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ABSTRACT 
We introduce a framework and proof of concept for 
estimating building energy consumption that 
probabilistically combines a model of building 
physics with observed occupancy and detailed 
operations data, automatically learning a physically 
plausible model of the energy consumption.  
Our framework has several desirable properties: data 
about one building can automatically be used to 
improve energy use estimates for other similar 
buildings; input fields can be left blank or specified 
approximately; and the output of our model is not 
only an estimate of energy usage, but a probability 
distribution over possible values. 
We describe an initial implementation of our 
framework and present experimental results showing 
that this is a promising direction for future building 
simulation research. 

INTRODUCTION 
The Walt Disney Company (TWDC) has aggressive 
energy reduction goals for its worldwide parks and 
resorts. The ability to accurately estimate energy 
consumption for a wide variety of existing and not 
yet constructed buildings would allow facility 
managers to predict the optimum mix of capital 
improvements, occupant behavior incentives and 
operational efficiency measures needed to meet these 
energy reduction goals. 
TWDC traditionally has used energy modeling tools 
such as Trane’s TRACE and DOE-2 to size 
mechanical equipment for current and future needs. 
Unfortunately, TWDC has encountered difficulty in 
creating energy models that accurately predict energy 
consumption in a particular building in absolute 
terms—mainly, TWDC’s current simulation 
techniques give accurate predictions of peak loads, 
but fail to predict daily energy consumption well 
enough to make energy efficiency recommendations. 
Especially in its theme parks, TWDC’s buildings 
have unusual operational patterns and policies that 
traditional energy simulation tools have difficulty 
representing faithfully without extensive calibration. 
For example, building occupancy in Disney theme 
parks varies complexly as a function of day of week, 
season, weather, and several other factors. In 
addition, operational conditions such as near 

continuous open doors in retail and food service 
locations can be difficult to model using traditional 
simulation tools.  However, within a theme park, the 
operational patterns of buildings share many 
similarities, so learning how one building deviates 
from typical operations provides information about 
how other buildings within the theme park are likely 
to deviate. 
Gathering detailed information about building 
specifications, occupant behavior, weather, and 
climate can be difficult. Buildings inherently possess 
inconsistencies due to material aging effects, 
remodeling, and post-design construction changes or 
defects. Total park occupancy can be measured 
easily, but the distribution of people within each 
building in the park is more difficult.  Weather is 
often not measured directly on site, and weather 
stations can have different weather patterns than 
building locations, even if they are only a few miles 
away.  Current models often fail to capture the 
certainty, effect, and/or the degree to which these 
factors deviate from design conditions. 
In lieu of precisely knowing input values, an engineer 
using a traditional building simulator is forced to 
make ad hoc estimates of input values based mainly 
upon years of experience. No confidence 
specifications are given in these estimates, potentially 
leading to the introduction of unquantified, arbitrarily 
large errors into the simulation process.   Indeed, it is 
well known that it is a significant challenge to get 
energy simulator estimates to match collected real-
world data (Maile et al. 2007).  
Improved calibration can mitigate some errors for 
existing instrumented buildings, but it is often not 
feasible to install instruments, perform proper 
calibration and verify results for the large number of 
buildings found in organizations like TWDC. 
The key idea of our work is to build a model that has 
two complementary components: first, we follow in 
the spirit of traditional simulators by encoding logical 
knowledge about the form of physical interactions 
that affect energy consumption in buildings; second, 
we specify the parameters governing the physical 
interactions probabilistically.  These specifications—
representing our prior beliefs about the physics of the 
world—are then rigorously combined with collected 
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real-world data using a Bayesian model. We present 
an algorithm that chooses the model that maximizes 
the posterior probability of the model and the data–
that which best balances physical plausibility with 
the ability to explain observed data. 
Our work deviates from traditional deterministic 
methods in that we specify our model with less 
precision.  We make up accuracy by letting collected 
data automatically influence our belief about the 
correct internal settings of the model. 
Unlike many other statistical or artificial intelligence-
based models of energy usage, we express our model 
of building physics and operation in terms of 
interpretable physical quantities, such as the cooling 
load per people-hours of occupancy. We can 
interpret—and thus express engineering knowledge 
and judgment about—many of the internal 
parameters.  Other example parameters in our model 
are the percentage of people entering a retail shop 
who make a purchase and the number of air 
exchanges per hour that the ventilation system of the 
building uses.  This is in contrast to other regression 
or artificial neural network models, where a 
coefficient of some predictor or weight on some 
connection usually does not have a natural 
interpretation. 
We emphasize that we do not know the values of the 
internal model parameters precisely, but we can 
express reasonable prior beliefs about their values.  
Our algorithm intelligently searches for a setting of 
parameters that is simultaneously consistent with our 
beliefs about the physics of the building operation 
and that is able to explain data we have collected 
about building operations and energy consumption. 
Finally, when parameters are expressed in easily 
interpretable terms, we can meaningfully specify 
which parameters are shared between buildings.  
Buildings within the same resort or theme park will 
share weather and occupancy patterns; buildings 
constructed at the same time with the same 
specifications will share similar construction details 
and likelihood of defects; and buildings with the 
same layout (e.g. copies of a building built both in 
Hong Kong and Florida) will share process energy 
loads, building layouts, and potentially even some 
occupancy patterns.  When parameters are shared 
across buildings, learning from data about one 
building can be used to make inferences about other 
similar buildings. 

BACKGROUND 
Bayesian networks are perhaps the best known 
variant of a family of models known as probabilistic 
graphical models—an elegant framework able to 
represent probabilistic interactions along with 
structure about the form of interactions.  They are 
popular tools that have seen success modeling many 
complex real-world phenomena in many fields 
including artificial intelligence, computer vision, and 
computational biology.  

Bayesian Networks 
Formally, a Bayesian network represents a joint 
probability distribution P over a set of random 
variables X = {X1 , . . . , Xn}. A Bayesian network 
consists of two parts:  
• A directed, acyclic graph structure G over nodes 

X.  
• A conditional probability distribution for each 

node: P (Xj | Uj) where Uj is the set of nodes 
that are  parents of Xj.   

Each conditional probability distribution is governed 
by a set of discrete or real-valued parameters, which 
we will refer to as model parameters, θ.   
When model parameters are fixed, the full joint 
probability distribution is given as a product of local 
interactions: 

 

When the number of parents of each node is 
relatively small, this representation is significantly 
more compact than a naïve representation of the full 
probability distribution, which can be prohibitively 
large in most non-trivial applications. 
Example 1: Figure 1 shows a portion of the Bayesian 
network structure that models building occupancy.  
The variable Number of Building 
Occupants (B) is a parent of Number of 
Sales (S), indicating that the probability 
distribution over the number of sales that are made in 
a building on a given day is conditional on the 
number of people in the building.  If we assume 
temporarily that B has no parents and is drawn from 
a normal distribution, this interaction might take the 
form  

 
Figure 1 A Bayesian network structure for the 

occupancy component of our model 
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In this case, µB and σB are model parameters 
representing the mean and standard deviation of the 
number of people in the building, and α is a model 
parameter representing the percentage of people in 
the building that make a purchase.  By properties of 
normal distributions, S would then also be distributed 
normally with mean αµB and standard deviation ασB. 
Given a Bayesian network structure and model 
parameters, probabilistic queries can be efficiently 
computed.  The two most popular queries are finding 
a posterior probability distribution over values of 
missing variables given a subset of observed 
variables; and finding the mode of the full joint 
probability distribution, possibly conditioned on a 
subset of other variables.  In this work, we are 
interested only in the former. 
Much of the power of the Bayesian network 
representation is in its ability to robustly deal with 
missing data.  In Figure 1, we have collected at least 
some data for each of the shaded nodes, while we 
were unable to measure the values of the unshaded 
nodes.  However, because we are able to roughly 
specify the form of interactions between variables, 
we can infer beliefs over the values of missing data, 
and we can use these beliefs to estimate unknown 
model parameters. 

Bayesian Bayesian Networks 
Bayesian networks are named so because of their use 
of Bayes’ rule to make inferences, and—somewhat 
conterintuitively—it is common to use them in 
conjunction with frequentist methods.  However, 
Bayesian networks are well suited for Bayesian 
modeling. 
To make Bayesian networks Bayesian, we specify a 
prior probability distribution, P(θ), over model 
parameters.  In this way, we are able to quantify our 
prior beliefs about the physics of the world and how 
buildings operate.  In the case of Example 1, we 
might specify a prior distribution that says α is 
roughly .5, but there is a significant standard 
deviation—say .2—in our belief.  This might be 
formalized by setting P(α) = Normal(α; .5, .2).  We 
emphasize that this is very different from forcing α 
to take on a value of .5 in our model, because a wide 
range of values are possible for α, the data we have 
collected will help us choose the most likely setting.  
The purpose of the prior distributions is to encourage 
the final model to be physically plausible, not to 
assert over-confident influence on the model. 

The Expectation Maximization Algorithm 
The expectation maximization (EM) algorithm is 
used to estimate model parameters from data when 
some variables—such as the number of building 
occupants—are not observed (Neal & Hinton, 1998). 

Formally, given a data set of N data instances, D = 
{X(i) | i = {1, …, N}}, where X(i) = {X1

(i), . . . , Xn
(i)}, 

our goal is to find model parameters, θ, that 
maximize the posterior probability of the data and 
the model parameters: 

 

Let X(i) be divided into hidden and visible variables, 
h(i) and v(i), respectively.  If we integrate over the 
hidden variables according to the (unknown) 
posterior distribution of the hidden variables 
conditioned on the visible variables, then we get the 
posterior likelihood.  In log terms: 

Even though we do not know the conditional 
distribution over the hidden variables, we can choose 
an arbitrary distribution, Q(h(i)), and use Jensen’s 
inequality to lower bound the posterior probability:  

We will refer to this lower bound as the (negative) 
free energy due to its use in statistical physics.  Q is 
parameterized by a set of real numbers that we will 
refer to as variational parameters.  Maximizing the 
negative free energy (or minimizing the free energy) 
over Q is easier computationally than directly 
maximizing the log likelihood, and it provably 
increases a lower bound on the likelihood. The 
optimal distribution, Q*, can be shown to be P(h | v, 
θ), and at this point the bound is tight (Neal & 
Hinton, 1998).  
Intuitively, Q is our probabilistic belief about the 
unknown values of variables in our data set—if we 
cannot directly measure a variable’s value, then we 
will maintain a probability distribution over its 
possible values.  In the E step, we revise our beliefs 
about the missing values.  In the M step, we use 
observed data and our beliefs about missing values to 
estimate model parameters.  This optimization 
proceeds in an alternating fashion until convergence. 

MODEL 
Our model is focused on capturing the major 
contributions to cooling loads and overall building 
electricity use due to lighting, fans, and process 
loads.  We work at a daily time granularity, 
performing summations and averages as necessary.  
Using finer time granularity lends statistical strength 
to the model, giving us more observations of energy 
consumption under different occupancy and 
environmental conditions.  We are interested in 
tackling the challenges associated with collecting 
finer-grained time granularity, but doing so would 
require changes in data collection practices and non-
trivial changes to the model formulation. 
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We emphasize that we are not trying to model energy 
consumption with the precision of complex 
thermodynamics simulators; we are sacrificing some 
precision in exchange for accuracy gained by having 
our model automatically tune itself using collected 
data.  Finally, a direction of future work is to refine 
the structure of our model via discussion with more 
experts.  
To construct our model, we begin by manually 
specifying a Bayesian network structure, along with 
prior distributions over model parameters.  In 
addition, we specify hard constraints about the legal 
range of some parameters to maintain physical 
sanity.  Nodes in the network represent variables or 
model parameters, which are either real-valued (e.g., 
Ventilation Flow Rate or Outdoor Temperature) or 
discrete (e.g., Date or Building Type).  There is one 
instantiation of each variable for each combination of 
day and building, while model parameters are shared 
across all buildings and days.  Details about 
parameters and prior distributions are given in Table 
1. 

Walls, Window, Roof, and Ventilation 
Space precludes us from giving every conditional 
probability distribution in the network, but the form 
of interactions follows standard practice such as 
described in common references (Tao & Janis 2001; 
ASHRAE 1997).  The difference is that deterministic 
computations are replaced with probabilistic 
interactions.  For example, a typical form for 
estimating the conductive heat gain through a wall is 

, where H is the heat gain, U is 
the U value of the wall, A is the area, and TETD is 
the total equivalent temperature difference.  In our 
model, U, A, and TETD are variables specific to a 
building-day combination.  H is represented as being 
distributed normally with a mean equal to the product 
of the three variables and unknown variance.  TETD 
is an unobserved variable influenced by surface 
properties of the wall, the insolation upon the vertical 
surface, and the difference between outdoor and 
indoor temperatures.  We split walls and windows up 
by orientation and represent solar heat gain factors 
for each orientation using collected data for 
horizontal insolation, data on the solar zenith angle, 
and geometry. 
We follow similar practices for conductive and 
radiative heat gain through windows, conductive heat 
gain through the roof, and heat gain due to 
ventilation.  See Figure 2 for the network structure. 

Occupancy and Heat Gained via Internal Loads 
Our model of occupancy and internal loads is 
illustrated in Figure 1.  
We do not directly measure the number of occupants 
inside a building over the course of the day, but  we 
have detailed records of overall park occupancy and 
transactions in an individual building.  We model the 
number sales as the product of the number of 

building occupants times the model parameter for 
sales per occupant.  The number of building 
occupants is itself distributed conditionally on the 
overall park occupancy on a given day and the 
individual building capacity.  

Electricity Use 
Electricity use is mostly described in Figure 1, but 
we also model a separate intensity per square foot for 
kitchen areas, and we include a fan electricity term 
that is distributed conditionally upon the total cooling 
energy for the day.  Total energy use is the sum of 
electricity use and cooling energy. 
EXPERIMENTAL EVALUATION 
We set up experiments to evaluate the ability of our 
model to learn from real world data then make 
generalizations about energy consumption in 
buildings previously unseen by the model. 
We chose to work with food service and retail 
buildings due to their generality, wider applicability 
to the field, and because we have detailed records of 
the number of transactions at each location–Disney’s 
worldwide industrial engineering teams maintain 
detailed occupancy and transaction data at hourly 
intervals.  

 
(a) 

 
        (b) 
 
Figure 2 Bayesian network structures for window 

and ventilation heat gains 
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Disney’s other main building type—ride or attraction 
buildings—possesses specific process loads and 
occupancy patterns not applicable outside the theme 
park industry. The chosen building types are 
relatively large energy consumers with the greatest 
perceived potential for energy efficiency measures.   

Data Collection 
The Theme Park and Resorts division of TWDC 
maintains an internal utility reporting system to track, 
report, and record the status and consumption of 
electrical and mechanical utility systems on property 
in California, Florida, Paris, and Hong Kong. For the 
purposes of this initial study, we identified three 
retail and food service buildings, all contained in 
Florida’s Walt Disney World Resort, possessing 
occupancy, energy, and climate data at the proper 
granularity for our study. Relatively complete data 
sets of utility, climate, and occupancy exist for the 
period of approximately two years between 2006 and 
2008; however, an important note is that nearly all 
sources of data contain missing data and outliers. In 
order to work with the data in more interpretable 
units, we performed some conversions and energy 
consumption calculations using standard practices 
and mechanical efficiency values determined by 
internal Disney Imagineers—the engineering design 
division of TWDC (Tao & Janis 2001; ASHRAE 
1997).  
We used design drawings for each building to 
determine the wall, window, roof, and room 
schedules.  Rooms were divided into retail, dining, 
and kitchen areas.  We used material properties from 
Disney design standards and construction 
documentation. 
All-sky insolation—direct normal to the surface of 
the earth, clearness index, clear sky insolation, and 
solar zenith angle data at the theme park’s longitude 
and latitude were provided by NASA Langley 
Research Center Atmospheric Science Data Center. 
Historical temperature, humidity, and cloudiness data 
were accessed from the Weather Underground public 
historical archives on their website.   

Variational EM Algorithm 
To learn the values of the model parameters, we use a 
variant of the EM algorithm known as a fully 
factorized variational EM algorithm (Frey & Jojic  
2005).  Specifically, Q is restricted to take the form 

.  This is a common variant, chosen 

primarily for improved computational efficiency.  In 
the E step, we analytically solve for variational 
parameter updates by taking partial derivatives of the 
free energy with respect to each variational 
parameter.  We find a local optimum by setting the 
partial derivative to zero and solving algebraically for 
each parameter.  In the M step, we simultaneously 
optimize over all model parameters using a gradient-
based constrained optimization routine based on 
Newton’s method. 

We initialize the algorithm randomly but within 
the range of reasonable values dictated by our prior 
distributions, then alternate E and M step updates 
until the free energy does not improve further.  
Typically, most of the gains are made in the first few 
iterations, then convergence is reached within 100 
iterations.  Run times are on the order of several 
minutes for the large data sets and around a minute 
for the smaller data sets.   
Across Building Parameter Estimation 
We split 900 days worth of energy use data for each 
of our three buildings into a training set and a test set.  
The training set has one-fourth of all cooling energy 
and electricity use values hidden (held out) for all 
buildings. All values for a single building are also 
held out. Points not included in the training set are 
put in the test set.  The algorithm is given the training 
set and asked to make predictions about the values of 
data in the test set without looking at held out values. 
When no energy use values for a building are given 
to the algorithm, we call the building the held out 
building. We made three data sets and ran an 
experiment using each: in experiment 1, building 1 is 

Table 1 A Subset of Model Parameters and Priors 
 

Model Parameter Prior Mean Prior Std. Dev. Constraints 
Hours / visit .5 .25 >= 0 

Sales / visitor .75 .5 >= 0 
Heat gain (Wh) / person-hour 73 15 >= 0 

Total electricity / kWh cooling 1 .5 >= 0 
Kitchen electricity per m2 intensity .1 .1 >= 0 
Retail & dining electricity per m2 

lighting intensity  .05 .05 >= 0 

Chiller efficiency .75 .1 >= 0 
Latent heat removal efficiency - - >= 0 

Outside wall temperature difference /  
insolation (kWh) - - >= 0 

Air exchanges / hour 1 1 >= 0 
Shading coefficient .85 .15 >= 0 

Diffuse radiation coefficient .1 .1 >= 0 
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the held out building; in experiment 2, building 2 is 
the held out building; and in experiment 3, building 3 
is the held out building. 
We ran three algorithms: 
• An intelligent linear regression model, where the 

independent variables are products of relevant 
physical quantities, such as U x A x TETD. 

• Our model, but with nearly all points held out for 
all buildings.  In this case, the specification of 
the prior model dominates the prediction. This 
lets us see the beliefs we have encoded in the 
prior before the data plays much role in adapting 
the predictions. 

• Our full model. 
Figure 3 (a) – (c) show the linear regression 
reconstruction of the held out points for the 
completely held out building.  (a) is the predicted 
energy consumption by building 1 from experiment 
1, (b) is the predicted energy consumption by 
building 2 from experiment 2, etc. 
The linear regression is well able to capture the 
variation in buildings for which it is provided data 
(not shown).  However, since it has no prior beliefs 
about the plausibility of any model, it is equally 
happy with any model that has the same squared 
error over the observed data points.  In each case, we 
see the consequence of this agnosticism in the 
inability to generalize to the held out building. 
Figure 3 (d) – (f) show our specification of the 
model’s prior beliefs.  There is a fair amount of 
variance in the predictions, but they are within the 
range of reasonable values.  
Figure 3 (g) – (i) show the result of applying our 
Bayesian network model to the same data.  It is able 
to tune itself on data from two buildings in order to 
improve the predictions on the third building.   

