
1

1

Logical Query Languages

2

Datalog

● Logical query language for the relational model

● Consists of “if-then” rules made up of atoms:

- relational : predicates corresponding to relations
>EDB extensional database (stored relations)
>IDB intensional database (relations defined by rules)

- arithmetic

3

Datalog example

Example:

database schema:
Movie(title, year, length, inColor, studionName, producerC#)
Contracts(starName, studioName, title, year, salary)

relational atom: Movie (t, y, l, c, s, p)

arithmetic atom: l > 100

4

Datalog Rules
Rule: head ← body

Head: a relational atom (no EDB predicates!)

Body: one or more atoms called subgoals

Example:
datalog rule: LongMovie(t, y) ← Movie(t,y,l,c,s,p) AND l >=10
Relational Algebra....
Relational Calculus...

5

Interpreting Datalog Rules

Variables: - distinguished – appear in the head
- nondistinguished –appear in the body

Interpreting rules
the head is true of the distinguished variables if there
exist values of the non-distinguished variables that
make all subgoals of the body true.

6

Safe Datalog Rules

A rule is safe if each distinguished and
nondistinguished variable appears in at
least one nonnegated relational atom.

Note: only safe rules are allowed

2

7

Unsafe Datalog Rules

Example:

E(w) ← NOT Movies(t, y, l, c, s, p)

Years(w) ← Movies(t, y, l, c, s, p) AND w < y

Note: in each case an infinity of w’s can satisfy the
rule, even though Movies is a finite relation.

8

Algorithms for Evaluating Datalog Rules

Variable-based: Consider all possible assignments
to the variable of the body. If the assignment makes
the body true, add the tuple for the head to the result.

Tuple-based: Consider all assignments of tuples
from the nonnegated relational subgoals. If the
assignment makes the body true, add the tuple
for the head to the result.

9

Variable-based Evaluation
Example:
Database: Edge(from, to)
Datalog rule: NotTranzitive(x,z) ← Edge(x, y) AND Edge(y, z) AND NOT Edge(x, z)

Assignment x = 1, y = 2 , z = 3
Edge(1, 2) AND Edge(2, 3) AND NOT Edge(1, 3) is true, make (1, 3) a tuple of
the answer
Assignment x = 1, y = 2 , z = ?
Edge(1, 2) AND Edge(2, ?) AND NOT Edge(1, ?) no z makes the body true
Assignment x = 2, y = 3 , z = ?
Edge(2, 3) AND Edge(3, ?) AND NOT Edge(2, ?) no z makes the body true

Note: No other assignment for x and y makes Edge(x, y) true. Stop searching.

32

21

tofrom

10

Tuple-based Evaluation

Example:
Database: Edge(from, to)
Datalog rule: NotTranzitive(x,z) ← Edge(x, y) AND Edge(y, z) AND NOT Edge(x, z)

Assignment (x, y) = (1, 2) , (y, z) = (2, 3), consistent assignment
Edge(1, 2) AND Edge(2, 3) AND NOT Edge(1, 3) is true, make (1, 3) a tuple of the answer

Assignment (x, y) = (1, 2) , (y, z) = (1, 2), inconsistent assignment

Assignment (x, y) = (2, 3), (y, z)=(1, 2), inconsistent assignment

Assignment (x, y) = (2, 3), (y, z)=(2, 3), inconsistent assignment

Note: No other assignment for(x, y) makes Edge(x, y) true. Stop searching.

32

21

tofrom

11

Datalog Programs

A Datalog Program is a collection of rules

Example:
“Find actors who starred in the color movies made in the 1950”

MoviesColor50 (t,y)← Movie(t,y,l,c,s,p) AND y = “1950” AND c = “y”
Answer(star) ← Movies90(t,y) AND Contracts(star, studio, t, y, salary)

12

Datalog Programs Evaluation

Non-recursive programs:
- pick an order to evaluate the rules (the IDB
predicates) so that all the predicates in the body
have already been evaluated.

- if an IDB predicate has more than one rule, each
contributes tuples to its relation (union).

3

13

From Relational Algebra to Datalog -1

Intersection: R(x, y) ∩ T(x, y)
I(x, y) R(x, y) AND T(x, y)

Union: R(x, y) U T(x, y)
U(x, y) R(x, y)
U(x, y) T(x, y)

Differece: R(x, y) –T(x, y)
D(x, y) R(x, y) AND NOT T(x, y)

14

From Relational Algebra to Datalog -2

Projection: πx(R)
P(x) R(x,y)

Selection: σx>10(R)
S(x, y) R(x, y) AND x>10

Product: R X T
P(x, y, z, w) R(x,y) AND T(z, w)

15

From Relational Algebra to Datalog -3

Natural Join R T
J(x, y, z) R(x, y) AND T(y, z)

Theta Join R .R.x >T.yT
J(x, y, z, w) R(x, y) AND T(z, w) AND x > y

16

Datalog Queries

Datalog Query: a datalog program.

Expressive Power:
- without recursion, Datalog has the same power

as Core Relational Algebra and Relational Calculus

- with recursion: much more, but not Turing-complete

17

Recursivity

Example:
Database: SequelOf(movie, sequel)

Query: “What are the sequels of sequels of movies in the database?”

“What are the sequels of the sequels of the sequels?”

Infinite unions?

))()((,secsec,sec, SequelOfSequelOf thirdondondfirstondfirst ρρπ ><

18

Recursive Rules
Example:
FollowOn(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← SequelOf(x, z) AND FollowOn(z, y)

Dependency Graph (of a program)
- nodes: the IDB predicates
- edges: from node1(predicate1) to node(predicate2) if

and only if there is a rule with predicate1 in the head
and predicate2 in the body.

A datalog program is recursive iff its dependency graph
has a cycle.

4

19

Dependency graph
Example:
FirstSequelOf(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, z) AND FollowOn(z, y)

Cyclic graph recursive datalog program

FollowOn

FirstSequelOf

20

Evaluating Recursive Rules
without Negation

Naive algorithm

1. Begin by assuming all IDB relations are empty

2. Repeatedly evaluate the rules using the EDB
and the previous IDB to get a new IDB

3. End when there is no change to IDB

21

Example: SequelOf
Database: SequelOf := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}

FirstSequelOf(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, z) AND FollowOn(z, y)

We will proceed in rounds to infer FirstSequel facts and then FollowOn facts.
Initial FirstSequelof:={}, FollowOn := {}
Round1 FirstSequelOf := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}, FollowOn ={}
Round2 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}
Round3 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)} U {(t1,t3), (t2,t4), (t5,t7),(t6,t8)}
Round4 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8), (t1,t3), (t2,t4), (t5,t7),(t6,t8)} U

{(t1,t4), (t5,t8)}
Round 5 no change in FollowOn. STOP

t8t7

t7t6

t6t5

t4t3

t3t2

t2t1

sequelmovie

22

Negation in recursive rules

- Naive evaluation does not work when there are
negated subgoals.

- Arguably negation wrapped in a recursion makes
little or no sense in general

- Even when negation and recursion are separate
there is ambiguity sbout the “correct” IDB relations

23

Example:
EDB predicate R= {(0)}

P(x) R(x) AND NOT Q(x)
Q(x) R(x) AND NOT P(x)

2 solutions
P={(0)}, Q = Ф
P = Ф, Q = {(0)}

Which one to choose?

←

24

Example:
EDB predicate S = {(1)}

R(x) S(x) AND NOT R(x)

Initial R := {}
Round 1 R = {(1)}
Round 2 R = {}
Round 3 R = {(1)}, etc.

5

25

Stratified Negation

- Constraint imposed on recursive Datalog programs

- Rules out negation wrapped in recursion

- The maximum number of negations that can be
applied to an IDB predicate used in evaluating an
IDB predicate must be finite.

