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Logical Query Languages
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Datalog

● Logical query language for the relational model

● Consists of “if-then” rules made up of atoms: 

- relational : predicates corresponding to relations
>EDB extensional database (stored relations)
>IDB intensional database (relations defined by rules)

- arithmetic
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Datalog example

Example:

database schema:
Movie(title, year, length, inColor, studionName, producerC#)
Contracts(starName, studioName, title, year, salary)

relational atom: Movie (t, y, l, c, s, p)

arithmetic atom: l > 100  
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Datalog Rules
Rule: head ← body

Head: a relational atom (no EDB predicates!)

Body: one or more atoms called subgoals

Example:
datalog rule: LongMovie(t, y) ← Movie(t,y,l,c,s,p) AND l >=10
Relational Algebra....
Relational Calculus...
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Interpreting Datalog Rules

Variables: - distinguished – appear in the head
- nondistinguished –appear in the body

Interpreting rules 
the head is true of the distinguished variables if there 
exist values of the non-distinguished variables that 
make all subgoals of the body true.
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Safe Datalog Rules

A rule is safe if each distinguished and 
nondistinguished variable appears in at 
least one nonnegated relational atom.

Note: only safe rules are allowed
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Unsafe Datalog Rules

Example:

E(w) ← NOT Movies(t, y, l, c, s, p)

Years(w) ← Movies(t, y, l, c, s, p) AND w < y

Note: in each case an infinity of w’s can satisfy the 
rule, even though Movies is a finite relation.
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Algorithms for Evaluating Datalog Rules

Variable-based: Consider all possible assignments 
to the variable of the body. If the assignment makes 
the body true, add the tuple for the head to the result.

Tuple-based: Consider all assignments of tuples
from the nonnegated relational subgoals. If the 
assignment makes the body true, add the tuple
for the head to the result.

9

Variable-based Evaluation 
Example:
Database:     Edge(from, to) 
Datalog rule: NotTranzitive(x,z) ← Edge(x, y) AND Edge(y, z) AND NOT Edge(x, z)

Assignment       x = 1, y = 2 , z = 3
Edge(1, 2) AND Edge(2, 3) AND NOT Edge(1, 3) is true, make (1, 3) a tuple of 
the answer          
Assignment       x = 1, y = 2 , z = ?
Edge(1, 2) AND Edge(2, ?) AND NOT Edge(1, ?) no z makes the body true
Assignment       x = 2, y = 3 , z = ?
Edge(2, 3) AND Edge(3, ?) AND NOT Edge(2, ?) no  z makes the body true

Note: No other  assignment for x and y makes Edge(x, y) true. Stop searching.
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Tuple-based Evaluation

Example:
Database:     Edge(from, to) 
Datalog rule: NotTranzitive(x,z) ← Edge(x, y) AND Edge(y, z) AND NOT Edge(x, z)

Assignment      (x, y) = (1, 2) , (y, z) = (2, 3), consistent assignment
Edge(1, 2) AND Edge(2, 3) AND NOT Edge(1, 3) is true, make (1, 3) a tuple of the answer         

Assignment       (x, y) = (1, 2) , (y, z) = (1, 2), inconsistent assignment

Assignment       (x, y) = (2, 3), (y, z)=(1, 2), inconsistent assignment

Assignment       (x, y) = (2, 3), (y, z)=(2, 3), inconsistent assignment

Note: No other assignment for( x, y) makes Edge(x, y) true. Stop searching.
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Datalog Programs

A Datalog Program is a collection of rules

Example:
“Find actors who starred in the color movies made in the 1950”

MoviesColor50 (t,y)← Movie(t,y,l,c,s,p) AND y = “1950” AND c = “y”
Answer(star) ← Movies90(t,y) AND Contracts(star, studio, t, y, salary)
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Datalog Programs Evaluation

Non-recursive programs: 
- pick an order to evaluate the rules (the IDB 
predicates) so that all the predicates in the body 
have already been evaluated.

