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Abstract. Humans demonstrate a remarkable ability to parse complicated mo-
tion sequences into their constituent structures and motions. We investigate this
problem, attempting to learn the structure of one or more articulated objects,
given a time-series of two-dimensional feature positions. We model the observed
sequence in terms of “stick figure” objects, under the assumption that the relative
joint angles between sticks can change over time, but their lengths and connec-
tivities are fixed. We formulate the problem in a single probabilistic model that
includes multiple sub-components: associating the features with particular sticks,
determining the proper number of sticks, and finding which sticks are physically
joined. We test the algorithm on challenging datasets of 2D projections of optical
human motion capture and feature trajectories from real videos.

1 Introduction

An important aspect of analyzing dynamic scenes involves segmenting the scene into
separate moving objects and constructing detailed models of each object’s motion. For
scenes represented by trajectories of features on the objects, structure-from-motion
methods are capable of grouping the features and inferring the object poses when the
features belong to multiple independently-moving rigid objects. Recently, however, re-
search has been increasingly devoted to more complicated versions of this problem,
when the moving objects are articulated and non-rigid.

In this paper, we investigate this problem, attempting to learn the structure of an
articulated object while simultaneously inferring its pose at each frame of the sequence,
given a time-series of feature positions. We propose a single probabilistic model for
describing the observed sequence in terms of one or more “stick figure” objects. We
define a “stick figure” as a collection of line segments (bones or sticks) joined at their
endpoints. The structure of a stick figure—the number and lengths of the component
sticks, the association of each feature point with exactly one stick, and the connectivity
of the sticks—is assumed to be temporally invariant, while the angles (at joints) between
the sticks are allowed to change over time. We begin with no information about the
figures in a sequence, as the model parameters and structure are all learned. An example
of a stick figure learned by applying our model to 2D feature observations from a video
of a walking giraffe is shown in Figure 1.

Learned models of skeletal structure have many possible uses. For example, de-
tailed, manually-constructed skeletal models are often a key component in full-body
tracking algorithms. The ability to learn skeletal structure could help to automate the
process, potentially producing models more flexible and accurate that those constructed
manually. Additionally, skeletons are necessary for converting feature point positions
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Fig. 1. Four frames from a video of a walking giraffe, augmented with a learned skeleton. Each
white line represents a separate stick, the black circles are joints, and the colored markers are
tracked features.

into joint angles, a standard way to encode motion for animation. Furthermore, knowl-
edge of the skeleton can be used to improve the reliability of optical motion capture, per-
mitting disambiguation of marker correspondence and occlusion [1]. Finally, a learned
skeleton might be used as a rough prior on shape to help guide image segmentation [2].

In the following section we discuss other recent approaches to modelling articu-
lated figures from tracked feature points. In Section 3 we formulate the problem as a
probabilistic model and describe the optimization of this model, which proceeds in a
stage-wise fashion, building up the structure incrementally to maximize the joint prob-
ability of the model variables. In Section 5 we test the algorithm on a range of datasets.
In the final section we describe assumptions and limitations of the approach, and discuss
future work.

2 Related Work

The task of learning stick figures from a set of 2D feature point trajectories can be
thought of as a variant of the structure from motion (SFM) problem. When the tra-
jectories all arise from the motion of one rigid object, Tomasi and Kanade [3] have
shown that the matrix of point locations, W, is a linear product of a time-invariant
structure matrix, S, and a time-varying matrix of motion parameters, M. M and S can
be recovered by singular value decomposition. SFM can also be extended to handle
multiple rigid objects moving independently. Costeira and Kanade [4] have shown that
this problem, known as multibody SFM, can be solved by grouping the point trajecto-
ries according to the object they arise from, then solving SFM independently for each
object. Grouping is accomplished by forming a shape-shape interaction or affinity ma-
trix, indicating the potential for each pair of points of belonging to the same object, and
using this matrix to cluster the trajectories.

Several authors have demonstrated that SFM can be interpreted as a probabilistic
generative model, e.g. [5–7]. This view permits the inclusion of priors on the motion
sequence, thereby leveraging temporal coherence. Furthermore, in the multibody case,
Gruber and Weiss have presented a single probabilistic model that describes both the
grouping problem and the per-object SFM problems [7]. This produces a single objec-
tive function that can be jointly optimized, leading to more robust solutions.

