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Prediction with Expert Advice Game

We have n experts. One expert will make no more than k
errors. Let C ∈ Nn be the cumulative number of losses on
the experts. Let Lossalg be the loss of the algorithm.

While mini Ci ≤ k :

1. Algorithm selects weights w ∈ ∆n

2. Adversary selects ` ∈ {0, 1}n

3. Algorithm total cost: Lossalg ← Lossalg + w>`

4. Experts’ costs: C← C + `

This is a zero-sum game:
loss to learner = gain to adversary = Lossalg.

Can we solve this game?
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While mini Ci ≤ k :

1. Algorithm selects weights w ∈ ∆n

2. Adversary selects ` ∈ {0, 1}n

3. Algorithm total cost: Lossalg ← Lossalg + w>`

4. Experts’ costs: C← C + `

Question 1: Given some “state” C, least-achievable Lalg(C)?

Question 2: Given some “state” C, what is w∗(C)?



Minimax Solutions,
Random Playouts,
and Perturbations

Jacob Abernethy

Experts Minimax

Random Playouts

Learning with
Perturbations

Minimax Option
Pricing

Prediction with Expert Advice Game

While mini Ci ≤ k :

1. Algorithm selects weights w ∈ ∆n

2. Adversary selects ` ∈ {0, 1}n

3. Algorithm total cost: Lossalg ← Lossalg + w>`

4. Experts’ costs: C← C + `

Question 1: Given some “state” C, least-achievable Lalg(C)?

Question 2: Given some “state” C, what is w∗(C)?



Minimax Solutions,
Random Playouts,
and Perturbations

Jacob Abernethy

Experts Minimax

Random Playouts

Learning with
Perturbations

Minimax Option
Pricing

Prediction with Expert Advice Game

While mini Ci ≤ k :

1. Algorithm selects weights w ∈ ∆n

2. Adversary selects ` ∈ {0, 1}n

3. Algorithm total cost: Lossalg ← Lossalg + w>`

4. Experts’ costs: C← C + `

Question 1: Given some “state” C, least-achievable Lalg(C)?

Question 2: Given some “state” C, what is w∗(C)?



Minimax Solutions,
Random Playouts,
and Perturbations

Jacob Abernethy

Experts Minimax

Random Playouts

Learning with
Perturbations

Minimax Option
Pricing

Solution

Given state C, define a random process Ĉt :
Ĉ0 = C and Ĉt+1 = Ĉt + eI where I ∼ [n] u.a.r.

(That is, Ĉt generated by randomly assigning t expert losses.)

Lossalg(C) =
1

n
E[time t until Ĉt “dead”]

=
1

n
E[min{t : Ĉ t

i ≥ k ∀i}]

w∗(C) = E[last expert to die]

= [Pr(∃t s.t. Ĉ t
i < k ≤ Ĉ t

j ∀j 6= i)]i=1...n

[Abernethy and Warmuth, 2010, Abernethy, Warmuth, and
Yellin, 2008]
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(That is, Ĉt generated by randomly assigning t expert losses.)

Lossalg(C) =
1

n
E[time t until Ĉt “dead”]
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Ĉ0 = C and Ĉt+1 = Ĉt + eI where I ∼ [n] u.a.r.
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Random Playouts: An Online Decision Template

The previous example gives us a nice template for designing
online decision algorithms.

1. Take your current state S defined by the history of
moves thus far

2. Add to the history a sequence of random moves,
“guesses” of the adversary’s strategy

3. Train an offline algorithm on the full sequence (history
and guessed future)

4. On current round, play according to the optimal offline
algorithm

This is minimax optimal in a number of cases!
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Random-Turn Variant of Hex

Like regular Hex, but on each round a coin is tossed to select
which player goes next.
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The Typical Regret-minimization Framework

We imagine an online game between Nature and Learner.
Learner has a (typically convex) decision set X ⊂ Rd , and
Nature has an action set Z, and there is a loss function
` : X × Z → R defined in advance.
Online Convex Optimization

For t = 1, . . . ,T :

I Learner chooses xt ∈ X
I Nature chooses zt ∈ Z
I Learner suffers `(xt , zt)

Learner is concerned with the regret:∑T
t=1 `(xt , zt)−minx∈X

∑T
t=1 `(x , zt)

This talk we assume ` is linear in x ; WLOG `(xt , zt) = x>zt .
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A Bad Algorithm

Follow the Leader (FTPL)

for t = 1 . . .T ,

xt ←− arg min
x∈X

(
t−1∑
s=1

x>ls

)

Why is this a bad algorithm?
Instability!
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Follow the Leader

Follow the Regularized Leader (FTRL)

Input: learning rate η > 0, regularizer R : X → R

for t = 1 . . .T , xt ←− arg min
x∈X

(
R(x) + η

t−1∑
s=1

x>ls

)
.

Follow the Perturbed Leader (FTPL)

Input: A perturbation distribution D ∈ ∆(Rd).
for t = 1 . . .T ,

Sample Z ∼ D, xt ←− arg minx∈X

(
x>Z +

∑t−1
s=1 x>ls

)
This COLT: FTPL is (in expectation) just a special case of
FTRL [Abernethy, Lee, Sinha, and Tewari, 2014]
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Regret Bounds EASY for FTRL

Theorem (now classical)

Let l1, . . . , lT be an arbitrary sequence of vectors, and let Lt :=
l1 + . . . lt . Assume R(x0) = 0. Then

RegretT ≤ R(x∗)

η
+

T∑
t=1

DR(xt , xt+1)

≤ R(x∗)

η
+ η

T∑
t=1

(xt − xt+1)>lt

=⇒ RegretT ≤ O

(√∑T
t=1 ‖lt‖2

)
where DR(·, ·) is the Bregman divergence w.r.t. R, and the
last line follows from tuning η and assuming some curvature
properties of R.
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Regret Bounds NOT SO EASY with FTPL
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Fenchel Duality: A Primer

Definition of the Fenchel Conjugate

Given a convex f : Rd → R, the Fenchel Conjugate of f is

f ∗(θ) := sup
x∈dom(f )

x>θ − f (x)

Lemma

The solution to

arg max
x∈dom(f )

x>θ − f (x)

is given by the gradient ∇f ∗(θ).
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FTRL ←→ FTPL

1. Let us switch from “losses” to “gains”.

2. Let θt := −lt , and let Θt :=
∑t

s=1 θs .

3. For simplicity, let us look in one dimension x ∈ [0, 1]

FTRL: xt = arg max
x∈[0,1]

xΘt−1 − R(x)

= R∗′(Θt−1)

Notice that R∗′ is an increasing function with range in [0, 1].
Maybe looks something like this:

Hmmm.... That looks a lot like a CDF of a distribution!
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FTRL ←→ FTPL

Let’s define a distribution D with CDF R∗′. Then:

FTRL: xt = R∗′(Θt−1)

= PrZ∼D[Z ≤ Θt−1]

= EZ∼D

[
arg max

x∈[0,1]
x>(Θt−1 − Z )

]
≡ FTPL algorithm

That is: we have just “replicated” the FTRL algorithm (in
one dimension) with FTPL via a particular perturbation.

Does this equivalence work in general?
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FTPL is reducible to FTRL (but not vice versa)

1. Assume we have an arbitrary online linear optimization
problem with domain X .

2. Let Φ0(Θ) := maxx∈X x>Θ.

3. Notice: ∇Φ0(Θ) = arg maxx∈X x>Θ

4. Let D be some smooth perturbation distribution on Rd

In expectation, Follow the Perturbed Leader described as:

FTPL: xt = EZ∼D[arg maxx∈X x>(Θ + Z )]

= EZ∼D[∇Φ0(Θ + Z )]

(usually) = ∇EZ∼D[Φ0(Θ + Z )]︸ ︷︷ ︸
define as ΦD

= ∇ΦD(Θ)

= arg maxx∈X x>Θ− Φ∗D(x)

In short, given dist D, we can replicate FTPL by regularizing
with Fenchel conjugate of ΦD(Θ) = EZ∼D[Φ0(Θ + Z )]
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Perturbing with the Gaussian is Cool!

It turns out that you get special properties when you perturb
with a Gaussian. That is, letting D := N(0, I ) gives an
“optimal algorithm” in a couple of cases.

The important lemma is this one:

Gaussian smoothing

For any differentiable function f we have

EZ∼N(0,1)[∇f (Z )− Z>f (Z )] = 0
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Derivative Hedging and a Minimax View of
Black-Scholes

I AAPL will take a sequence of future price
(multiplicative) fluctuations α1, . . . , αT ∈ (−1,∞).

I You (investor) have sold a derivative on AAPL whose
payoff is a function of the price fluct’s, g(α1, . . . , αT ).
E.g., for a European Call Option:

g(α1, . . . , αT ) = C max(0, (1+α1)×· · ·×(1+αT )−D)

I Can I hedge my exposure to this option?

I In finance terms: exists a trading strategy (on AAPL
stock) which can “super replicate” the option?
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Minimax Hedging

A hedging strategy is an online algorithm that selects a
sequence of share purchases δ1, . . . , δT ∈ R (neg. means a
short sale) with the goal of minimizing

g(α1, . . . , αT )−
T∑
t=1

δtαt

≡ HedgingRegret.

The HedgingRegret is the gap in return between the option
contract and the strategy.

Minimax Option Price ≡ inf
Hedge Algs

sup
α1:T∈Z

HedgingRegret
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Relationship to Black-Scholes

In the 1970s, Black and Scholes utilized techniques from
stochastic calculus to develop a theory of pricing options.
Required assumption: the price moves according to
geometric Brownian motion.

In this case,

B-S Option Price = E
X∼N(−σ/2,σ2)

[g(exp(X ))]

Alternatively:

Theorem [Abernethy, Frongillo, and Wibisono, 2012] [Aber-
nethy, Bartlett, Frongillo, and Wibisono, 2013]

Minimax Option Price→ E
X∼N(−σ/2,σ2)

[g(exp(X ))]

as T (the hedging frequency) tends to ∞, and under certain
bounds on the price fluctuations.
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Black-Scholes as Random Playout?

In the Black-Scholes pricing formulation, the price of an
option is determine according to a potential function Φ(S , t)
where S is current price and t is time.

Φ(S , t) := E
X∼N(− 1

2
(T−t),T−t)

[g(S exp(X ))]

The (δ-)hedging strategy: buy ∂Φ(S,t)
∂S shares of asset. (This

is indeed asymptotically optimal)

Random Playout Formulation:

1. Current price of asset is S

2. Sample random price future X ∼ N(−1
2 (T − t),T − t)

3. If “guessed” final price S exp(X ) is above the strike
price then hedge by buying 1 share, otherwise no hedge.

In other words: δ-hedging is random playout!
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