- if an IDB predicate has more than one rule, each 
contributes tuples to its relation (union).
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From Relational Algebra to Datalog -1

Intersection: R(x, y) ∩ T(x, y)
I(x, y) R(x, y) AND T(x, y)

Union: R(x, y) U T(x, y)
U(x, y) R(x, y)
U(x, y) T(x, y)

Differece: R(x, y) –T(x, y)
D(x, y) R(x, y) AND NOT T(x, y)
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From Relational Algebra to Datalog -2

Projection: πx(R)
P(x) R(x,y)

Selection: σx>10(R)
S(x, y) R(x, y) AND x>10

Product: R X T
P(x, y, z, w) R(x,y ) AND T(z, w)
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From Relational Algebra to Datalog -3

Natural Join R        T  
J(x, y, z) R(x, y) AND T(y, z)

Theta Join R      .R.x >T.yT
J(x, y, z, w) R(x, y) AND T(z, w) AND x > y 
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Datalog Queries

Datalog Query: a datalog program.

Expressive Power: 
- without recursion, Datalog has the same power 

as Core Relational Algebra and Relational Calculus

- with recursion: much more, but not Turing-complete
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Recursivity

Example:
Database: SequelOf(movie, sequel)

Query: “What are the sequels of sequels of movies in the database?”

“What are the sequels of the sequels of the sequels?”

Infinite unions?

))()(( ,secsec,sec, SequelOfSequelOf thirdondondfirstondfirst ρρπ ><
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Recursive Rules
Example:
FollowOn(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← SequelOf(x, z) AND FollowOn(z, y)

Dependency Graph (of a program)
- nodes: the IDB predicates
- edges: from node1(predicate1) to node(predicate2) if 

and only if there is a rule with predicate1 in the head 
and predicate2 in the body.

A datalog program is recursive iff its dependency graph 
has a cycle. 
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Dependency graph
Example:
FirstSequelOf(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, z) AND FollowOn(z, y)

Cyclic graph recursive datalog program

FollowOn

FirstSequelOf
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Evaluating Recursive Rules 
without Negation

Naive algorithm

1. Begin by assuming all IDB relations are empty

2. Repeatedly evaluate the rules using the EDB
and the previous IDB to get a new IDB

3. End when there is no change to IDB
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Example:                                                        SequelOf
Database: SequelOf := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}

FirstSequelOf(x, y) ← SequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, y)
FollowOn(x, y) ← FirstSequelOf(x, z) AND FollowOn(z, y)

We will proceed in rounds to infer FirstSequel facts and then FollowOn facts.
Initial    FirstSequelof:={}, FollowOn := {}
Round1 FirstSequelOf := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}, FollowOn ={}
Round2 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)}
Round3 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8)} U {(t1,t3), (t2,t4), (t5,t7),(t6,t8)}
Round4 FollowOn := {(t1,t2), (t2,t3), (t3,t4),(t5,t6),(t6,t7), (t7,t8), (t1,t3), (t2,t4), (t5,t7),(t6,t8)} U 

{(t1,t4), (t5,t8)}
Round 5 no change in FollowOn. STOP

t8t7

t7t6

t6t5

t4t3

t3t2

t2t1

sequelmovie
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Negation in recursive rules

- Naive evaluation does not work when there are 
negated subgoals.

- Arguably negation wrapped in a recursion makes 
little or no sense in general

- Even when negation and recursion are separate 
there is ambiguity sbout the “correct” IDB relations
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Example:
EDB predicate R= {(0)}

P(x) R(x) AND NOT Q(x)
Q(x) R(x) AND NOT P(x)

2 solutions
P={(0)}, Q = Ф
P = Ф,   Q = {(0)}

Which one to choose?

←
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Example:
EDB predicate S = {(1)}

R(x) S(x) AND NOT R(x)

Initial       R := {}
Round 1  R = {(1)}
Round 2  R = {}
Round 3  R = {(1)}, etc.
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Stratified Negation

- Constraint imposed on recursive Datalog programs 

- Rules out negation wrapped in recursion

- The maximum number of negations that can be
applied to an IDB predicate used in evaluating an  
IDB predicate must be finite.
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Stratum Graph

Labeled dependency graph

- nodes: the IDB predicates

- edges: from node1(predicate1) to node(predicate2) if 
and only if there is a rule with predicate1 in the head and 
predicate2 in the body. If predicate2 appears negated, 
label the edge with “-”. 
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Strata

• The stratum of a node (predicate) is the 
maximum number of “-” labeled edges on 
a path leading from that node  .

