
CSC 120
Computer Science for the Sciences

Week 1 Lecture 2

UofT St. George
January 11, 2016

Introduction to Python
&

Foundations of computer Programming

• Variables, DataTypes, Arithmetic Expressions
• Functions
• