
Course project for CSC2515 taught by Sam Roweis, Fall 2006.

Adaptive Tree CPDs in Max-Product Belief
Propagation

Daniel Tarlow
Department of Computer Science

University of Toronto
dtarlow@cs.toronto.edu

Abstract

In general, the problem of computing the maximum a posteriori (MAP) assign-
ment in a Bayesian network is computationally intractable. In some cases, such as
in tree-structured networks, inference can be done efficiently and exactly. How-
ever, there are still practical challenges when trying to do inference in networks
containing variables with large cardinalities. In this case, representing and ma-
nipulating the local conditional probability densities (CPDs) may be cumbersome
with standard techniques. Since one is then typically forced to resort to approx-
imations in the CPD representation, exact inference becomes intractable even in
networks with otherwise tractable structure. I present an adaptive CPD represen-
tation suitable for max-product inference that is able to adjust its complexity as
inference progresses, offering a means of performing exact inference in networks
with tractable structure but prohibitively large variable cardinalities. I show results
for a series of experiments on Hidden Markov Models, showing that my technique
gives a speed improvement over standard Viterbi decoding on networks with large
state spaces, then I show that my method is able to successfully perform inference
on problems where inference would otherwise be intractable.

1 Introduction
Bayesian networks [6] and other probabilistic graphical models have been applied to a wide variety
of real-world problems. A common task for which these models are applied is the probabilistic
inference task of computing the posterior distribution of one or more variables. An alternative
approach, whose popularity has grown in recent years, is based on the maximum a posteriori (MAP)
inference problem — computing the single most likely assignment relative to the distribution.

It is well known that the complexity of either inference task is exponential in the tree width of
the network, forcing one to resort to approximate inference techniques for many real-world prob-
lems. One of the most promising techniques of recent years is loopy belief propagation to compute
posterior marginals, and max-product loopy belief propagation to compute the MAP assignment
[5].

Most research related to belief propagation attempts to deal with the problems that result from
trying to do inference in networks with loops and in networks with many nodes that interact in a
complex manner. A dimension that has received less attention is how to perform inference when the
cardinalities of variables are extremely large. In this situation, inference can become intractable due
simply to the fact that messages are too large to compute or store.

Common cases where variables might have extremely large cardinalities are in domains where
variables in the network represent pixels in an image, words in a sentence, or genes. In networks
with large variable cardinalities, the typical solution is to resort to approximations. In the case of
images, a super-pixel representation might be used, where only one pixel within any super-pixel
is considered [2]. Similarly, one may try to embed the clique potentials in a lower dimensional

subspace. In cases where the type of discretization to use is less clear, one may resort to exactly
storing only the K most likely configurations within a clique, assuming that all other configurations
have either zero probability or a small fixed probability [7].

2 Tree CPD Representation
Boutilier, Friedman, Goldszmidt, and Koller [1] showed that tree CPDs can be used to represent
context-specific independencies in Bayesian networks and simplify some inference procedures. In
fact, [7] can be viewed as simply applying the idea of using tree CPDs to Hidden Markov Models. I
build upon this idea, additionally showing how to adapt the tree structure over the course of inference
in such a way as to guarantee that inference is exact in tree-structured networks.

3 Bounding the MAP Score
My approach is based upon the idea that tree CPDs can be used to check whether a full assignment
is the MAP solution, given an upper bound on the best of the other values in each of the local factors.
By multiplying tree factors while maintaining one additional bit specifying whether each leaf is a
bound or not, we can tell whether each leaf in the resulting tree factor is an exact value or an upper
bound. A leaf in a resulting factor is an upper bound if any entry contributing to it was also an upper
bound.

Taking this approach, we can see that the value associated with any resulting leaf that is an upper
bound is an upper bound on the contribution of that factor to the MAP score. If the resulting factor
is a belief over a variable, the maximum-valued entry is fully specified, and the global network
structure is a tree, then we have the MAP assignment to one variable.

The outline of my algorithm, then, is to locally refine the CPDs, essentially making informed
guesses about what the MAP assignment is, then testing to see if the local guesses do in fact corre-
spond to the MAP assignment for each variable.

x_j

≤ .2

x_j = 5 x_j = other

.3

x_i

≤ .1

x_i = 2 x_i = other

.4
x_j

≤ .08

x_j = 5 x_j = other

.12

x_j

≤ .02

x_j = 5 x_j = other

≤ .03

x_i

x_i = 2 x_i = other

X =

Figure 1: Multiplication of two tree CPDs. Note that we know that the MAP joint assignment is
xi = 2 and xj = 5, because the value of the factor at the leaf is greater than any other bound or
non-bound leaf. If the largest value was associated with a bound node, then we would need to further
refine the local trees in order to find the MAP assignment.

4 Guessing and Checking the MAP Solution
The next step that must be specified is how to choose the guesses to be made at each point.