Quantitatively, Table 2 and Table 3 show the (square 
root of the) average squared difference between the 
model’s predictions and true held out values for total 
energy use and cooling energy, respectively.  In all 
cases, the Bayesian network model is superior to the 
linear regression by a significant margin, and in all 
but one case the information from the two other 
buildings is helpful in improving estimates over the 
prior for the third. 
DISCUSSION 
It is well understood in the building simulation field 
that there are uncertainties in the simulation process 
that must be dealt with in order to produce accurate 
energy consumption estimates.  As such, there are 
several schools of thought on how to best approach 
the problem. 
Perhaps the most common method of reducing 
uncertainty is to make a more concerted effort to 
measure inputs. At the most basic level, industry 
standard methods such as the International 
Performance and Measurement Verification Protocol 
(IPMVP) call for the use of weather, operations, and 
energy consumption data collected on-site to update 
the inputs of pre-construction models. 
These industry standard methods have the benefit of 
being direct.  However, obtaining more accurate 
estimates of input values often requires special 
equipment and manual effort, making the calibration 
of a large number of buildings expensive and time 
consuming. Though errors are less likely when more 
care is put into measuring inputs, the same 
shortcomings of the original model are still 
potentially present, since not all inputs can be 
measured accurately and precisely. 
Yang et al. (2005) calibrate a traditional 
thermodynamic model (DOE-2) using artificial 
neural networks, and the Commercial Building 
Incentive Program online tool (Hepting et al. 2000) 
uses a regression model to estimate energy savings 
(but the supervisory data in this case comes from a 
traditional simulator).  These works are similar to 
ours in that they automatically use data to refine 
output estimates.  The drawback of these methods is 
that the parameters in neural networks, for example, 
are notoriously difficult to interpret, so it is difficult 
to express constraints on the model ensuring physical 
plausibility.  If the model chooses parameters that 
capture some specious anomaly in the data, then—as 
we see with our linear regression model—the ability 
of the model to generalize to new settings will be 
compromised.  
The work that is closest to ours is that of Reddy et al. 
(2007), which uses a Monte Carlo simulation to 
calibrate a DOE-2 model.  Like us, the authors report 
results as a distribution over energy consumption 
values.  This work represents uncertainty not only in 
the operational estimates, but also—more 
generally—in the model parameters themselves, 
using several plausible settings.  

Table 2 
Total Energy Use Prediction Error (in kWh) 

 

EXP. LINEAR 
REGRESSION 

PHYSICAL 
MODEL 
(PRIOR) 

BAYESIAN 
NETWORK 

1 3009.4 1755.6 1522.2 
2 2892.9 1712.7 1119. 9 
3 4262.3 732.1 1384.2 

 
Table 3 

Cooling Energy Prediction Error (in kWh) 
 

EXP. LINEAR 
REGRESSION 

PHYSICAL 
MODEL 
(PRIOR) 

BAYESIAN 
NETWORK 

1 1535.7 1163.8 656.2 
2 1332.5 729.6 661.6 
3 2063.4 280.4 443.0 
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In its implementation, there are several shortcomings 
to Reddy’s approach (2007).  First, each variable is 
restricted to take on only one of a small number of 
discrete values, which greatly limits the type of 
interactions between variables that can be 
represented.  We do not discretize any continuous 
variables, instead choosing to represent relationships 
by the true physical equations that govern them.  
Second–and perhaps most seriously–the DOE-2 
simulator is treated as a black box within the Monte 
Carlo routine.  The outer calibration procedure has no 
knowledge about why the inner simulation procedure 
is producing its results.  As a result, the Monte Carlo 
method employed is quite inefficient, essentially 
employing a strategy of trying all combinations of 
parameter settings.   
We are instead focused on developing an approach 
that is massively scalable, able to simultaneously 
calibrate and share information between thousands or 
tens of thousands of buildings at once, using a rich 
physical model and data from several years for each 
building.  To accomplish this, we suggest that the 
knowledge in the thermodynamic physics models 
such as DOE-2 and EnergyPlus needs to be encoded 
in a way that the simulator procedure and the 
calibration procedure can automatically share 

