Follow the Leader with Dropout Purturbations

Manfred K. Warmuth

December 12, NIPS 2014 workshop on perturbations

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

Feed forward neural net

Weights parameters - sigmoids at internal nodes

Dropout training

- Stochastic gradient descent
- Randomly remove every hidden/input node with prob.
 ¹/₂
 before each gradient descent update

[Hinton et al. 2012]

Dropout training

- Very successful in image recognition & speech recognition
- Why does it work?

[Wagner, Wang, Liang 2013] [Helmbold, Long 2014]

- Prove bounds for dropout
- Single neuron
- Linear loss

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1

	E_1	E_2	E_3		E_n	prediction	label	loss
day 1	0	1	0		0	0	1	1
day 2	1	1	0	•••	0	1	1	0

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1
day 2	1	1	0	 0	1	1	0
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1
day 2	1	1	0	 0	1	1	0
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $
scope	$\in [0,1]$				$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1
day 2	1	1	0	 0	1	1	0
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $
scope	$\in [0,1]$				$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

- Algorithm maintains probability vector w:
 - prediction $\widehat{y} = \mathbf{w} \cdot \mathbf{x}$

	E_1	E_2	E_3	 E_n	prediction	label	loss
day 1	0	1	0	 0	0	1	1
day 2	1	1	0	 0	1	1	0
notation	x_1	x_1	x_2	 x_n	\widehat{y}	y	$ \widehat{y} - y $
scope	$\in [0,1]$				$\in [0,1]$	$\in \{0,1\}$	$\in [0,1]$

- Algorithm maintains probability vector w:
 - prediction $\widehat{y} = \mathbf{w} \cdot \mathbf{x}$

 \sim

• Loss linear because label $y \in \{0, 1\}$

•
$$\underbrace{|\mathbf{w} \cdot \mathbf{x} - y|}_{\text{loss of alg.}} = \sum_{i} w_{i} \underbrace{|x_{i} - y|}_{\text{loss of expert } i}$$

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms
- 5 Proof methods

Predicting with expert advice

$$\hat{y} = \mathbf{w} \cdot \mathbf{x}$$
 loss $|\hat{y} - y|$

Predicting with expert advice

trial t

- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

On-line learning

Hedge setting

loss $\mathbf{w}\cdot \boldsymbol{\ell}$

trial t

- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

On-line learning

Predicting with expert advice $\hat{y} = \mathbf{w} \cdot \mathbf{x}$ loss $|\hat{y} - y|$ w x

trial t

- get advice vector \mathbf{x}_t
- predict $\widehat{y}_t = \mathbf{w}_t \cdot \mathbf{x}_t$
- get label y_t
- exp. losses $|x_{t,i} y_t|$
- alg. loss $|\widehat{y}_t y_t|$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

loss $\mathbf{w} \cdot \boldsymbol{\ell}$

- -
- predict \mathbf{w}_t
- get loss vector ℓ_t
- exp. losses $\ell_{t,i}$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$
- update $\mathbf{w}_t
 ightarrow \mathbf{w}_{t+1}$

- predict \mathbf{w}_t

or predict with random expert \widehat{i}_t

- predict \mathbf{w}_t or predict with random expert \widehat{i}_t
- get loss vector $\boldsymbol{\ell}_t$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$

or alg. expected loss
$$\mathbb{E}\left[\ell_{\widehat{i}_t}
ight] = \mathbf{w}_t\cdotoldsymbol{\ell}_t$$

- predict \mathbf{w}_t or predict with random expert \widehat{i}_t
- get loss vector $\boldsymbol{\ell}_t$
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$

or alg. expected loss
$$\mathbb{E}\left[\ell_{\widehat{i}_t}
ight] = \mathbf{w}_t \cdot oldsymbol{\ell}_t$$

