 More Example
RandOM Constructions

7.1 Example: Shortest Paths

In the st-shortest path problem, we are given a di-
rected graph G=(V, )E), along with two special nodes,
a source s, and a destination t. Each directed
edge (i, j) has a cost wij . The goal of the st-shortest
path problem is to find a path from s to t such that
the sum of edge costs along the path is minimized.

Just as matchings represent a certain type of funda-
mental structure, so do shortest paths. For example,
consider observations of people walking through their
neighborhood from home to work. A natural model of
these observations is that people have a cost function
for traversing sections of road or sidewalk that depend
on features such as length, scenery, crowdedness, or
safety. To get between two points, we might suppose
that a person chooses the path that has lowest cost
under their (to us, unobserved) cost function.

In RandOM terms, we let w be a vector of length |)E|,
where there is a cost wij for each directed edge (i, j).
A shortest path is uniquely defined by the set of edges
that it traverses, so we can represent the path using bi-
nary variables y={yij |(i, j) ∈ )E}, where yij indicates
that the path traversed the edge from i to j. As before,
we let the sufficient statistic be the identity ρ(y)=y,
and we let η(y) enforce the constraint that y corre-
sponds to a valid st-path.2 It is then clear that mini-
mizing fw is equivalent to finding the shortest st-path.

7.1.1 Example: Minimum Cuts

Another example is finding the minimum cut in a
graph. Given an undirected graph G=(V, E) with non-
negative edge weights {wij : (i, j) ∈ E}, the minimum
cut problem is to split the graph into two subsets S
and S̄ such that the sum of the weights of the “cut”
edges is minimized. An edge is considered cut if one
endpoint lies in S and the other lies in S̄.

There exist efficient algorithms for finding the min-
imum cut in graphs with arbitrary topology. This
is particularly useful because of the connection be-
tween finding a minimum cut in a graph and min-
imizing graph-structured submodular functions over

2One way to define a shortest st-path as a set of con-
straints: constrain the out-degree of s to be 1, the in-degree
of t to be 1, and for all other vertices, force the in-degree
to equal the out-degree, which must be less than or equal
to 1. Note these are linear constraints in y.

binary variables. That is, these submodular mini-
mization problems can be solved exactly via reduc-
tion to min-cut (Cunningham, 1985), which has led to
widespread practical application. One example is the
so-called “graph cuts” algorithm, which is a workhorse
of computer vision. The most common use in com-
puter vision is binary image segmentation, where the
goal is to label each pixel in an image as belonging to
one of two semantic classes. For example, separating
foreground from background or object (e.g., airplane)
from not-object. This task is fundamental in many
vision applications, can be a subtask for non-binary
image segmentation, and has applications on its own
to image editing (Rother et al., 2004). The effective-
ness of the available optimization procedures has also
led to the problem being used to model protein-protein
interactions in computation biology (Wang, 2008), and
in natural language processing (Ng, 2009).

To express the minimization in RandOM terms, we use
the standard connection with graph-structured sub-
modular energy functions over binary variables. Given
a graph G=(V, E), we associate a binary variable yi

with each vertex i, so y={y1, . . . , y|V|}. In the im-
age labeling setting, for example, there would be one
binary variable per pixel. In this case, the sufficient
statistic ρ(y) is no longer the identity. Instead, it is

ρ(y) = ({1{yi=k}|i ∈ V, k ∈ {0, 1}}, (15)

{1{yi %=yj}|(i, j) ∈ E}). (16)

There is an indicator for each yi, and indicators de-
noting whether variables that share an edge in G have
different values (i.e., the edge is cut). The vector w
associates a cost with each variable taking on each
value, and for cutting each edge. The constraints η(y)
are unused, because all binary labelings are allowed.

Assuming the w values associated with edges are non-
negative, the resulting fw(y) = 〈w, ρ(y)〉 will be sub-
modular and can thus be minimized efficiently. Con-
versely, it is the case that any graph-structured sub-
modular function over binary variables can be ex-
pressed in this form (Kolmogorov and Zabih, 2004).

8 Relation to Conditional Random
Field Representation

In Papandreou and Yuille (2011), it is discussed how
the Gibbs distribution arising from a typical CRF for-
mulation can be recovered in the PM framework by
adding independent Gumbel noise to the energy of
each joint assignment. While the same argument ap-
plies to RandOMs, since it is not practically imple-
mentable, and since it has been discussed in Papan-
dreou and Yuille (2011), we do not discuss it further



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

here. Instead, we focus on how the energy function of
a standard CRF formulation can be recovered using
our notation and the RandOM formulation.

The latent variables w are defined such that the en-
ergy function used by a standard exponential family
form of CRF could be recovered as fw(y). In our no-
tation, we could achieve this by deterministically set-
ting w = ψT φ(x). To illustrate this representational
choice concretely, consider a pairwise graphical model
over graph G = (V, E) with unary feature set U and
pairwise feature set P, and thus energy function

E(y) =
∑

d∈V

∑

u∈U
ψuφ̄ud(yd;x) (17)

+
∑

d,d′∈E

∑

p∈P
ψpφ̄pdd′(yd, yd′ ;x), (18)

where φ̄ud are unary feature functions that give a fea-
ture response for feature u at location d for each pos-
sible setting of yd. When y are discrete, the feature
functions φ̄ decompose as

φ̄ud(yd;x) =
∑

k∈Ld

1{yd=k}φudk(x) (19)

φ̄pdd′(yd, yd′ ;x) =
∑

k,k′∈Ld×Ld′

1{yd=k∧yd′=k′}φpdd′kk′(x)

(20)

We can then flatten the above φ functions into a single
vector, φ, such that E(y) =

〈
ψT φ(x), ρ(y)

〉
, where

ρ(y) is the set of standard exponential family suffi-
cient statistics for the canonical overcomplete repre-
sentation: ρ(y) =

(
1{yα=kα}

)
α∈V∪E,kα∈×d∈αLd

, where
kα is either the label space for a single variable, or the
cross product of label spaces for variables that share an
edge (Wainwright and Jordan, 2008). From here, it is
straightforward to see that if we set w to be determin-
istically defined as w = ψT φ(x), then fw(y) = E(y).
In the RandOM formulation, w is instead a random
function of ψT φ(x).

9 Geometry of Inverse Mapping Sets

A fundamental challenge when using real-valued pa-
rameters to define cost functions over discrete spaces
is that there are many settings of the parameters that
lead to the same minimum cost assignment. We refer
to this set of parameter settings as the “inverse map-
ping set,” and — as mentioned before — we denote it
F−1(y). One of the central themes of this work is that
optimization algorithms can be productively thought
of in terms of the geometry of the inverse mapping set

F−1(y), and leveraging structure in F−1(y) can lead
to efficiencies in learning algorithms.

In this section, we develop some intuitions about these
important sets and prove properties of F−1(y) for dif-
ferent optimization problems defined by fw. In the
next section, we will discuss learning algorithms that
make use of these characterizations.

Proposition 3. When fw(y) is defined as the expo-
nential family (possibly with combinatorial base mea-
sure) as in Eq. 4, F−1(y) is a convex set.

Proof. First, consider the case that η(y)=0 for all y.
Then, as noted in Papandreou and Yuille (2011),
F−1(y) is defined by the conjunction of constraints
〈w, ρ(y)〉 <〈w, ρ(y′)〉 for all y′ ,=y. This is a set of
linear constraints in w. Half-spaces are convex sets,
and the intersection of a set of convex sets is a convex
set, which proves the η(y) = 0 case.

For the more general case where η(y) may define non-
trivial support, F−1(y) is defined by the conjunction of
constraints 〈w, ρ(y)〉 < 〈w, ρ(y′)〉 for all y′ ,= y, where
y′ is allowed by η. Again, though, this is an intersec-
tion of half-spaces, which completes the proof.

Proposition 4. When fw is defined as the connected
components objective in Eq. 9, F−1(y) may be non-
convex.

Proof. We prove this by example, constructing wA ∈
F−1(y), wB ∈ F−1(y) and wc = λwA + (1 − λ)wB

such that λ ∈ [0, 1] and wC ,∈ F−1(y).

Suppose we have G = (V, E) with nodes
V = {v1, v2, v3, v4} and edges E =
{(1, 2), (2, 3), (3, 4), (4, 1)}. Let τ > .5. It is clear that
if we set wA = (wA

12, w
A
23, w

A
34, w

A
41) = (1, 1, 1, 0),

then there is a single connected component,
so F (wA) = (1, 1, 1, 1). Similarly, if we set
wB = (wB

12, w
B
23, w

B
34, w

B
41) = (1, 0, 1, 1), then

there is a single connected component, so also
F (wB) = (1, 1, 1, 1). Thus for y = (1, 1, 1, 1),
wA ∈ F−1(y) and wB ∈ F−1(y).

Now let λ = .5, so wc = λwA + (1 − λ)wB =
(1, .5, 1, .5). Now, however, both of the edges (2, 3)
and (4, 1) have weight below the threshold i.e. wij ≤ τ ,
leaving us with two separate connected components.
So F (wC) ,= y and thus wC ,∈ F−1(y), which com-
pletes the proof.

Lemma 2. Let fw(y) be defined as the connected com-
ponents objective in Eq. 9. There is no equivalent ex-
pression of fw(y) in the exponential family form Eq. 4.

Proof. This follows simply from a proof by contradic-
tion that uses Propositions 3 and 4.



Randomized Optimum Models for Structured Prediction

Suppose for the sake of contradiction that there is some
f̃w(y) such that f̃w(y) is expressible in exponential
family form, and that f̃w(y) = fw(y) for all y. Then
F−1(y) = F̃−1(y), and by Proposition 3, F−1(y) is
a convex set. However, this contradicts Proposition
4.

Note that this result is specific to the choice of pa-
rameterization for a problem. For example, there are
functions fw̃ of higher dimensional w̃ that assign the
same cost as fw to all y, where the inverse mapping in
the higher dimensional space could very well be onto
a convex set.

9.1 Star Convexity

Our final result in this section is to show that there
are properties of F−1(y) beyond convexity that will
still be useful in certain later learning formulations.
To illustrate this, we take as example the inverse set
F−1(y) for the connected components problem from
Section 2.1.2. While not necessarily a convex set,
F−1(y) for this problem still has particular tractable
structure that will allow us to learn a RandOM using
some of the techniques in Section 4.

We begin by recalling the definition of star convexity
(Smith, 1968).

Definition 1. A set S is star convex if there exists a
point t ∈ S such that ∀s ∈ S, λs+(1−λ)t ∈ S for all
λ ∈ [0, 1]. We call t a center point.

Proposition 5. The inverse set F−1(y) for the con-
nected components problem from Section 2.1.2 is a
star-convex set.

Proof. The main idea is that for any s ∈ F−1(y) and
all pairs of variables i, j such that yi = yj , there must
be at least one critical path between i and j using edges
(k, l) such that skl > τ . We define a center point t and
show that moving from s towards t does not alter the
critical path structure.

First, given y, we give a center point t. For each
(i, j) ∈ E , let tij = 1 if yi = yj and tij = 0 if yi ,= yj .
We then claim that t is a center point. To verify
that t is a center point and thus that F−1(y) is star-
convex, we need to show that for an arbitrary point
s ∈ F−1(y), it holds that λs + (1− λ)t = u ∈ F−1(y)
for all λ ∈ [0, 1].

Next, we show that for any edge (i, j), we can inde-
pendently change the value of uij to any value between
sij and tij while maintaining that F (u) = yu is equal
to y, which ensures u ∈ F−1(y). A subtle point is
that we are proving a slightly stronger condition than
is required. Whereas star-convexity requires only that

the line segment connecting s and t lies fully within
F−1(y), we show that the largest axis-aligned hyper-
rectangle that has s and t as corners lies fully within
F−1(y).

Let r(w) be the set of edges (i, j) ∈ E such that
wij > τ . A consequence of this definition of r and the
definition of t is that yi = yj if and only if (i, j) ∈ r(t).
The next claim is that r(t) ⊇ r(s). Suppose this were
false. Then sij > τ for some (i, j) where yi ,= yj , which
contradicts s ∈ F−1(y).

Consider a pair (i, j) such that yi = yj . Although it
might be that (i, j) ,∈ r(s) or even that (i, j) ,∈ E ,
we know due to s ∈ F−1(y) that there is some other
path between i and j via edges in r(s). We call such
a path p(i, j) a critical path between i and j. Note
that all edges (k, l) on p(i, j) have tkl = 1, so letting
ukl = λklskl + (1− λkl)tkl for λkl ∈ [0, 1] ensures that
all critical paths in r(s) are also in r(u). This implies
that after setting ukl = λklskl +(1−λkl)tkl, if yk = yl,
then yu

k = yu
l .

The final step is to show that by setting ukl = λskl +
(1 − λkl)tkl, we never induce yu

i = yu
j when yi ,= yj .

We make use of the fact that yu
i = yu

j when yi ,= yj for
some i and j if and only if there is at least one edge
(k, l) ∈ E such that (k, l) ∈ r(u) while (k, l) ,∈ r(t).
Consider a (k, l) ∈ E such that yk ,= yl. From here,
it follows that tkl = 0 and skl ≤ τ . Letting ukl =
λklskl + (1 − λkl)tkl for λkl ∈ [0, 1], it is clear that
ukl ≤ τ . This implies that (k, l) ,∈ r(t) =⇒ (k, l) ,∈
r(u), which completes the proof.

10 Slice Sampling Algorithm



Daniel Tarlow, Ryan P. Adams, Richard S. Zemel

Algorithm 2 Inner Slice Sampling Loop for Bipartite Matching RandOM
Input: Ay Current state of dynamic Hungarian algorithm, which stores y internally

Input: w ∈ RJ2
, which lies within F−1(y)

Input: α ∈ R Slice sampling step out parameter
W ← Reshape(w, (J, J)) { Treat w as a J × J matrix}
for j = 1 to J do

u′ ← log (Random-Uniform(0, 1)) + log p(W |ψ, x)
s ← Random-Normal(0, IJ)
{Step out}
inInvSetL, inInvSetR, inInvSet ← 0, 0, 0 { Used to cache set membership calls}
W j: ← W j: − αs { Subtract from row j of W }
bl, br ← −α, α {Keep track of how far we step out left and right, respectively}
while log p(W |ψ, x) > u′ ∧ (inInvSetL ← In-Inverse-Set(W , j;Ay)) do

W j: ← W j :− αs
bl ← bl − α

end while
W j: ← W j: − bls + αs { Return to starting point, and step right}
while log p(W |ψ, x) > u′ ∧ (inInvSetR ← In-Inverse-Set(W , j;Ay)) do

W j: ← W j : + αs
br ← br + α

end while
{Step in}
b ← br { Current state of W is where we ended step out right}
while !(inInvSet ∧ log p(W |ψ, x) > u′) do

b′ ← Random-Uniform(bl, br)
W j: ← W j: + (b′ − b)s
if (b′ < 0 ∧ inInvSetL) ∨ (b′ > 0 ∧ inInvSetR) then

inInvSet ← 1
else

inInvSet ← In-Inverse-Set(W , j;Ay)
end if
if b′ < 0 then

bl ← b′

inInvSetL ← inInvSet
else if b′ > 0 then

br ← b′

inInvSetR ← inInvSet
end if

end while
end for
Return Reshape(W , (J2))


