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MAP in Large Discrete Models

Many important problems can be expressed as a discrete
Random Field (MRF, CRF)

MAP inference is a fundamental problem
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Primal and Dual

Primal Dual
min Z Oa(xa > Z mm@A (xa) Z h'y
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Dual is a lower bound: less constrained version of primal
@ is a reparameterization, determined by messages
h," is height of unary or pairwise potential

Definition of reparameterization:

Y Oalwa)= > Oalza)  V{za}
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LP-based message passing: find reparameterization to maximize dual



Standard Linear Program-based Message Passing

 Max Product Linear Programming (MPLP)
— Update edges in fixed order

e Sequential Tree-Reweighted Max Product (TRW-S)
— Sequentially iterate over variables in fixed order

* Tree Block Coordinate Ascent (TBCA) [Sontag & Jaakkola, 2009]
— Update trees in fixed order

Key: these are all energy oblivious

Can we do better by being energy aware?



Example

TBCA with Static Schedule: TBCA with Dynamic Schedule:
630 messages needed 276 messages needed
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Benefit of Energy Awareness

Static settings
— Not all graph regions are equally difficult
— Repeating computation on easy parts is wasteful

V Harder region

Easy region —»

Dynamic settings (e.g., learning, search)
— Small region of graph changes.
— Computation on unchanged part is wasteful

Unchanged

Changed




References and Related Work

e [Elidan et al., 2006], [Sutton & McCallum, 2007]
— Residual Belief Propagation. Pass most different messages first.

[Chandrasekaran et al., 2007]
— Works only on continuous variables. Very different formulation.

[Batra et al., 2011]
— Local Primal Dual Gap for Tightening LP relaxations.

[Kolmogorov, 2006]
— Weak Tree Agreement in relation to TRW-S.

[Sontag et al., 2009]
— Tree Block Coordinate Descent.



Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

(can assume "good" has cost 0, otherwise cost 1)

G G-G, B-B G G-G, B-B G G-B, B-B B
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Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

G G-G, B-B G G-G, B-B G G-B, B-B B

"Don't be R o}r B" "Don't be R o; B" "Don't be R o}r G"
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"Don't be R or B" "Don't be R or B" "Don't be R"

RO O O O
G‘ . ‘\‘2
1@ O O

Hypothetical messages that e.g. residual max-product would send.




Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

G G-G, B-B G G-G, B-B G G-B, B-B B
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But we don't need to send any messages. We are at the global optimum.

Our scores (see later slides) are 0, so we wouldn't send any messages here.



Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

B GGBB B G-G, B-B B GBBB B
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Change unary potentials (e.g., during learning or search)



Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

B GGBB B G-G, B-B B GBBB B
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Locally, best assignment for some variables change.



Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

B G-G, B-B B G-G, B-B B G-B, B-B B

"Don't be R or G" "Don' " "Nan' "
o= Don'tbeRor G DontbeRo;G
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"Don't be Ror G" "Don't be R or "Don't be R"
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Hypothetical messages that e.g. residual max-product would send.

)]
O
@O



Visualization of reparameterized energy 0

States for each variable: red (R), green (G), or blue (B)

"Good" local settings:

G-G, B-B B G-G, B-B B G-B, B-B B

B
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RO O O O
GO O Q\g
3@ o ®

But we don't need to send any messages. We are at the global optimum.

Our scores (see later slides) are 0, so we wouldn't send any messages here.



Visualization of reparameterized energy 0

Good local settlngs
G-G, B-B G-G, B-B G-B, B-B
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Possible fix: look at how much sending messages on edge would improve dual.
 Would work in above case, but incorrectly ignores e.g. the subgraph below:

"Good" local settings:
R, G

B B-B G, B G-G R-R
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Key Slide

B B-B G, B B-B R,G R-R R
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Locally, everything looks optimal



Key Slide

B B-B G, B B-B R,G R-R R
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O Try assigning a value to each variable



Key Slide

Our main contribution

Use primal (and dual) information to
choose regions on which to pass messages
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O Try assigning a value to each variable



Our Formulation

 Measure primal-dual local agreement at edges and variables
— Local Primal Dual Gap (LPDG).
— Weak Tree Agreement (WTA).

* Choose forest with maximum disagreement
— Kruskal's algorithm, possibly terminated early

* Apply TBCA update on maximal trees

Important! Minimize overhead.

Use quantities that are already computed during
inference, and carefully cache computations




Local Primal-Dual Gap (LPDG) Score

* Difference between primal and dual objectives

— Given primal assignment xP and dual variables
(messages) defining @, primal-dual gap is

Primal-dual Z HA(CEZZX) _ Z rf,in éA(fA)

8P Jevue AEVUE
1 ' J 1 ' J
primal dual
_ N p 0 _
— E <9A($A) —Il:;;linHA(CCA)) = E LPDG (A)
AeVUE AeVUE
Primal cost of node/edge Dual bound at node/edge

e: “local disagreement” measure: ¢, = LPDG (A)



Shortcoming of LPDG Score: Loose Relaxations

LPDG >0,
but dual optimal

Filled circle means él.(xl.) = h,, black edge means 0,(x,x,)=h;



Weak Tree Agreement (WTA) (koimogorov 2006]

Reparameterized potentials 6 are said to satisfy WTA if
there exist non-empty subsets D, C X, for each node i
such that

~

min 6;;(x;,x;) = h:; Ve, € D;,(2,7) € €
xjélgj J(x 333) 1) L (Z J)

Filled circle means él.(xl.) =h, Black edge means 6,(x,x,)=h;

L0 by b 6, O by big 0!
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X4 X X3 X4 X1 X2 X3 X4

At Weak Tree Agreement Not at Weak Tree Agreement



Weak Tree Agreement (WTA) (koimogorov 2006]

Reparameterized potentials 6 are said to satisfy WTA if
there exist non-empty subsets D, C X, for each node i
such that

~

min 6;;(x;,x;) = h:; Ve, € D;,(2,7) € €
xjélgj J(x 333) 1) L (Z J)

Filled circle means él.(xl.) =h, Black edge means 6,(x,x,)=h;

6 6 6 6, 6 6 6 6
% 1 ZO 3 4 " 1 2O 30_0 4
3 0O O 3O O O
X4 X~ X3 X4 X1 A2 X3 X4
At Weak Tree Agreement Not at Weak Tree Agreement

D,={0} D,={0,2} D,={0,2} D,={0} D,={0} D,={2} D,={0,2} D,={0}



Weak Tree Agreement (WTA) (koimogorov 2006]

Reparameterized potentials 6 are said to satisfy WTA if
there exist non-empty subsets D, C X, for each node i
such that

~

min 6;;(x;,x;) = h:; Ve, € D;,(2,7) € €
xjélgj J(x 333) 1) L (Z J)

Filled circle means él.(xl.) =h, Black edge means 6,(x,x,)=h;

6 6 6 6, 6 6 6 6
w 1 20 3 4 “ 1 20) ,/3,0_0/ 4
2 O O 8 O 70 270
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X4 X~ X3 X4 X1 A2 X3 X4
At Weak Tree Agreement Not at Weak Tree Agreement

D1={0} D2={2} D2={012} D3={O}



WTA Score

e: “local disagreement” measure

e.. = max min H--(xi,xj) — mingij(’xi’xj)

v x; €ED; x; €ED; Y Xj X
Costs: O D3={O,2}

dotted — medium
else — high

O |
solid — low O b . O
G.

e,, = max(min(a,high), min(b,c)) - ¢

Filled circle means éi(xl.) = h;, black edge means é,.j(xl.,xj) = h,,



WTA Score

e: “local disagreement” measure

eij = lj(xl,x )
D,={0,2
Costs: H DZ_{O 2}
solid — low O b Q 3_{ ’ }

dotted — medium

else — high H
C

e,, = max(min(a,high) —C

Filled circle means él.(xl.) = h, , black edge means 0,(x,x,) =k,



WTA Score

e: “local disagreement” measure

e.. =lmax min 6.

j =|max min ;(X5,x ;)1 ming, (x;,x ;)

D,={0,2}

a
Costs: H D3={O,2}

solid — low O b O

dotted — medium

EISe = hlgh H
C

ey, =fmax(a, ¢)lc=a-c

Filled circle means él.(xl.) = h;, black edge means él.j(xi,xj) = h,,



WTA Score

e: “local disagreement” measure

el:]'
Costs:
solid — low
dotted — medium
else — high

ey, =max(a, ¢) el a-c

Filled circle means él.(xl.) = h,, black edge means é,j(x

l

*



WTA Score

e: “local disagreement” measure: node measure

e, = max éi(xl.) —min éi(xl.)
x; €D, X;

l



Single Formulation of LPDG and WTA

* Set a max history size parameter R.

e Store most recent R labelings of variable i in
label set D.