- update $\mathbf{w}_t
ightarrow \mathbf{w}_{t+1}$

- or predict with random expert \hat{i}_t - predict \mathbf{w}_t
- get loss vector ℓ_t
- alg. loss $\mathbf{w}_t \cdot \boldsymbol{\ell}_t$
- update $\mathbf{w}_t \rightarrow \mathbf{w}_{t+1}$

or alg. expected loss
$$\mathbb{E}\left[\ell_{\widehat{i}_t}
ight] = \mathbf{w}_t\cdotoldsymbol{\ell}_t$$

weights are implicit

Only works for linear loss

Should be logarithmic in # of experts n

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms

5 Proof methods

$$\mathsf{FL} \qquad \quad \widehat{i_t} = \operatorname{argmin}_i \ \boldsymbol{\ell}_{\leq t-1,i} \qquad \qquad \mathsf{ties \ broken \ uniformly}$$

FL $\hat{i}_t = \operatorname{argmin}_i \ell_{\leq t-1,i}$ ties broken uniformlyFPL(η) $\hat{i}_t = \operatorname{argmin}_i \ell_{\leq t-1,i} + \frac{1}{\eta}\xi_{t,i}$ indep. additive noise

$$\begin{array}{ll} \mathsf{FL} & \widehat{i}_t = \mathop{\mathrm{argmin}}_i \, \ell_{\leq t-1,i} & \text{ties broken uniformly} \\ \mathsf{FPL}(\eta) & \widehat{i}_t = \mathop{\mathrm{argmin}}_i \, \ell_{\leq t-1,i} + \frac{1}{\eta} \xi_{t,i} & \text{indep. } \underline{additive} \text{ noise} \\ \mathsf{Hedge}(\eta) & w_i = \frac{e^{-\eta \ell_{t-1,i}}}{Z} & \mathsf{Weighted Majority algorithm} \\ \text{for pred. with Expert Advice} \\ \mathsf{Soft min} \end{array}$$

Dropout

Dropout

$$\widehat{\ell}_{t,i} = \left\{ egin{array}{c} 0 & {
m with \ prob.} \ lpha \\ \ell_{t,i} \ {
m otherwise} \end{array}
ight.$$

indep. multiplicative noise

 $\begin{array}{ll} \mathsf{FL} \text{ on} \\ \mathsf{dropout} \end{array} \quad \widehat{i}_t = \operatorname{argmin}_i \ \widehat{\ell}_{\leq t-1,i} \end{array}$

FL is bad

■ FPL(η) and Hedge(η) achieve optimal regret with tuning
 - fancy tunings: AdaHedge and Flipflop

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning

- FL is bad
- FPL(η) and Hedge(η) achieve optimal regret with tuning
 fancy tunings: AdaHedge and Flipflop
- FL on dropout requires no tuning
 - dropout better noise for achieving optimal worst case regret
 - in iid case with gap between 1st and 2nd: $\log n$ regret

$\mathsf{Hedge}(\eta)$ relative entropy

$Hedge(\eta)$ $FPL(\eta)$

relative entropy additive $\frac{1}{\eta}$ log exponential noise = Hedge(η)

 $\begin{array}{ll} \mbox{Hedge}(\eta) & \mbox{relative entropy} \\ \mbox{FPL}(\eta) & \mbox{additive } \frac{1}{\eta} \mbox{ log exponential noise} = \mbox{Hedge}(\eta) \end{array}$

FL on dropout tricky

Feed forward NN Logistic regression Linear loss case [Wagner, Wang, Liang 2013] [Helmbold, Long 2014] [ALST 2014]

Loss vectors \$\ell_t\$ \$\loss\$ matrices \$\mathbf{L}_t\$ \$\loss\$ matrices \$\mathbf{L}_t\$ \$\loss\$ matrices \$\mathbf{W}_t\$ \$\loss\$ matrix Hedge \$\mathbf{W}_t\$ \$\loss\$ matrix Hedge \$\mathbf{U}_t\$ \$\loss\$ matrix \$\mathbf{H}_t\$ \$\loss\$ \$\mathbf{U}_t\$ \$\loss\$ matrix \$\mathbf{H}_t\$ \$\loss\$ \$\mathbf{H}_t\$ \$\mathbf{H}_t\$

19/27

- Loss vectors \$\ell_t\$ \$\loss\$ harrices \$\mathbf{L}_t\$
 Prob. vectors \$\mathbf{w}_t\$ \$\loss\$ matrices \$\mathbf{W}_t\$ density matrices \$\mathbf{W}_t\$
 Hedge \$w_{t,i} = \frac{e^{-\eta \ell} \le \ell \le t-1, i}{Z}\$ \$\loss\$ Matrix Hedge \$\mathbf{W}_t\$ = \frac{\exp(-\eta \mathbf{L}_{\le t-1, i})}{Z'}\$
 Matrix Hedge \$\mathcal{O}(n^3)\$ per update
- FL minimum eigenvector calculation of $\mathbf{L}_{\leq t-1,i}$: $O(n^2)$

- Loss vectors \$\ell_t\$ \$\loss matrices \$\mathbf{L}_t\$ density matrices \$\mathbf{L}_t\$
 Prob. vectors \$\mathbf{w}_t\$ \$\loss matrices \$\mathbf{W}_t\$ density \$\mathbf{M}_t\$ density \$\mat
- Matrix Hedge O(n) per update
- FL minimum eigenvector calculation of L_{≤t-1,i}: O(n²)
 Is there O(n²) perturbation with optimal regret bound?

- Loss vectors $\ell_t \longrightarrow$ loss matrices \mathbf{L}_t Prob. vectors $\mathbf{w}_t \longrightarrow$ density matrices \mathbf{W}_t Hedge $w_{t,i} = \frac{e^{-\eta \ell_{\leq \ell \leq t-1,i}}}{Z} \longrightarrow$ Matrix Hedge $\mathbf{W}_t = \frac{\exp(-\eta \mathbf{L}_{\leq t-1,i})}{Z'}$
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of L_{≤t-1,i}: O(n²)
 Is there O(n²) perturbation with optimal regret bound?
- Follow the skipping leader: Drop entire loss \mathbf{L}_t with probability $\frac{1}{2}$

- Loss vectors \$\ell_t\$ \$\loss matrices \$\mathbf{L}_t\$ \$\rightarrow\$ loss matrices \$\mathbf{L}_t\$ \$\rightarrow\$ density matrices \$\mathbf{W}_t\$ \$\rightarrow\$ density matrix Hedge \$\mathbf{W}_t\$ \$\rightarrow\$ density \$\mathbf{L}_t\$ \$\rightarrow\$ density matrix Hedge \$\mathbf{W}_t\$ \$\rightarrow\$ density \$\mathbf{L}_t\$ \$\rightarrow\$ density \$\mathbf{L}_t\$ \$\rightarrow\$ density \$\mathbf{L}_t\$ \$\rightarrow\$ density \$\mathbf{H}_t\$ \$\rightarrow\$ density \$\mathbf{H}_t\$ \$\rightarrow\$ density \$\mathbf{H}_t\$ \$\mathbf{L}_t\$ \$\rightarrow\$ density \$\mathbf{H}_t\$ \$\mathbf{L}_t\$ \$\mathbf{L}_t
- Matrix Hedge $O(n^3)$ per update
- FL minimum eigenvector calculation of L_{≤t-1,i}: O(n²)
 Is there O(n²) perturbation with optimal regret bound?
- Follow the skipping leader: Drop entire loss L_t with probability $\frac{1}{2}$
- Proof techniques break down settled for vector case and independent multiplicative noise = dropout