I build a cluster graph that has one cluster for each factor, which allows each cluster to calculate
the joint belief over its scope. Since the belief is the product of incoming messages, which are trees,
the resulting belief will also be a tree. The goal is to have the leaf with the largest value be a single
assignment.

A simple method for choosing how to refine the local CPD, then, is to split the leaf that has
the largest value associated with it in the tree representing that cluster’s belief. Formally, if XCi

is the set of “bound variables” for a given leaf, which do not have a value specified, and YCi
=

Scope(Ci) − XCi
is the set of variables that do have values specified at the given leaf, then we

would like to find:

X∗Ci = arg max
XCi

bCi(YCi , XCi)

Combining X∗Ci with YCi gives a fully specified assignment to all variables within the scope of
Ci, and this is the leaf that is created and added to Ci’s tree.

5 Refining Local CPD Trees
A naive way to find the needed values is compute a standard table CPD, then sort assignments
along the needed dimensions. However, a major savings can be achieved here if special purpose
data structures or algorithms can be used to find the top assignments without having to explicitly
calculate and sort potentials for all possible assignments. For example, if a clique represents string
distance between English words, then there are many techniques for building indices, which can
make finding the top matches very efficient for any given word. In domains with images, any
number of pruning techniques for template matching algorithms or convolutions may be used. The
problem becomes slightly more involved in cliques that range over multiple variables and require
that some variable values be fixed, but a similar approach may be followed. In my experiments, I use
Aspell, a special-purpose spell checker to generate a (relatively) small number of candidate words,
then I only calculate potentials for and sort these candidate assignments.

6 Experiments: A spell checker that uses contextual information
Graphical models with words as variables were one of the primary motivations of this work, so I
decided to build a network that has words as the hidden state in the network. By viewing typed
words as noisy observations of the true word that a user meant to type, we can formulate a Hidden
Markov Model as a spelling correcter.

z_1

o_1,
z_1

z_1,
z_2 z_2 z_2,

z_3

o_2,
z_2

Bigram
Model

Context-
insensitive

Spell Checker

Context-
insensitive

Spell Checker

Hidden word 2
(|Z| = 60,000)

Bigram
Model

z_3 z_3,
z_4 . . .

o_3,
z_3

Context-
insensitive

Spell Checker

Bigram
Model

Hidden word 1
(|Z| = 60,000)

Hidden word 3
(|Z| = 60,000)

Figure 2: (a) A Hidden Markov Model that ties together a number of context insensitive spell check-
ers. Note that the state space for the English language might be on the order of 60,000 words. The
motivation for this work is to develop exact inference methods that may scale to such a problem.

I use the GNU Aspell spell checker to generate a list of candidate words for each observed
word. This generates a large number of closely related words, but it does not compute a meaningful
distance function. To compute the distance to be used in the clique potential, I use dynamic pro-
gramming to compute an edit distance between each observed word and the candidate words. The
operations allowed are Insertion, Deletion, Substitution, and Swap, each at a fixed cost of one. The

clique potentials are then calculated as φ(s′) = e−
dist(s,s′)

σ , where s is the word that was actually
typed, s′ is each word suggested by Aspell, and σ is a bandwidth that was chosen by hand (since the
focus of this work is the inference, not the learning).

Simply to make the experiments easier to run and analyze, I limited the vocabulary to 1000 words.
To model transition probabilities, I used the bigrams data set from assignment 3 and took the first
1000 words.

I pass messages forwards and backwards while holding the CPD structures constant, then I calcu-
late the beliefs at each observation node and check to see whether the maximum entry is a bound. If
it is a bound, then I further split that CPD, choosing the next most likely local assignment according
to the scheme described above. I continue to iterate until either no beliefs are bounds, or until 100
iterations. Note that stopping early and taking the best non-bound assignment is essentially the ap-
proximate inference algorithm of [7], except with adaptive rather than fixed tree CPDs. Ideally, we
would also split the transition cliques by constraining one variable to a given value (depending on
which bound assignment was the largest) and maximizing over the other. However, due to the fact

that this project became a much larger task than I had intended, I instead chose to have the transition
cliques simply to mirror the splits of the adjacent singleton cliques.

To generate data, I asked a friend who didn’t know what I was doing to make up ground truth
sentences from the limited vocabulary that I was using. I then asked him to type each sentence a
number of times while making a large number of typos. I show results over a subset of this data.

Software was implemented in C++. All experiments were conducted on a 1.5 GHz Macintosh
PowerBook G4 with 768MB RAM.

