Dynamic Tree Block Coordinate Ascent

<u>Daniel Tarlow</u>¹, Dhruv Batra² Pushmeet Kohli³, Vladimir Kolmogorov⁴

1: University of Toronto

3: Microsoft Research Cambridge

2: TTI Chicago

4: University College London

International Conference on Machine Learning (ICML), 2011

MAP in Large Discrete Models

- Many important problems can be expressed as a discrete Random Field (MRF, CRF)
- MAP inference is a fundamental problem

$$\min_{\boldsymbol{x} \in X} E(\boldsymbol{x}) = \min_{\boldsymbol{x} \in X} \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j)$$

Inpainting

Protein Design / Side Chain Prediction

Primal and Dual

$$\underbrace{ \begin{array}{c} \underline{\mathsf{Primal}} \\ \min_{\mathbf{x}} \sum_{A \in \mathcal{V} \cup \mathcal{E}} \theta_A(x_A) \end{array} }_{\mathbf{X} \in \mathcal{V} \cup \mathcal{E}} \underbrace{ \begin{array}{c} \underline{\mathsf{Dual}} \\ \sum_{A \in \mathcal{V} \cup \mathcal{E}} \min_{x_A} \tilde{\theta}_A(x_A) = \sum_{A \in \mathcal{V} \cup \mathcal{E}} h_A^* \end{array} }_{A \in \mathcal{V} \cup \mathcal{E}}$$

- Dual is a lower bound: less constrained version of primal
- $\hat{\theta}$ is a *reparameterization*, determined by messages
- h_A^* is *height* of unary or pairwise potential
- Definition of reparameterization:

$$\sum_{A \in \mathcal{V} \cup \mathcal{E}} \theta_A(x_A) = \sum_{A \in \mathcal{V} \cup \mathcal{E}} \tilde{\theta}_A(x_A) \qquad \forall \{x_A\}$$

LP-based message passing: find reparameterization to maximize dual

Standard Linear Program-based Message Passing

- Max Product Linear Programming (MPLP)
 - Update edges in fixed order
- Sequential Tree-Reweighted Max Product (TRW-S)
 - Sequentially iterate over variables in fixed order
- Tree Block Coordinate Ascent (TBCA) [Sontag & Jaakkola, 2009]
 - Update trees in fixed order

Key: these are all *energy oblivious*Can we do better by being *energy aware?*

Example

TBCA with Static Schedule:

630 messages needed

TBCA with Dynamic Schedule:

276 messages needed

Benefit of Energy Awareness

Static settings

- Not all graph regions are equally difficult
- Repeating computation on easy parts is wasteful

Dynamic settings (e.g., learning, search)

- Small region of graph changes.
- Computation on unchanged part is wasteful

References and Related Work

- [Elidan et al., 2006], [Sutton & McCallum, 2007]
 - Residual Belief Propagation. Pass most different messages first.
- [Chandrasekaran et al., 2007]
 - Works only on continuous variables. Very different formulation.
- [Batra et al., 2011]
 - Local Primal Dual Gap for Tightening LP relaxations.
- [Kolmogorov, 2006]
 - Weak Tree Agreement in relation to TRW-S.
- [Sontag et al., 2009]
 - Tree Block Coordinate Descent.

States for each variable: red (R), green (G), or blue (B)

States for each variable: red (R), green (G), or blue (B)

Hypothetical messages that e.g. residual max-product would send.

States for each variable: red (R), green (G), or blue (B)

But we don't need to send any messages. We are at the global optimum.

Our scores (see later slides) are 0, so we wouldn't send any messages here.

States for each variable: red (R), green (G), or blue (B)

Change unary potentials (e.g., during learning or search)

States for each variable: red (R), green (G), or blue (B)

Locally, best assignment for some variables change.

States for each variable: red (R), green (G), or blue (B)

Hypothetical messages that e.g. residual max-product would send.

States for each variable: red (R), green (G), or blue (B)

But we don't need to send any messages. We are at the global optimum.

Our scores (see later slides) are 0, so we wouldn't send any messages here.

Possible fix: look at how much sending messages on edge would improve dual.

Would work in above case, but incorrectly ignores e.g. the subgraph below:

Key Slide

Locally, everything looks optimal

Key Slide

Try assigning a value to each variable

Key Slide

Our main contribution

Use primal (and dual) information to choose regions on which to pass messages

Try assigning a value to each variable

Our Formulation

- Measure primal-dual local agreement at edges and variables
 - Local Primal Dual Gap (LPDG).
 - Weak Tree Agreement (WTA).
- Choose forest with maximum disagreement
 - Kruskal's algorithm, possibly terminated early
- Apply TBCA update on maximal trees

Important! Minimize overhead.