- Loss vectors \$\ell_t\$ \$\loss matrices \$\mathbf{L}_t\$ \$\loss matrices \$\mathbf{L}_t\$ \$\loss matrices \$\mathbf{U}_t\$ \$\loss matrices \$\mathbf{W}_t\$ \$\loss matrix Hedge \$\mathbf{W}_t\$ \$\loss matrix \$\mathbf{U}_{2(t-1,i)}\$ \$\loss matrix \$\loss matrix \$\mathbf{U}_{2(t-1,i)}\$ \$\loss matrix \$\mathbf{U}_{2(t-1,i)}\$ \$\loss matrix \$\loss matrix \$\loss matrix \$\loss matrix \$\loss matrix \$\mathbf{U}_{2(t-1,i)}\$ \$\loss matrix \$\loss matrix \$\loss matrix \$\loss mat
- Matrix Hedge O(n³) per update
- FL minimum eigenvector calculation of L_{≤t-1,i}: O(n²)
 Is there O(n²) perturbation with optimal regret bound?
- Follow the skipping leader: Drop entire loss L_t with probability $\frac{1}{2}$
- Proof techniques break down settled for vector case and independent multiplicative noise = dropout
- Follow the skipping leader can have linear regret

[Lugosi, Neu 2014]

1 What is dropout?

- 2 Learning from expert advice
- 3 Hedge setting
- 4 The algorithms

5 Proof methods

Any deterministic alg. (such as FL) has huge regret

- \blacksquare For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$ regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{L^*} = (n-1)L^*$

Any deterministic alg. (such as FL) has huge regret

 \blacksquare For T trials: give algorithm's expert a unit of loss

• Loss of alg.:
$$T$$
 loss of best: $\leq \frac{T}{n}$
regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{L^*} = (n-1)L^*$

Recall optimum regret: $\sqrt{L^* \ln n} + \ln n$

FL with random ties

Any deterministic alg. (such as FL) has huge regret

- For T trials: give algorithm's expert a unit of loss
- Loss of alg.: T loss of best: $\leq \frac{T}{n}$ regret: $\geq \underbrace{T}_{nL^*} - \underbrace{\frac{T}{n}}_{T^*} = (n-1)L^*$

Recall optimum regret: $\sqrt{L^* \ln n} + \ln n$

FL with random ties

- Give every expert one unit of loss - iterate L* + 1 times
- Loss per sweep $\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} + 1 \approx \ln n$
- Loss of alg.: $(L^* + 1) \ln n$ loss of best: L^* regret: $L^* \ln n$

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Swapping rule

Analysis of dropout

Unit rule

Adversary forces more regret by splitting loss vectors into units

$$\begin{pmatrix} \mathbf{1} \\ 0 \\ \mathbf{1} \\ 1 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mathbf{1} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Swapping rule

- 1's in some order
- 1 before 1
- Otherwise adversary benefits from swapping

Worst-case pattern

1 1 1 1 1 1 1 1

Assume we have \boldsymbol{s} leaders

Assume we have \boldsymbol{s} leaders

 $s \text{ leader get unit} \begin{cases} 1\\1\\1\\1\\1\\1\\1 \end{cases}$

Assume we have \boldsymbol{s} leaders

 $\approx \ln s$

Assume we have s leaders

$L^* = 0$ - one expert incurs no loss

FL

$$\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \not \to 1 \approx (\ln n) - 1$$

Optimal

FL

One sweep

$$\frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{2} \not \to 1 \approx (\ln n) - 1$$

Optimal

Dropout

- # of leaders reduced by half in each sweep

- Focus on first L sweeps
- \blacksquare Only occurs constant regret if number of leaders >1

- Focus on first *L* sweeps
- \blacksquare Only occurs constant regret if number of leaders >1

Prob. that number of leaders > 1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q

- Focus on first L sweeps
- Only occurs constant regret if number of leaders > 1

 \blacksquare Prob. that number of leaders >1 is at most $\sqrt{\frac{\ln n}{q+1}}$ for sweep q

For Hedge(η) and FPL(η) cost per sweep constant and dependent on η

- Combinatorial experts
- Matrix case
- Where else can dropout perturbations be used?
- Dropout for convex losses
- Dropout for neural nets