
CSC 120
Computer Science for the

Sciences
Week 2 Lecture 3

UofT St. George
January 18, 2016

Writing Computer Programs

• What is a computer program?

 A computer program is an (ordered) set of
instructions that can be executed by a computer

Defining a function

• Form of a Python function definition:

def function_name(parameters):

<function_body>

def: a Python reserved keyword
parameters: 0 or more parameters, comma separated

function_body: 1 or more statements

Calling a Function

• Calling a function  asking Python to execute it (carry it out).

• Form of a function call: function_name(arguments):

• How it is executed:
1. Each argument is an expression. These expressions are

evaluated in order. (The value of each expression is a
memory address.)

2. Those memory addresses are stored in the corresponding
parameters.

3. The body of the function is executed.

Function Design Recipe -1
• Examples of calls to your function and the expected returned

values.
'''

>>> is_even(2)

True

>>> is_even(17)

False

'''

• Type contract: the types of the parameters and any return values
(str) -> int

(str, bool) -> NoneType

(list of int, tuple of (str,int)) -> list

Function Design Recipe -2

• Header def is_even(value):

• Description: what the function does (mention each parameter by
name).

Return True iff value is evenly divisible by 2.

• Body return value % 2 == 0

• Test

Function Design Recipe -3
def is_even(value):

''' (int) -> bool

Return True iff value is evenly divisible by 2.

>>> is_even(2)

True

>>> is_even(17)

False

'''

return value % 2 == 0

Nested Function calls

• You can call functions from within functions:

def f(x):

return g(x)

Or: f(g(x))

Variable Scope -1
• If you declare/use a variable within a function, its scope is limited

to within that function.

def h():

x = 3

return x

if __name__ == "__main__":

print(x)

• Output: Traceback (most recent call last):
File "None", line 8, in <module>

builtins.NameError: name 'x' is not defined

def g():

x = 3

return x

if __name__ == "__main__":

print(g())

• Output: 3

• Note: we can also define global variables, visible
to all functions in our program

Variable Scope -2

Return Values

• When a function is called, it returns a value.

• When writing a function, provide a line at the end that says
return (something)

this will tell Python to end the function and give the
return value back to the line of code that called it.

• Note: If there is no return statement in a function, Python will
still return a value! By default it returns None, which is a
placeholder value. None has the type NoneType and cannot be
used in mathematical expressions

Types

def f(x)

y = x + 3

return y

What will the following calls give us?
>>> type(f)
<class 'function'>

>>>type(f(3))

<class 'int'>

>>>type(f(3.5))

<class 'float'>

Docstrings

• When writing a function (or module), we can provide
documentation.

• This documentation consists of:
- annotations specifying the types of the parameters and the
return value;
- a comment describing what the function does. This comment
is called a Docstring , and appears in triple-quotes.

 The doctest module allows us to automatically run those
examples and test whether the associated function behaved
as the examples dictate.

Doctest -1
• What will this code do?

import doctest

def average(x, y, z):

'''(num, num, num) -> num

Calculate the average of x, y, and z.

>>> average(0, 0, 9)

3.0

>>> average(1, 2, 3)

2.0

'''

return x + y + z / 3

doctest.testmod()

Doctest -2

Failed example:

average(1, 2, 3)

Expected:

2.0

Got:

4.0

**

1 items had failures:

1 of 2 in __main__.average

Test Failed 1 failures.

Doctest -3
Corrected function:

import doctest

def average(x, y, z):

'''(num, num, num) -> num

Calculate the average of x, y, and z.

>>> average(0, 0, 9)

3.0

>>> average(1, 2, 3)

2.0

'''

return (x + y + z) / 3

doctest.testmod()

Basic Functions
print -1

• The print function, i.e., a function that prints
output.

• Form of the print statement
print(list_of_items)

 list_of_items is a comma-separated
list of expressions: strings, variables, numbers,
function results, etc

Basic Functions
print -2

>>>print("Hello!")
Hello!

 “Hello” is a string. We'll learn more about strings soon.

>>> print("average(73, 80)")
average(73, 80)

>>> print("The average is", average(78, 90))
Traceback (most recent call last):

File "None", line 13, in <module>
builtins.TypeError: average() missing 1 required positional argument: 'x3'

Problems -1

Using the Function Design Recipe, write functions for the
following and test them with doctest:

1. Convert a temperature in Fahrenheit to Celsius, which is done
with

௖݌݉݁ݐ = 	 ௧௘௠௣ಷିଷଶ
ଵ.଼

	

2. Convert a temperature in Celsius to Fahrenheit

3. Write a function that will return 1 if a given number x is odd,
and 0 if it is even

• The number of days that the Gregorian calendar is ahead of
the Julian calendar is given by

ܦ = 	ܪ −	ு
ସ
	− 2

 where H is the hundreds digit of the year (e.g., for 1924,
H is 19). The division here is integer division.

In the year 2014, the Gregorian calendar is 13 days ahead
of the Julian calendar; in 1614, it was 10 days ahead

Problems -2