Unfortunately, multibody SFM cannot reliably be used to obtain the structure and
motion of an articulated figure’s parts since, as shown by Yan and Pollefeys [8], the
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motions of connected parts are linearly dependent. However, this dependence can be
used to form an alternative affinity matrix for clustering the trajectories. Yan and Polle-
feys use this as the basis for a stage-wise procedure for recovering articulated SFM [9]:
(1) cluster point trajectories into body parts; (2) independently run SFM on each part;
(3) determine connectivity between parts by running (a variant of) minimum spanning
tree, where edge weights are the minimum principle angle between two parts’ motion
matrices (for connected, dependent parts, this should be zero); (4) finally, solve for the
joint locations between connected parts. A disadvantage of this method is its lack of
an overall objective function that can be optimized globally, and used to compare the
quality of alternative models.

A number of authors have inferred articulated structures from three-dimensional
observations, leveraging the fact that the distance between two points attached to the
same rigid body part is constant, e.g. [10, 11]. These methods can produce detailed
structures from motion capture data; however, although simple to apply in 3D, they
have not been extended to 2D observations.

Others have inferred two-dimensional structures from 2D data [12–14]. Many of
these methods focus on a different problem, inferring the correspondence of observa-
tions to features in each frame. With the exception of [12] (which is concerned only
with the final stage of processing, after the motions of individual parts have been ob-
tained), all of these methods build two-dimensional models directly in image coordi-
nates. Thus, unlike SFM approaches, they are unable to deal with out-of-plane motion;
a model trained on side views of a person walking would be inapplicable to a sequence
of frontal views.

Learning articulated figures can also be interpreted as structure learning in proba-
bilistic graphical models, with nodes representing the positions of parts and edges their
connectivity. Learning structure is a hard problem that is usually solved approximately,
using greedy methods or by restricting the class of possible structures. Song et al. [13]
note that the optimal structure (in terms of maximum likelihood) of a graphical model
is the one that minimizes the entropy of each node given its parents. Restricting their
attention to graphs in which nodes each have two parents, they propose to learn the
structure greedily, iteratively connecting to the graph the node with the smallest condi-
tional entropy given its parents.

3 Model Formulation

Here we formulate a probabilistic graphical model for sequences generated from artic-
ulated skeletons. By fitting this model to a set of feature point trajectories (the observed
locations of a set of features across time), we are able to parse the sequence into one or
more articulated skeletons and recover the corresponding motion parameters for each
frame. The observations are assumed to be 2D, whether tracked from video or projected
from 3D motion capture, and the goal is to learn skeletons that capture the full 3D struc-
ture. Fitting the model is performed entirely via unsupervised learning; the only inputs
are the observed trajectories, with manually-tuned parameters restricted to a small set
of thresholds on Gaussian variances.
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The observations for this model are the locations wf
p of feature points p in frames f .

A discrete latent variable R assigns each point to one of S sticks. Each stick s consists
of a set of time-invariant 3D local coordinates Ls, describing the relative positions of
all points belonging to the stick. Ls is mapped to the observed world coordinate system
by a different motion matrix Mf

s at every frame f (see Figure 2). For example, in a
noiseless system, where rp,1 = 1, indicating that point p has been assigned to stick 1,
Mf

1 l1,p = wf
p .
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Fig. 2. (Left) The generative process for the observed feature positions, and the imputed positions
of the stick endpoints. For each stick, the relative positions of its feature points and endpoints are
represented in a time-invariant local coordinate system (left). For each frame in the sequence
(right), motion variables attempt to fit the observed feature positions (e.g. wf

P ) by mapping
local coordinates to world coordinates, while maintaining structural cohesion by mapping stick
endpoints to inferred vertex (joint) locations. (Right) The graphical model. The bottom half shows
the model for independent multibody SFM; the top half describes the vertices and endpoints,
which account for motion dependencies introduced by the articulated joints.

If all of the sticks are unconnected and move independently, then this model essen-
tially describes multibody SFM [4, 7]. However, for an articulated structure, with con-
nections between sticks, the stick motion variables are not independent [8]. Allowing
connectivity between sticks makes the problems of describing the constraints between
motions and inferring motions from the observations considerably more difficult.