information and operate as one joint procedure. In 
our representation, this knowledge is encoded in the 
Bayesian network structure and parameters, and it is 
shared between our simulation and calibration 
procedure when we differentiate the free energy with 
respect to model and variational parameters. 
Undoubtedly, building information models (BIM) 
will play a significant role in the development of a 
data-driven approach to energy-use simulation. BIM-
based generation of drawings provides more 
complete data sets about building construction, 
tolerances, materials, and physical attributes before, 
during and after construction (Ibrahim 2002). As 
BIM technology continues to permeate the 
Architecture, Engineering, and Construction (AEC) 
industry, we anticipate more robust capabilities to 
predict energy usage by utilizing data from BIM 
design and operation of BIM compliant buildings.    
Finally, we have chosen to work with Disney 
buildings because they give us flexibility to collect 
exactly the data that we need, but there are several 
other sources of data that would be interesting to 
pursue further.  Examples include the Commercial 
Building Energy Consumption Survey (CBECS) 
data, which collects quadrennial data on U.S. 
commercial building types, building energy 

 
                         (a)                 (b)       (c) 

 
                      (d)                (e)      (f) 

 
                       (g)                (h)     (i)  

Figure 3 Results for across building generalization total energy use experiments.  Yellow points are observed energy use 
data, red are held out points, and blue are model predictions (all in kWh vs date, best viewed in color). 
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consumption, and energy-related building 
characteristics (EIA 2003), and Singapore’s e-Energy 
(NUS)—an online spreadsheet tool containing a 
dataset of buildings in Singapore. 

CONCLUSIONS & FUTURE WORK 
We have presented a probabilistic, data-driven 
approach to estimating energy usage in buildings.  
The primary goal of our work is to accurately 
estimate energy use and express our confidence in 
those results for large organizations possessing large 
stocks of moderately similar buildings. We do so 
while avoiding the need for costly individual building 
calibrations.  We believe there is significant potential 
to achieve these goals through further development 
of the data-driven concept presented in this paper.  
An obvious drawback of our system is that it is 
unlikely to generalize well when buildings, systems, 
and environments are significantly different from the 
collected data set. Our model representing building 
physics is significantly less sophisticated than those 
in traditional simulators and therefore breaks down 
quickly where data are lacking.   Undoubtedly, our 
model could benefit from (a) input from experts who 
are more knowledgeable about the inner-workings of 
buildings and the relationships among variables; and 
(b) from more data from a wide variety of buildings. 
First, accurate daily predictions allow our operations 
staff to more effectively plan operations and control 
systems such that the building can dynamically 
respond to real-time use patterns. 
On a broader level, we argue that when trying to 
estimate energy consumption over a large building 
stock, we should shift the focus to extracting the 
information contained in the data that is used for 
calibration in such a way that it can be used to 
improve real-world energy consumption estimates in 
many similar buildings. In order to do this on a large 
scale, we argue that we need to expose the inner 
workings of the building physics simulation to the 
calibration procedure.  We do this by formalizing our 
beliefs about buildings physics in a Bayesian network 
representation.  This and similar representations 
could further lead to exciting new approaches to 
problems such as automated building design, 
automatic model selection, and estimating the 
relative value of different data collection projects. 
Finally, large-scale data collection and organization 
is not at all trivial, even within a single corporation.  
On top of the significant logistical concerns, there are 
sensor failures that lead to missing data and outliers, 
which requires ongoing monitoring and maintenance.  
A goal of this work, though, is to argue that the 
information contained within the data is valuable 
enough to warrant devoting substantial resources to 
its collection and management. 
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