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

4

0

4

1

4

2

4

3

4

4

4

5

-10

10

30

50

Upper and Lower Bounds vs. Iteration

S1 Lower S1 Upper S2 Lower S2 Upper S3 Lower S3 Upper

(a)
Nodes Expanded In Observation Cliques

(after 100 iterations)

0

25

50

75

100

JO
S
E

F
R
O
M
E

T
H
E

S
N
E
A
T
E

A
T
E

T
W
E
N
T
Y

S
A
K

R
E
O
R
T
E
R
S

(b)

Figure 3: (a) Successively expanding
leaves in the tree CPDs can be viewed
as squeezing together an upper and lower
bound on the log likelihood of the model.
The bounds can be calculated by taking
the product of all potentials consistent
with the best assignment while allowing
or not allowing some assignments to be
upper bounds. I show the path that this
bound takes over the course of inference
for three similar sentences. When the
bounds become equal, the Squeeze The-
orem guarantees that we have the exact
solution. (b) If a node computes its be-
lief for a variable after the HMM has been
calibrated and the most likely assignment
to that variable is not a bound, then we
know the value of a single variable and
we can stop expanding that tree. Here, the
number of nodes that were expanded per
observation clique are shown for one sen-
tence.

Algorithm Sentence Errors
Input JOSE FROME THE SNEATE ACE TWENTY SAK REORTERS. 5
HMM JOSE FROM THE SENATE AGE TWENTY SIX REPORTERS. 1
Edit Distance JOSE FROM THE SENATE ACE TWENTY SAY REPORTERS. 2
Aspell JOSE FRO ME THE SENATE ACE SKA REORDERS. 4
MS Word JOSE FRAME THE SENATE ACE TWENTY SKI REPORTERS. 3
Ground Truth JOSE FROM THE SENATE ATE TWENTY SIX REPORTERS 0

Algorithm Sentence Errors
Input A MLAN DLARS 2
HMM A MILLION DOLLARS 0
Edit Distance A MEANS DAILY 2
Aspell A MILAN DALES 2
MS Word A MANN DEARS 2
Ground Truth A MILLION DOLLARS 0

Figure 4: Results from inference over three different sentences. Comparisons are provided between
my method and pure edit distance (which is essentially half of the input given to the HMM), Aspell,
Microsoft Word, and the ground truth. Note that comparisons against Microsoft Word and Aspell
are not fair comparisons because the vocabulary that they had to choose from was much larger.
However, it does help emphasize that these are difficult problems.

7 Discussion
The results presented that evaluate this model as a spell checker should be taken with a grain of
salt. The vocabulary was very limited, and the transition model did not contain enough data to truly
justify a full bigram model. Because of this, the real world performance should be heavily dependent
on peculiarities within the data. Further, the bandwidth parameter in the edit distance controls how
heavily to weight local versus contextual information, and no effort was made to set that to anything
beyond a semi-reasonable value.

However, this work might be viewed as a very early proof-of-concept that there may be princi-
pled ways of adapting CPD structures over the course of inference. Recent work [3] has shown that
adapting message schedules in loopy belief propagation, based upon message contents, can signif-
icantly improve the performance of inference. I suggest that a similar thing may be possible for
CPDs that follows in the spirit of this work.

8 Summary
In this work, I present a means of adapting CPD structure over the course of max-product inference
in such a way as to guarantee that inference is exact. The underlying assumption that this technique
makes is that information about a variable coming from different sources is somewhat consistent.
Though one may be able to construct examples where this technique does not provide any savings
over inference with standard CPD representations, it would be difficult to imagine what this would
be saying about the domain. For example, in the spell checking domain, two sources of information
would have to not shed light on what the best true word was: first, the word must not be spelled
correctly and the edit distance between the typed word and the true word must be large; and second,
contextual information coming from either the previous or the next word must not be particularly
revealing about what the true word is. In this case, my technique would struggle.

However, as presented, this is not a technique for solving tricky and complex inference problems;
this is meant to be a method to solve inference problems that would be easy if it were not for the size
of the variable cardinalities in the network. With this approach, problems where computing even a
single message may be prohibitively expensive might be solved quickly and exactly.

9 Acknowledgments
Thanks to Andrew Peterman and Rohan Seth for being data-generating guinea pigs. Also, thanks to
Mike Jurka for some C++ snippets to load large sparse bigram matrices.

References
[1] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in

Bayesian networks. pages 115–123.
[2] Gal Elidan, Geremy Heitz, and Daphne Koller. Learning object shape: From drawings to im-

ages. CVPR, 2:2064–2071, 2006.
[3] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation. In Uncertainty in

Artificial Intelligence (UAI), 2006.
[4] Finn Jensen and Frank Jensen. Optimal junction trees. In Proceedings of the 10th Annual

Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 360–36, San Francisco,
CA, 1994. Morgan Kaufmann.

[5] K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An empirical
study. pages 467–475.

[6] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[7] Sajid Siddiqi and Andrew Moore. Fast inference and learning in large-state-space hmms. In

Proceedings of the 22nd International Conference on Machine Learning, August 2005.