To deal with this complexity, we introduce variables to model the connectivity be-
tween sticks, and the (unobserved) locations of stick endpoints and joints in each frame.
Every stick has two endpoints, each of which is assigned to exactly one vertex. Each
vertex can correspond to one or more stick endpoints (vertices assigned two or more
endpoints are joints). We will let ki specify the coordinates of endpoint i relative to the
local coordinate system of its stick, s(i), and vf

j and ef
i represent the world coordinate

location of vertex j and endpoint i in frame f , respectively. Again, in a noiseless sys-
tem, ef

i = Mf
s(i)ki for every frame f . Noting the similarity between the ef

i variables
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and the observed feature positions wf
p , these endpoint locations can be interpreted as a

set of pseudo-observations, inferred from the data rather than directly observed.
Vertices are used to enforce a key constraint: for all the sticks that share a given

vertex, the motion matrices should map their local endpoint locations to a consistent
world coordinate. This restricts the range of possible motions to only those resulting
in appropriately connected figures. For example, in Figure 2(Left), endpoint 2 (of stick
1), is connected to endpoint 4 (of stick 2); both are assigned to vertex 2. Thus in every
frame f both endpoints should map to the same world location, the location of the knee
joint, i.e. vf

2 = ef
2 = ef

4 .
The utility of introducing these additional variables is that, given the vertices V

and endpoints E, the problem of estimating the motions and local geometries (M and
L) factorizes into S independent structure-from-motion problems, one for each stick.
Latent variable gi,j = 1 indicates that endpoint i is assigned to vertex j; hence G
indirectly describes the connectivity between sticks. The assumed generative process
for the feature observations and the vertex and endpoint pseudo-observations is shown
in Figure 2(Left), and the corresponding probabilistic model in Figure 2(Right).

The complete joint probability of the model can be decomposed into a product of
two likelihood terms, one for the true feature observations and the second for the end-
point pseudo-observations, and priors over the remaining variables in the model:

P = P(W|M,L,R) P(E|M,K,V,φ,G) (1)
P(V) P(φ) P(M) P(L) P(K) P(R) P(G)

Assuming isotropic Gaussian noise with precision (inverse variance) τw, the likeli-
hood function is

P(W|M,L,R) =
∏
f,p,s

N (wf
p |Mf

s ls,p, τ
−1
w I)rp,s (2)

where rp,s is a binary variable equal to 1 if and only if point p has been assigned to stick
s. This distribution captures the constraint that for feature point p, its predicted world
location, based on the motion matrix and its location in the local coordinate system for
the stick to which it belongs (rp,s = 1), should match its observed world location. Note
that dealing with missing observations is simply a matter of removing the corresponding
factors from this likelihood expression.

Each motion variable consists of a 2× 3 rotation matrix Rf
s and a 2× 1 translation

vector tf
s : Mf

s ≡ [Rf
s tf

s ]. The motion prior P(M) is uniform, with the stipulation
that all rotations be orthogonal: Rf

sR
f
s

T = I.
We define the missing-data likelihood of an endpoint location as the product of two

Gaussians, based on the predictions of the appropriate vertex and stick:

P(E|M,K,V,φ,G) ∝ (3)∏
f,i

N (ef
i |M

f
s(i)ki, τ

−1
m I)

∏
f,i,j

N (ef
i |v

f
j , φ−1

j I)gi,j

Here τm is the precision of the isotropic Gaussian noise on the endpoint locations with
respect to the stick, and gi,j is a binary variable equal to 1 if and only if endpoint i has
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been assigned to vertex j. The second Gaussian in this product captures the requirement
that endpoints belonging to the same vertex should be coincident. Instead of making this
a hard constraint, connectivity is softly enforced, allowing the model to accommodate a
certain degree of non-rigidity in the underlying structure, as illustrated by the mismatch
between endpoint and vertex positions in Figure 2(Left).

The vertex precision variables φj capture the degree of “play” in the joints, and
are assigned Gamma prior distributions; the prior on the vertex locations incorporates
a temporal smoothness constraint, with precision τt. The priors for feature and end-
point locations in the local coordinate frames, L and K, are zero-mean Gaussians, with
isotropic precision τp. Finally, the priors for the variables defining the structure of the
skeleton, R and G, are multinomial. Each point p selects exactly one stick s (

∑
s rp,s =

1) with probability cs, and each endpoint i selects one vertex j (
∑

j gi,j = 1) with prob-
ability dj .

P(φ) =
Y

j

Gamma(φj |αj , βj) P(L) =
Y
s,p

N (ls,p|0, τ−1
p I) P(R) =

Y
p,s

(cs)
rp,s

P(V) =
Y
f,j

N (vf
j |v

f−1
j , τ−1

t I) P(K) =
Y

i

N (ki|0, τ−1
p I) P(G) =

Y
i,j

(dj)
gi,j

4 Learning

Given a set of observed feature point trajectories, we propose to fit this model in an
entirely unsupervised fashion, by maximum likelihood learning. Conceptually, we di-
vide learning into two challenges: recovering the skeletal structure of the model, and
given a structure, fitting the model’s remaining parameters. Structure learning involves
grouping the observed trajectories into a number of rigid sticks, including determining
the number of sticks, as well as determining the connectivity between them. Param-
eter learning involves determining the local geometries and motions of each stick, as
well as imputing the locations of the stick endpoints and joints, all while respecting the
connectivity constraints imposed by the structure.

Both learning tasks seek to optimize the same objective function—the expected
complete log-likelihood of the data given the model—using different, albeit related,
approaches. Given a structure, parameters are learned using the standard variational
expectation-maximization algortihm. Structure learning is formulated as an “outer-loop”
of learning: beginning with a fully disjoint multibody SFM solution, we incrementally
merge stick endpoints, at each step greedily choosing the merge that maximizes the ob-
jective. Finally the expected complete log-likelihood can be used for model comparison
and selection. A summary of the proposed learning algorithm is provided in Figure 4.

4.1 Learning the model parameters

Given a particular model structure, indicated by a specific setting of R and G, the re-
maining model parameters are fit using the variational expectation-maximization (EM)
algorithm. This well-known algorithm takes an iterative approach to learning: beginning
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1. Obtain an initial grouping R by clustering the observed trajectories using Affinity
Propagation. Initialize G to a fully-disconnected structure.

2. Optimize the parameters M, L, K, V, φ, E, using 200 iterations of the variational
EM updates, resampling R every 10 iterations.

3. Loop until no more valid merges, or maximum number of merges reached:
(a) For all vertex-pair merges, estimate the merge cost of the proposed structure

by updating the parameters with 20 EM iterations and noting the change in
expected log-probability.

(b) Choose the merge with the lowest cost, modifying G accordingly. Reoptimize
all parameters using 200 EM iterations, resampling R every 10th iteration.

Fig. 3. A summary of the learning algorithm.

with an initial setting of the parameters, each parameter is updated in turn, by choos-
ing the value that maximizes the expected complete log-likelihood objective function,
given the values (or expectations) of the other parameters.

The objective function—also known as the negative Free Energy—is formed by
assuming a fully-factorized variational posterior distribution Q over a subset of the
model parameters, then computing the expectation of the model’s log probability (1)
with respect to Q, plus an entropy term:

L = EQ[log P]− EQ[log Q]. (4)

For this model, we define Q over the variables V, E, and φ, involved in the world-
coordinate locations of the joints. The variational posterior for vf

j is a multivariate
Gaussian with mean and precision parameters µ(vf

j ) and τ(vf
j ); for ef

i is also a Gaus-
sian with mean µ(ef

i ) and precision τ(ef
i ); and for φ is a Gamma distribution with

parameters α(φj) and β(φj):

Q = Q(V) Q(E) Q(φ) Q(V) =
∏
f,j

N (vf
j |µ(vf

j ), τ(vf
j )−1)

Q(E) =
∏
f,i

N (ef
i |µ(ef

i ), τ(ef
i )−1) Q(φ) =

∏
j

Gamma(φj |α(φj), β(φj)).

The EM update equations are obtained by differentiating the objective function L, with
respect to each parameter, and solving for the maximum given the other parameters.
We now present the parameter updates; see [15] for the derivation of L and the updates.
The constants appearing in these equations denote the number of: observation frames
F , vertices J , data points P , and sticks S; h(f) = 1 if 1 < f < F and 0 otherwise;
and s(i) is the index of the stick to which endpoint i belongs.

τ−1
w =

P
f,p,s rp,s‖wf

p −Mf
s ls,p‖2

2FP
τ−1

m =

P
f,i ‖µ(ef

i )−Mf
s(i)ki‖2

4FS
+

P
f,i τ(ef

i )−1

2FS

τ−1
t =

PF
f=2

P
j ‖µ(vf

j )− µ(vf−1
j )‖2

2(F − 1)J
+

P
f,j τ(vf

j )−1

(F − 1)J
2h(f)
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µ(ef
i ) =

τmMf
s(i)ki +

P
j gi,j

α(φj)

β(φj)
µ(vf

j )

τm +
P

j gi,j
α(φj)

β(φj)

τ(ef
i ) =

X
j

gi,j
α(φj)

β(φj)
+ τm

µ(vf
j ) =

α(φj)

β(φj)

P
i gi,jµ(ef

i ) + [f > 1]τtµ(vf−1
j ) + [f < F ]τtµ(vf+1

j )

α(φj)

β(φj)

P
i gi,j + τt2h(f)

τ(vf
j ) =

α(φj)

β(φj)

X
i

gi,j + τt2
h(f) αj = α(φj) βj = β(φj) α(φj) = αj + F

X
i

gi,j

β(φj) = βj +
1

2

X
f,i

gi,j‖µ(ef
i )− µ(vf

j )‖2 +
X
f,i

gi,j [(τ(ef
i ))−1 + (τ(vf

j ))−1]

The update for the motion matrices is slightly more challenging due to the orthog-
onality constraint on the rotations. A straightforward approach is to separate the ro-
tation and translation components of the motion and to solve for each individually:
Mf

s =
[
Rf

s tf
s

]
. The update for translation is obtained simply via differentiation:

ts,f =
“
τw

X
p

rp,s(w
f
p −Rf

s ls,p) + τm

X
{i|s(i)=s}

(µ(ef
i )−Mf

sks,i)
”
/

“
τw

X
p

rp,s + 2τm

”
To deal with the orthogonality constraint on Rf

s , its update can be posed as an or-
thogonal Procrustes problem [16, 17]. Given matrices A and B, the goal of orthogonal
Procrustes is to obtain the matrix R that minimizes ‖A − RB‖2, subject to the con-
straint that the rows of R form an orthonormal basis. Computing the most likely ro-
tation involves maximizing the likelihood of the observations (2) and of the endpoints
(3), which can be written as the minimization of

∑
p ‖(wf

p − ts,f ) − Rf
s ls,p‖2 and∑

{i|s(i)=s} ‖(µ(ef
i )− ts,f )−Rf

sks,i‖2 respectively. Concatenating the two problems
together, weighted by their respective precisions, allows the update of Rf

s to be written
as a single orthogonal Procrustes problem: argminRf

s
‖A−Rf

sB‖2, where

A =
[[√

τw rp,s(wf
p − ts,f )

]
p=1..P

[√
τm (µ(ef

i )− ts,f )
]
{i|s(i)=s}

]
B =

[[√
τw rp,sls,p

]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

The solution is to compute the singular value decomposition of BAT SV D= UΣVT ,
and let R = VIm×nUT , where m and n are the numbers of rows in A and B respec-
tively.

Given Rf
s and tf

s , the updates for the local coordinates are:

ls,p =
( ∑

f

[Rf
s ]T Rf

s +
τp

τw
I
)−1 ∑

f

[Rf
s ]T (wf

p − ts,f )

ki =
( ∑

f

[Rf
s(i)]

T Rf
s(i) +

τp

τm
I
)−1 ∑

f

[Rf
s(i)]

T (µ(ef
i )− tf

s(i))

The final issue to address for EM learning is initialization. Many ways to initialize
the parameters are possible; here we settle on one simple method that produces satis-
factory results. The motions and local coordinates, M and L, are initialized by solving
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SFM independently for each stick [3]. The vertex locations are initialized by averaging
the observations of all sticks participating in the joint: µ(vf

j ) = (
∑

i,p gi,j rp,s(i) wf
p )/

(
∑

i,p gi,j rp,s(i)). The endpoints are initially coincident with their corresponding ver-
tices, µ(ef

i ) =
∑

j gi,j µ(vf
j ), and each ki initialized by averaging the backprojected

endpoint locations: ki = 1
F

∑
f [Rf

s(i)]
T (µ(ef

i ) − tf
s(i)). All precision parameters are

initialized to constant values, as discussed in [15].