Use quantities that are already computed during inference, and carefully cache computations

Local Primal-Dual Gap (LPDG) Score

- Difference between primal and dual objectives
 - Given primal assignment \mathbf{x}^p and dual variables (messages) defining $\tilde{\theta}$, primal-dual gap is

$$\begin{aligned} & \underset{\mathsf{gap}}{\text{Primal-dual}} & \sum_{A \in \mathcal{V} \cup \mathcal{E}} \theta_A(x_A^p) - \sum_{A \in \mathcal{V} \cup \mathcal{E}} \min_{x_A} \tilde{\theta}_A(x_A) \\ & \underset{\mathsf{primal}}{\text{primal}} & \underset{\mathsf{dual}}{\text{dual}} \end{aligned}$$

$$= \sum_{A \in \mathcal{V} \cup \mathcal{E}} \left(\tilde{\theta}_A(x_A^p) - \min_{x_A} \tilde{\theta}_A(x_A) \right) = \sum_{A \in \mathcal{V} \cup \mathcal{E}} \mathsf{LPDG}\left(A\right)$$

$$\underset{\mathsf{Primal cost of node/edge}}{\mathsf{Primal cost of node/edge}} & \mathsf{Dual bound at node/edge} \end{aligned}$$

e: "local disagreement" measure: $e_A = LPDG(A)$

Shortcoming of LPDG Score: Loose Relaxations

LPDG > 0, but dual optimal

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

Weak Tree Agreement (WTA) [Kolmogorov 2006]

Reparameterized potentials $\tilde{\theta}$ are said to satisfy WTA if there exist non-empty subsets $D_i \subseteq X_i$ for each node i such that

$$\widetilde{\theta}_{i}(x_{i}) = h_{i}^{*} \qquad \forall x_{i} \in D_{i}$$

$$\min_{x_{j} \in D_{j}} \widetilde{\theta}_{ij}(x_{i}, x_{j}) = h_{ij}^{*} \qquad \forall x_{i} \in D_{i}, (i, j) \in \mathcal{E}$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$ Black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

Weak Tree Agreement (WTA) [Kolmogorov 2006]

Reparameterized potentials $\hat{\theta}$ are said to satisfy WTA if there exist non-empty subsets $D_i \subset X_i$ for each node i such that

$$\widetilde{\theta}_{i}(x_{i}) = h_{i}^{*} \qquad \forall x_{i} \in D_{i}$$

$$\min_{x_{j} \in D_{j}} \widetilde{\theta}_{ij}(x_{i}, x_{j}) = h_{ij}^{*} \qquad \forall x_{i} \in D_{i}, (i, j) \in \mathcal{E}$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$ Black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

At Weak Tree Agreement

$$D_1 = \{0\}$$
 $D_2 = \{0,2\}$ $D_2 = \{0,2\}$ $D_3 = \{0\}$ $D_1 = \{0\}$ $D_2 = \{2\}$ $D_2 = \{0,2\}$

Not at Weak Tree Agreement

$$D_1 = \{0\}$$
 $D_2 = \{2\}$ $D_2 = \{0,2\}$ $D_3 = \{0\}$

Weak Tree Agreement (WTA) [Kolmogorov 2006]

Reparameterized potentials $\tilde{\theta}$ are said to satisfy WTA if there exist non-empty subsets $D_i \subseteq X_i$ for each node i such that

$$\widetilde{\theta}_{i}(x_{i}) = h_{i}^{*} \qquad \forall x_{i} \in D_{i}$$

$$\min_{x_{j} \in D_{j}} \widetilde{\theta}_{ij}(x_{i}, x_{j}) = h_{ij}^{*} \qquad \forall x_{i} \in D_{i}, (i, j) \in \mathcal{E}$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$ Black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

Not at Weak Tree Agreement

$$D_1 = \{0\}$$
 $D_2 = \{2\}$ $D_2 = \{0,2\}$ $D_3 = \{0\}$

e: "local disagreement" measure

$$e_{ij} = \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - \min_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

Costs: solid – low dotted – medium else – high

$$e_{23} = \max(\min(a, high), \min(b, c)) - c$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

e: "local disagreement" measure

$$e_{ij} = \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - \min_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

Costs: solid – low dotted – medium else – high

$$e_{23} = \max(\min(a, high), \min(b, c)) - c$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i,x_j) = h_{ij}^*$

e: "local disagreement" measure

$$e_{ij} = \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - \min_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

Costs: solid – low dotted – medium else – high

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i, x_j) = h_{ij}^*$

e: "local disagreement" measure

$$e_{ij} = \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - \min_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

Costs: solid – low dotted – medium else – high

$$e_{23} = \max(a, c) - c = a - c$$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i,x_j) = h_{ij}^*$

e: "local disagreement" measure: node measure

$$e_i = \max_{x_i \in D_i} \tilde{\theta}_i(x_i) - \min_{x_i} \tilde{\theta}_i(x_i)$$

Single Formulation of LPDG and WTA

- Set a max history size parameter R.
- Store most recent R labelings of variable i in label set D_i

Combine scores into undirected edge score:

$$w_{ij} = \max(e_{ij}, e_{ji}) + e_i + e_j$$

Properties of LPDG/WTA Scores

- LPDG measure gives upper bound on possible dual improvement from passing messages on forest
- LPDG may overestimate "usefulness" of an edge e.g., on non-tight relaxations. \times_2

- WTA measure addresses overestimate problem: is zero shortly after normal message passing would converge.
- Both only change when messages are passed on nearby region of graph.