R=1: LPDG score. R>1: WTA score.

Combine scores into undirected edge score:

w. = max(e

: e;)te te,

i



Properties of LPDG/WTA Scores

LPDG measure gives upper bound on possible dual
improvement from passing messages on forest

LPDG may overestimate "usefulness" of an edge e.g., on non-
tight relaxations. %

A LPDG >0

WTA measure addresses overestimate problem: is zero shortly
after normal message passing would converge.

Both only change when messages are passed on nearby
region of graph.



Experiments

Computer Vision:

* Stereo

* |Image Segmentation

* Dynamic Image Segmentation

Protein Design:

e Static problem

* Correlation between measure and dual improvement
* Dynamic search application

Algorithms

 TBCA: Static Schedule, LPDG Schedule, WTA Schedule
* MPLP [Sontag and Globerson implementation]

e TRW-S [Kolmogorov Implementation]



Experiments: Stereo
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383x434 pixels, 16 labels. Potts potentials.



Dual Objective

Experiments: Image Segmentation
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375x500 pixels, 21 labels. General potentials based on label co-occurence.



Experiments: Dynamic Image Segmentation
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375x500 pixels, 21 labels. Potts potentials.



Experiments: Dynamic Image Segmentation
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375x500 pixels, 21 labels. Potts potentials.



Experiments: Protein Design

Dual Improvement vs. Measure on Forest
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Other protein experiments: (see paper)

- DTBCA vs. static "stars" on small protein
DTBCA converges to optimum in .39s vs TBCA in .86s

- Simulating node expansion in A* search on larger protein
Similar dual for DTBCA in 5s as Warm-started TRW-S in 50s.

Dual Improvement
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Protein Design from Yanover et al.



Discussion

* Energy oblivious schedules can be wasteful.

* For LP-based message passing, primal information is
useful for scheduling.

— We give two low-overhead ways of including it

* Biggest win comes from dynamic applications
— Exciting future dynamic applications: search, learning, ...



Discussion

* Energy oblivious schedules can be wasteful.

* For LP-based message passing, primal information is
useful for scheduling.

— We give two low-overhead ways of including it

* Biggest win comes from dynamic applications
— Exciting future dynamic applications: search, learning, ...

Thank You!



Unused slides



Schlesinger's Linear Program (LP)

min,c, ¥ 6,(x)+ ¥ 60,(x,.x )
=% ijEE
exact
Real-valued

minjEM(G) E,ui(xi)ﬁi(xi) + EMlj(xi,xj)H,-j-(xi,xj)
/1 =% jEE

Marginal polytope ¢a PpProx

min ., E,ui(xi)ﬁi(xi) + ZMU(XZ-,XJ-)HU(XZ-,XJ-)
/1 1% jEE

LOCAL polytope
(see next slide)
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Algorithm 1 Dynamic Tree-Block Coordinate Ascent

VY «— V {Dirty nodes}

£ — & {Dirty edges (see Sec. 5.1 for details)}
R «— RUN-LPDG ? 1: Rwra {History size}
fort =1: tmax do

for i € V do {Node scores}

z? — arg ming 0; (z;)

ApD-To-HisTorY(z}, D;, R)
e; +— maXg, D, 0, (z;) — ming, 0; (x;)
end for X
for (i,7) € £ do {Directed edge scores}
hij <« ming, . éij (xi,x5)
T

€ij +— MaXg,cp; MiNg ep; 0i; (i, ;) — hyj
€ji «— MaXy . cp,; MiNg; cp; 0:;(Zi, ;) — hij

end for

for (i,7) € £€ do {Undirected edge scores}
w;; «— max(e;j,e;;) +e; + €;

end for

T «— KRUSKAL-FOREST(w)

§ — REPARAMETERIZE-FOREST(T, 6)
end for




WTA Score

e: “local disagreement” measure

e.. = max min H--(xi,xj) — mingij(’xi’xj)

Y x; €ED; X ED]» Y Xj X
Q20
5 Dy={o)
C
X2 X3
e,, =max(a, b)-c e5, =min(a, b)-c

Filled circle means éi(xl.) = h;, black edge means é,.j(xl.,xj) = h,,