4.2 Learning the skeletal structure

Structure learning in this model entails estimating the assignments of feature points
to sticks (including the number of sticks), and the connectivity of sticks, expressed
via the assignments of stick endpoints to vertices. The space of possible structures is
enormous. We therefore adopt an incremental approach to structure learning: beginning
with a fully-disconnected multibody-SFM model, we greedily add joints between sticks
by merging vertices. Each merge forms a new model, and its parameters are updated
via EM and the assignments of observations to sticks are resampled. At any step, the
optimal model can be determined by simply comparing the expected complete log-
likelihood of each model.

The first step in structure learning involves hypothesizing an assignment of each
observed feature trajectory to a stick. This is accomplished by clustering the trajecto-
ries using the Affinity Propagation algorithm [18]. Affinity Propagation takes as input an
affinity matrix, for which we supply the affinity measure from [8, 9] as presented in Sec-
tion 2. During EM parameter learning, the stick assignments R are resampled every 10
iterations using the posterior probability distribution P(rp,s) ∝ cs exp(−αw

2

∑
f ‖wf

p−
Mf

s ls,p‖2) s.t.
∑

s′ rp,s′ = 1. Instead of relying only on information available be-
fore model fitting begins, c.f. [4, 11, 9]), resampling of stick assignments allows model
probability to be improved by leveraging current best estimates of the model parame-
ters. This is a key advantage of our approach, employing a single model for the entire
process.

The second step of structure learning involves determining which sticks’ endpoints
are joined together. As discussed earlier, connectivity is captured by assigning stick
endpoints to vertices; each endpoint must be associated to one vertex, and vertices with
two or more endpoints act as articulated joints. (Valid configurations include only cases
in which endpoints of a given stick are assigned to different vertices.) We employ an
incremental greedy scheme for inferring this graphical structure G, beginning from an
initial structure that contains no joints between sticks. Thus, in terms of the model, we
start with J = 2S vertices, one per stick-endpoint, so gi,j = 1 if and only if j = i.
Given this initial structure, parameters are fit using variational EM.

A joint between sticks is introduced by merging together a pair of vertices. The
choice of vertices to merge is guided by our objective function L. At each stage of
merging we consider all valid pairs of vertices, putatively joining them and estimating
(via 20 iterations of EM) the change in log-likelihood if this merge were accepted. The
merge with the highest log-likelihood is performed, by modifying G accordingly, and
the model parameters are re-optimized with 200 additional iterations of EM, including
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resampling of the stick assignments R. This process is repeated until no valid merges
remain, or the desired maximum number of merges has been reached.

As can be seen from the EM updates, each iteration of parameter learning scales lin-
early with F , J , P , and S. At each stage of structure learning, determining the locally-
optimal merge scales with O(J2).

5 Experimental Results and Analysis

We now present experimental results on three feature point trajectory datasets—videos
of an excavator and a walking giraffe, and 2D projections of human motion capture—
as well as a brief comparison with a related method [9]. Further results are included
in [15]. In each experiment a model was learned on the first 70% of the sequence
frames, with the remaining 30% held out as a test set used to measure the model’s
performance. Learning was performed using the algorithm summarized in Figure 4,
with greedy merging continuing (generally) until no valid merges remained. After each
stage of merging, we saved the learned model and corresponding expected complete
log-likelihood—the objective function learning maximizes. The likelihoods were plot-
ted for comparison and used to select the optimal model.

The learned model’s performance was evaluated based on its ability to impute (re-
construct) the locations of missing observations. For each test sequence we generated
a set of missing observations by simulating an occluder that sweeps across the scene,
obscuring points as it passes. We augmented this set with an additional 5% of the ob-
servations chosen to be “missing at random”, to simulate drop-outs and measurement
errors, resulting in a overall occlusion rate of 10-15%. The learned model was fit to the
un-occluded points of the test sequence, and used to predict the location of the missing
points. Performance was measured by computing the root-mean-squared error between
the predictions and the locations of the heldout points. We compared the performance of
our model against similar prediction errors made by single-body and multibody struc-
ture from motion models.

Our first dataset consisted of a brief video clip of an excavator. We used a KLT
tracker [19] with manual clean-up to obtain 35 feature trajectories across 176 frames.
Our algorithm processed the data in 4 minutes on a 2.8 gHz processor. The learned
model at each stage of greedy merging is depicted in Figure 4 (Top). The optimal struc-
ture was chosen by comparing the log-likelihood at each state, as plotted in Figure 4
(Bottom,left). Using the excavator data, we also examined the model’s robustness to
learning with occlusions in the training data. The algorithm was able to correctly re-
cover the structure using the occlusion scheme described above, as well as when up
to 75% of the training observations were randomly withheld during training. Figure 4
(Bottom,right) shows that the system’s predictions for occluded data was significantly
better than either multibody or single-body SFM.

Our second dataset consisted of a video of a walking giraffe. As before, 60 features
were tracked in 128 frames. Merging results are depicted in Figure 5. Using the objec-
tive function to guide model selection, the best structure corresponded to state 10, and
this model is shown superimposed over the original video in Figure 1.
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Fig. 4. Top: Learned structures during greedy merging from the Excavator dataset. Middle: su-
perposition of the structure onto video frames. Bottom: Log-probability scores after each stage
of endpoint merging, and prediction errors of occluded feature data for multibody SFM, our ar-
ticulated model, and single-body SFM.

Fig. 5. Learned structures during greedy merging from the Giraffe dataset.
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Our third dataset consisted of optical human motion capture data (courtesy of the
Biomotion Lab, Queen’s University, Canada), which we projected from 3D to 2D using
an isometric projection. The data contained 53 features, tracked across a 1018-frame
range-of-motion exercise (training data), and 318 frames of running on an inclined
plane (test data). Again the objective function peaks at what is intuitively the best-
looking structure (stage 11).
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Fig. 6. Top: Learned structures during greedy merging from the 2D-Human dataset. Bottom: Log-
probability scores after each stage of endpoint merging, and prediction errors of occluded feature
data for multibody SFM, our articulated model, and single-body SFM.

For comparison, we ran a re-implementation of the algorithm of Yan et al [9] on the
Giraffe and 2D-Human datasets. (We note that these results are sensitive to parameter
settings that are used to estimate the effective rank of motions; we manually explored a
small range of parameter settings and chose the skeleton that was most visually appeal-
ing.) The criteria used by Yan and Pollefeys to determine stick connectivity relies on
the dependencies between motions. Though two sticks sharing a joint will have inter-
secting motion subspaces and this method will correctly find these instances, there are
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other situations where it will choose to join two sticks that have dependent motions but
that are not actually connected parts. This is clearly shown in the Giraffe result in Fig-
ure 7(Left), where front and back legs that move in phase are found to be connected. In
this case, the more natural representation of our algorithm, where we are hypothesizing
a joint location and seeing how well it fits the data, proves beneficial. In the 2D-Human
result in Fig. 7(Right), we can see that the effects of these incorrect dependencies are
not restricted to be local when the structure learning is based upon a spanning tree.
In this case, the spanning tree algorithm chooses to join the two feet together because
there is a strong dependence in their motions for this dataset. This decision then causes
another error, where the shoulder is connected to the thigh, because connecting each to
the torso would no longer produce a tree given the connection between the feet.

Fig. 7. Optimal structures found by the algorithm of Yan et al [9] on Giraffe (Left) and 2D-Human
(Right) data.

6 Discussion

We have demonstrated a single coherent model that can describe the structures and
motion of articulated skeletons. This model can be applied to a variety of structures, re-
quiring no input beyond the observed feature trajectories and a minimum of manually-
adjusted parameters. The method extends the state-of-the-art in a number of ways. It
iterates between updates of the structure and the parameters, allowing information ob-
tained from one stage to assist learning in the other. It is not limited to a single struc-
ture (additional results on feature trajectories of two separate objects were omitted due
to space restrictions). Also, the noise in our generative model allows a degree of non-
rigidity in the motion with respect to the learned skeleton. This not only allows a feature
point to move in relation to its associated stick, but also permits complexity in the joints,
as the stick endpoints joined at a vertex need not coincide exactly.

To obtain good results, our model requires a certain density of features, in partic-
ular because the 2D affinity matrix [8] requires at least 4 points per stick. The flexi-
bility of learned models are limited to the degrees of freedom visible in the training
data; if a joint is not exercised, then the body parts it connects cannot be distinguished.
Finally, our model requires that the observations arise from a scene containing roughly-
articulated figures; it would be a poor model of an octopus, for example.
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An important extension of the current work is to apply the learned skeleton to fea-
ture trajectories from new instances of the same type of articulated structure, allowing
for recognition and tracking of a novel moving object.
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