
Perturbation, Optimization &
Statistics workshop

Probabilistic inference by randomly
perturbing max-solvers

Tamir Hazan	

University of Haifa 	

!
!
!
!

• Complex structures dominate machine learning applications: 	

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!
- Natural language processing	

!
!

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!
- Natural language processing	

!
!
!

- Computational biology	

!
!
!

- and more..

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Inference in machine learning

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs with perturb-max	

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

• machine learning applications are characterized by: 	

- complex structures 	
 y = (y1, ..., yn)

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	
 y = (y1, ..., yn)

y 2 {0, 1}n

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	
 y = (y1, ..., yn)

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

Inference in machine learning

✓(y1, ..., yn)

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

high score low score

Inference in machine learning

✓(y1, ..., yn)

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

high score low score

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

• For machine learning we need to efficiently infer from
distributions over complex structures.

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

Inference in machine learning

Inference in machine learning

• Interactive annotation:

Gibbs distribution

• MCMC samplers:

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers: 	

- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang	

• Many efficient sampling algorithms for special cases:	

- Counting bi-partite matchings in planar graphs (Kasteleyn 61) 	

- Ising models (Jerrum 93)	

- Approximating the permanent (Jerrum 04) 	

- Many others…

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

Gibbs distribution

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

Gibbs distribution

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

Gibbs distribution

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Nicely behaved distribution
that is centered around the
(1,…,1) or (0,…,0)

Gibbs distribution

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

✓i(yi) = log p(yi|xi)

• RGB color of pixel ixi

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Sampling likely structures

✓i(yi) = log p(yi|xi)

• RGB color of pixel ixi

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Sampling likely structures

✓i(yi) = log p(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

✓i(yi) = log p(yi|xi)

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

✓i(yi) = log p(yi|xi)

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

✓i(yi) = log p(yi|xi)

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0

• Data terms (signals) that are important in
AI applications significantly change the
complexity of sampling

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

Most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

Most likely structure

• The most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

• The most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

✓i(yi) = log p(yi|xi)

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

✓i(yi) = log p(yi|xi)

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posterior (MAP) inference.	

• Many efficient optimization algorithms for special cases:	

- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 	

- Graph-cuts for image segmentation	

- branch and bound (Rother 09), branch and cut (Gurobi)	

- Linear programming relaxations (Schlesinger 76, Wainwright 05,

Kolmogorov 06, Werner 07, Sontag 08, Hazan 10, Batra 10,
Nowozin 10, Pletscher 12, Kappes 13, Savchynskyy13, Tarlow 13,
Kohli 13, Jancsary 13, Schwing 13)	

- CKY for parsing	

- Many others…

The challenge

Sampling from the likely high dimensional structures
(with millions of variables, e.g., image segmentation
with 12 million pixels) as efficient as optimizing

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

✓(y) =
X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

y = (y1, ..., yn)

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

Most likely structure

• The maximizing structure is not robust in case of
ambiguities

structures

scores

y⇤

Most likely structure

• The maximizing structure is not robust in case of
ambiguities

structures

scores

y⇤

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Most likely structure

• The maximizing structure is not robust in case of
computationally limited models

Most likely structure

• The maximizing structure is not robust in case of
computationally limited models

structures

scores

y⇤

Most likely structure

• Randomly perturbing the system reveals its complexity

structures

scores

- little effect when the maximizing structure is “evident”

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”

structures

scores

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures	

!

• Related work: 	

- McFadden 74 (Discrete choice theory) 	

- Talagrand 94 (Canonical processes)

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential) ✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential)

perturbed score

✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)

✓(y) + �(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

�(y)

• For every structure y, the perturbation value is a
random variable (y is an index, traditional notation is).	

�(y)
�y

• Perturb-max models: how stable is the maximal structure
to random changes in the potential function.

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y) t] = exp(� exp(�t))

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y) t] = exp(� exp(�t))

f(t) = F 0
(t) = exp(�t)F (t)

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y) t] = exp(� exp(�t))

then the perturb-max model is the Gibbs distribution

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y) t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

Z =

X

y

exp(✓(y))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y) t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

= exp(�
X

y

exp(�(t� ✓(y)))) = F (t� logZ)

•Proof: P� [max

y
{✓(y) + �(y)} t] =

Y

y

F (t� ✓(y))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y) t] = F (t)

Perturb-max models

• Max stability:

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Implications (taking gradients):

log

⇣X

y

exp(✓(y))
⌘
= E�⇠Gumbel

h
max

y
{✓(y) + �(y)}

i

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Use low dimension perturbations [Papandreou & Yuille11,
Tarlow et. al12]

P� [y = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

The marginal polytope
✓(y1, ..., yn) =

X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

The marginal polytope

y1 y2 y3

✓2(0)

✓2(1)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

✓1(0)

✓1(1)

✓3(0)

✓3(0)

The marginal polytope

y1 y2 y3

✓2(0)

✓2(1)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

✓1,2(0, 0)✓1,2(0, 1)

✓1,2(1, 0)✓1,2(1, 1)

✓2,3(0, 0)✓2,3(0, 1)

✓2,3(1, 0)✓2,3(1, 1)
✓1(0)

✓1(1)

✓3(0)

✓3(0)

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

M

µ

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

AM

µ

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

AM

µ
9p(y1, y2, y3) s.t. µ1(y1) =

X

y2,y3

p(y1, y2, y3), ...

µ1,2(y1, y2) =
X

y3

p(y1, y2, y3), ...

The marginal polytope

M

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal
[Wainwright & Jordan 08]

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

• Proof idea:

µi(yi) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i(yi)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

• Proof idea:

µi(yi) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i(yi)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

µi,j(yi, yj) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i,j(yi, yj)

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

Non-MCMC sampling

• Perturb-max sample from tree-shaped Gibbs distribution
[Gane, H, Jaakkola 14].	

• Perturb-max + rejections sample from the Gibbs
distribution on general graphs [H, Maji, Jaakkola 13]. 	

• In practice, perturb-max marginals approximate the Gibbs
marginals for general graphs [Papandreou & Yuille 11].	

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs distributions with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

Image annotation

• Image annotation is a time consuming (and tedious) task.
Can computers do it for us?

Image annotation
• Why not to use the most likely annotation instead?

Image annotation

• Most likely annotation is inaccurate around 	

- “thin” areas	

• Why not to use the most likely annotation instead?

Image annotation

• Most likely annotation is inaccurate around 	

- “thin” areas	

- clutter	

• Why not to use the most likely annotation instead?

Interactive image annotation

• Perturb-max models show the boundary of decision.

Interactive image annotation

• Perturb-max models show the boundary of decision.

Interactive image annotation

• Interactive annotation directs the human annotator to
areas of uncertainty - significantly reduces annotation time
[Maji, H., Jaakkola 14].

• Perturb-max models show the boundary of decision.

Uncertainty

• Entropy H(p✓) = �
X

y

p✓(y) log p✓(y)

• Entropy = uncertainty	

- It is a nonnegative function over probability distributions. 	

- It attains its maximal value for the uniform distribution. 	

- It attains its minimal value for the zero-one distribution.

• Computing the entropy requires summing over
exponential many configurations y = (y1, ..., yn)

• Can we bound it with perturb-max approach?

Uncertainty

• Perturb-max models

p✓(y)
def
= P� [y = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]

• Entropy

H(p✓) = �
X

y

p✓(y) log p✓(y)

• Entropy bound H(p✓) E�

h nX

i=1

�i(y
⇤
i)
i

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

Uncertainty

• is an uncertainty measure

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

Uncertainty

• is an uncertainty measure	

- is nonnegative since	

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

U(p✓) 0 H(p✓) U(p✓)

Uncertainty

• is an uncertainty measure	

- is nonnegative since	

-

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

U(p✓) 0 H(p✓) U(p✓)

U(zero-one distribution) = 0

Uncertainty

• is an uncertainty measure	

- is nonnegative since	

-

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

U(p✓) 0 H(p✓) U(p✓)

✓(ŷ) = 0, 8y 6= ŷ ✓(y) = �1

E[�i(ŷi)] = 0

U(zero-one distribution) = 0

Uncertainty

• is an uncertainty measure	

- is nonnegative since	

- 	

- 	

!

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

U(p✓) 0 H(p✓) U(p✓)

U(uniform distribution) = maximal

U(zero-one distribution) = 0

Uncertainty

• is an uncertainty measure	

- is nonnegative since	

- 	

- 	

!

 higher favor lower at the expanse of higher	

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

U(p✓)

U(p✓) 0 H(p✓) U(p✓)

U(uniform distribution) = maximal

U(zero-one distribution) = 0

Uncertainty

✓(y) ⌘ 0

✓(y) �(y) �(ŷ)

• Perturb-max entropy bound:

H(p✓) E
hX

i

�i(y
⇤
i)
i
=

X

i

E
h
�i(y

⇤
i)
i

• Standard entropy independence bound:

H(p✓)
X

i

H(p✓(yi))

p✓(yi) = P� [yi = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]

• Perturb-max entropy bound requires less samples since
sampled average tail decreases exponentially.

Uncertainty

• How does it compare to standard entropy bounds?

Perturb-max entropy bounds
• Spin glass, 5x5 grid

wi,j � 0• attractive . Graph-cuts.

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

yi 2 {�1, 1}

✓i(yi) = wiyi

✓i,j(yi, yj) = wi,jyiyj

wi ⇠ N(0, 1)

10−1 100 101 102
0

1

2

3

4

5

6

7

λ (E = Σi θi yi − Σi,j λθijyiyj)

En
tro

py
 e

st
im

at
e

3 x 3 grid

Entropy
Marginal entropy
Perturb entropy

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

The flashback slide

• Max stability:

log

⇣X

y

exp(✓(y))
⌘
= E�⇠Gumbel

h
max

y
{✓(y) + �(y)}

i

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

H(p) min

✓̂

n

E�

h

max

y

�

ˆ✓(y) +
X

i

�i(yi)

i

�
X

y

ˆ✓(y)p(y)
o

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

H(p) min

✓̂

n

E�

h

max

y

�

ˆ✓(y) +
X

i

�i(yi)

i

�
X

y

ˆ✓(y)p(y)
o

p✓ p✓

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

H(p) min

✓̂

n

E�

h

max

y

�

ˆ✓(y) +
X

i

�i(yi)

i

�
X

y

ˆ✓(y)p(y)
o

p✓ p✓✓̂⇤ = ✓ ✓̂⇤ = ✓

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

H(p) min

✓̂

n

E�

h

max

y

�

ˆ✓(y) +
X

i

�i(yi)

i

�
X

y

ˆ✓(y)p(y)
o

p✓ p✓✓̂⇤ = ✓ ✓̂⇤ = ✓

H(p✓) E�

h
max

y

�
✓(y) +

X

i

�i(yi)
 i

�
X

y

✓(y)p✓(y)

• Theorem:

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

Uncertainty*

H(p✓) E
hX

i

�i(y
⇤
i)
i

• Proof idea: conjugate duality

H(p) = min

✓̂

n

logZ(

ˆ✓)�
X

y

ˆ✓(y)p(y)
o

logZ(

ˆ✓) E�

h
max

y

�
ˆ✓(y) +

X

i

�i(yi)
 i

H(p) min

✓̂

n

E�

h

max

y

�

ˆ✓(y) +
X

i

�i(yi)

i

�
X

y

ˆ✓(y)p(y)
o

p✓ p✓✓̂⇤ = ✓ ✓̂⇤ = ✓

H(p✓) E�

h
max

y

�
✓(y) +

X

i

�i(yi)
 i

�
X

y

✓(y)p✓(y)

Sample complexity*

• The upper bounds hold in expectation.

• The distance between the sampled average and the
true expectation decays exponentially

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}

H(p✓) E
hX

i

�i(y
⇤
i)
i

0 50 100 150 200 250 300 350
0

5

10

15

20

25

total deviation

hi
st

og
ra

m
 (f

re
qu

en
cy

) o
f d

ev
ia

tio
n

Local field = 1, coupling strength = 1

1 samples
5 samples
10 samples

P [avg of M samples expectation + r] exp

⇣
� M

20

min(r,
r2

n
)

⌘

[Orabona, H., Sarwate, Jaakkola 14], [Nguyen 14]

Sample complexity*

• Why is it hard to get exponential decay?

Sample complexity*

• Why is it hard to get exponential decay?

Sample complexity*

P
⇥X

i

�i(y
⇤
i) > r

⇤

E
⇥
exp(

P
i �i(y

⇤
i))

⇤

exp(r)

• Why it is hard to get exponential decay?

moment generating function

• Measure concentration requires to bound the moment
generating function	

- Hoeffding concentration requires bounded perturbations.	

- McDiarmid concentration requires bounded differences.	

- Our perturbations are unbounded with exponential tail.

Sample complexity*

P
⇥X

i

�i(y
⇤
i) > r

⇤

E
⇥
exp(

P
i �i(y

⇤
i))

⇤

exp(r)

• The exponential tail of Gumbel distribution

q(�i(yi)) ! exp(��i(yi))

⇠ exp(�i(yi))

exponential tail

Sample complexity*

E
⇥
exp

�X

i

�i(y
⇤
i)
�⇤

=

Z
q(�) exp

�X

i

�i(y
⇤
i)
�

• A function concentrates around its expectation if it does
not change too much. 	

!

Sample complexity*

• A function concentrates around its expectation if it does
not change too much. 	

- Use tensorization to deal with one dimension at a time	

!

Sample complexity*

• A function concentrates around its expectation if it does
not change too much. 	

- Use tensorization to deal with one dimension at a time	

!

Sample complexity*

V ar
⇥X

i

�i(y
⇤
i)
⇤
=

X

j,yj

V ar�j,yj

⇥X

i

�i(y
⇤
i)
⇤

• A function concentrates around its expectation if it does
not change too much. 	

- Use tensorization to deal with one dimension at a time	

!

- Bound any dimension’s variance with its perturb-max
probability (a Poincare inequality) 	

V arj,yj [·] P�j(yj)[yj = argmax

y
{✓(y) +

X

i

�i(yi)}]

Sample complexity*

V ar
⇥X

i

�i(y
⇤
i)
⇤
=

X

j,yj

V ar�j,yj

⇥X

i

�i(y
⇤
i)
⇤

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- non-MCMC sampling for Gibbs distributions with perturb-max	

• Application: interactive annotation.	

- New entropy bounds for perturb-max models.	

Open problems
• Perturb-max models: 	

- How do perturb-max models generalize - Follow the Perturbed
Leader [Manfred Warmuth, Jacob Abernethy]	

- Adversarial learning objective [Ian Goodfellow]	

- Perturb-max models stabilize the prediction. Do they connect

computational and statistical stability [Yury Makarychev]? 	

- Perturb-max models in continuous space [Maddison et. al 14]	

- When does fixing variables in the max-function amount to statistical

conditioning?	

- When do perturb-max models preserve the most likely assignment? 	

- How do the perturbations dimension affect the model properties? 	

- How to encourage diverse sampling?

Thank you