26

Stratum Graph

Labeled dependency graph

- nodes: the IDB predicates

- edges: from node1(predicate1) to node(predicate2) if
and only if there is a rule with predicate1 in the head and
predicate2 in the body. If predicate2 appears negated,
label the edge with “-”.

27

Strata

• The stratum of a node (predicate) is the
maximum number of “-” labeled edges on
a path leading from that node .

• A Datalog program is stratified if al its IDB
predicates have finite strata.

28

Example:
R(x) S(x) AND NOT R(x)

- - -

P(x) R(x) AND NOT Q(x)
Q(x) R(x) AND NOT P(x)

P

R

Q

29

Stratified Datalog Evaluation

Algorithm:

1. Evaluate IDB predicates lowest-stratum-first

2. Once evaluated, treat them as “EDB” for the
IDB predicates with higher strata.

30

SQL Recursion

• Datalog recursion has inspired the
introduction of recursion in the SQL-99
standard.

• More difficult: SQL allows grouping and
aggregation requires a more complex
notion of stratification

6

31

SQL Recursive Queries
Syntax

WITH
<Datalog-like rules>

<a core SQL query using the predicates in
the rules >

32

• The keyword WITH

• One or more definitions, separated by comas, of
the form:
- the optional keyword RECURSIVE
- the name of the relation being defined
- the keyword AS
- the query that defines the relation

• A query which may refer to any of the prior
definitions, and forms the result of the WITH
statement.

33

Example: “Find all Rocky’s sequels”

WITH
FirstSequelOf(x,y) AS SELECT * FROM SequelOf;
RECURSIVE FollowOn(x, y) AS
(SELECT * FROM FirstSequelOf)
UNION
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x)

SELECT y FROM FollowOn WHERE x=“Rocky”

34

Monotonicity

• If a relation P is a function of a relation Q, we
say P is monotone in Q if inserting tuples into Q
cannot cause any tuples to be deleted from P.

Example:

P = Q UNION R

P = SELECT * FROM Q

35

Nonmonotonicity

Example:

Let P be the result relation of the query SELECT AVG(x) FROM Q

P is not monotone in Q: inserting a new tuple in Q may change the
average and thus delete the old average.

36

SQL Stratum Graph
Nodes - IDB relations declared in WITH clause

- Subqueries in the body of the rules (at any
level of nesting)

Edges P Q if:
- P is a rule head and Q is a relation in the FROM

clause or an immediate subquery
- P is a subquery and Q is a relation in its FROM

clause or an immediate subquery.

Label with “-” an edge if P is not monotone in Q

7

37

Stratified SQL

Stratified SQL = finite number of “-”’s on the
paths of the stratum graph

Example:
FirstSequelOf = ... Subquery S1
FollowOn = (... FROM FirstSequelOf)

UNION Subquery S2
(... FROM FollowOn)

38

The stratum graph

No “-” stratified

FirstSequelOf FollowOn

S1 S2

39

Nonmonotone Example
WITH
FirstSequelOf(x,y) AS SELECT * FROM SequelOf;
RECURSIVE FollowOn(x, y) AS Subquery S1
(SELECT * FROM FirstSequelOf)
EXCEPT Subquery S2
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x)
SELECT * FROM FollowOn

• Note: inserting a tuple intoS2 can delete a tuple
from Follow on 40

The Graph

cyclic graph
nonstratified query

-

FirstSequelOf FollowOn

S1 S2

41

Not and Nonmonotonicity

• Not every NOT means that the query is not
monotone.

Example:
SELECT * FROM Q is monotone in Q

SELECT * FROM Q WHERE NOT(Q.x >10) is also monotone in Q

Note: All selections are monotone

42

Example

WITH
FirstSequelOf(x,y) AS SELECT * FROM SequelOf;
RECURSIVE FollowOn(x, y) AS
(SELECT * FROM FirstSequelOf)
UNION
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x AND

NOT (FirstSequelOf.x = FollowOn.y))
SELECT * FROM FollowOn