Experiments

Computer Vision:

- Stereo
- Image Segmentation
- Dynamic Image Segmentation

Protein Design:

- Static problem
- Correlation between measure and dual improvement
- Dynamic search application

Algorithms

- TBCA: Static Schedule, LPDG Schedule, WTA Schedule
- MPLP [Sontag and Globerson implementation]
- TRW-S [Kolmogorov Implementation]

Experiments: Stereo

383x434 pixels, 16 labels. Potts potentials.

Experiments: Image Segmentation

375x500 pixels, 21 labels. General potentials based on label co-occurence.

Experiments: Dynamic Image Segmentation

Previous Opt

Modify White Unaries

New Opt

Heatmap of Messages

Warm-started DTBCA vs Warm-started TRW-S

375x500 pixels, 21 labels. Potts potentials.

Experiments: Dynamic Image Segmentation

375x500 pixels, 21 labels. Potts potentials.

Experiments: Protein Design

Dual Improvement vs. Measure on Forest

Other protein experiments: (see paper)

- DTBCA vs. static "stars" on small protein DTBCA converges to optimum in .39s vs TBCA in .86s
- Simulating node expansion in A* search on larger protein Similar dual for DTBCA in 5s as Warm-started TRW-S in 50s.

Protein Design from Yanover et al.

Discussion

Energy oblivious schedules can be wasteful.

- For LP-based message passing, primal information is useful for scheduling.
 - We give two low-overhead ways of including it

- Biggest win comes from dynamic applications
 - Exciting future dynamic applications: search, learning, ...

Discussion

Energy oblivious schedules can be wasteful.

- For LP-based message passing, primal information is useful for scheduling.
 - We give two low-overhead ways of including it

- Biggest win comes from dynamic applications
 - Exciting future dynamic applications: search, learning, ...

Thank You!

Unused slides

Schlesinger's Linear Program (LP)

$$\min_{\mathbf{x} \in X} \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$\ker_{\mathbf{x} \in A} \mathbf{x}_i = \mathbf{x}_i \mathbf{x}_$$

Primal

Dual

Algorithm 1 Dynamic Tree-Block Coordinate Ascent

```
\hat{\mathcal{V}} \leftarrow \mathcal{V} \quad \{\text{Dirty nodes}\}\
\hat{\mathcal{E}} \leftarrow \mathcal{E} {Dirty edges (see Sec. 5.1 for details)}
R \leftarrow \text{RUN-LPDG} ? 1 : R_{WTA} \quad \{\text{History size}\}
for t = 1 : t_{\text{max}} do
    for i \in \hat{\mathcal{V}} do {Node scores}
        x_i^p \leftarrow \arg\min_{x_i} \hat{\theta}_i(x_i)
        ADD-To-HISTORY(x_i^p, D_i, R)
        e_i \leftarrow \max_{x_i \in D_i} \tilde{\theta}_i(x_i) - \min_{x_i} \tilde{\theta}_i(x_i)
    end for
    for (i, j) \in \hat{\mathcal{E}} do {Directed edge scores}
        h_{ij} \leftarrow \min_{x_i, x_j} \hat{\theta}_{ij}(x_i, x_j)
        e_{ij} \leftarrow \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - h_{ij}
        e_{ji} \leftarrow \max_{x_j \in D_j} \min_{x_i \in D_i} \tilde{\theta}_{ij}(x_i, x_j) - h_{ij}
    end for
    for (i, j) \in \mathcal{E} do {Undirected edge scores}
        w_{ij} \leftarrow \max(e_{ij}, e_{ji}) + e_i + e_j
    end for
    T \leftarrow \text{Kruskal-Forest}(\boldsymbol{w})
    \tilde{\theta} \leftarrow \text{Reparameterize-Forest}(T, \bar{\theta})
end for
```

e: "local disagreement" measure

$$e_{ij} = \max_{x_i \in D_i} \min_{x_j \in D_j} \tilde{\theta}_{ij}(x_i, x_j) - \min_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

$$e_{23} = \max(a, b) - c$$
 $e_{32} = \min(a, b) - c$

Filled circle means $\tilde{\theta}_i(x_i) = h_i^*$, black edge means $\tilde{\theta}_{ij}(x_i,x_j) = h_{ij}^*$