• A Datalog program is stratified if al its IDB 
predicates have finite strata.
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Example:
R(x) S(x) AND NOT R(x)

- - -

P(x) R(x) AND NOT Q(x)
Q(x) R(x) AND NOT P(x)

P

R

Q
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Stratified Datalog Evaluation

Algorithm:

1. Evaluate IDB predicates lowest-stratum-first

2. Once evaluated, treat them as “EDB” for the 
IDB predicates with higher strata. 
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SQL Recursion

• Datalog recursion has inspired the 
introduction of recursion in the SQL-99 
standard.

• More difficult: SQL allows grouping and 
aggregation requires a more complex 
notion of stratification
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SQL Recursive Queries
Syntax

WITH
<Datalog-like rules>

<a core SQL query using the predicates in 
the rules >
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• The keyword WITH

• One or more definitions, separated by comas, of 
the form:
- the optional keyword RECURSIVE
- the name of the relation being defined
- the keyword AS
- the query that defines the relation

• A query which may refer to any of the prior 
definitions, and forms the result of the WITH 
statement.
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Example: “Find all Rocky’s sequels”

WITH 
FirstSequelOf(x,y) AS SELECT * FROM  SequelOf;
RECURSIVE FollowOn(x, y) AS 
(SELECT * FROM FirstSequelOf)
UNION
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x )

SELECT y FROM FollowOn WHERE x=“Rocky”
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Monotonicity

• If a relation P is a function of a relation Q, we 
say P is monotone in Q if inserting tuples into Q 
cannot cause any tuples to be deleted from P.

Example:

P = Q  UNION  R

P = SELECT * FROM Q
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Nonmonotonicity

Example:

Let P be the result relation of the query SELECT AVG(x) FROM Q

P is not monotone in Q: inserting a new tuple in Q may change the 
average and thus delete the old average.

36

SQL Stratum Graph
Nodes - IDB relations declared in WITH clause

- Subqueries in the body of the rules (at any 
level of nesting)

Edges P Q if:
- P is a rule head and Q is a relation in the FROM 

clause or an immediate subquery
- P is a subquery and Q is a relation in its FROM 

clause or an immediate subquery.

Label with “-” an edge if P is not monotone in Q
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Stratified SQL

Stratified SQL = finite number of “-”’s on the 
paths of the stratum graph

Example:
FirstSequelOf = ...                                                        Subquery S1
FollowOn =  (... FROM FirstSequelOf)

UNION                                      Subquery S2
(... FROM FollowOn)   
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The stratum graph

No “-” stratified

FirstSequelOf FollowOn

S1 S2
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Nonmonotone Example
WITH 
FirstSequelOf(x,y) AS SELECT * FROM  SequelOf;
RECURSIVE FollowOn(x, y) AS                    Subquery S1
(SELECT * FROM FirstSequelOf)                           
EXCEPT                                                          Subquery S2
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x )
SELECT * FROM FollowOn

• Note: inserting a tuple intoS2 can delete a tuple
from Follow on 40

The Graph

cyclic graph 
nonstratified query

-

FirstSequelOf FollowOn

S1 S2
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Not and Nonmonotonicity

• Not every NOT means that the query is not 
monotone.

Example:
SELECT * FROM    Q         is monotone in Q

SELECT * FROM Q WHERE NOT(Q.x >10)  is also monotone in Q

Note: All selections are monotone 
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Example

WITH 
FirstSequelOf(x,y) AS SELECT * FROM  SequelOf;
RECURSIVE FollowOn(x, y) AS 
(SELECT * FROM FirstSequelOf)
UNION
(SELECT FirstSequelOf.x, FollowOn.y
FROM FirstSequelOf, FollowOn
WHERE FirstSequelOf.y = FollowOn.x AND 

NOT ( FirstSequelOf.x = FollowOn.y)  )
SELECT * FROM FollowOn


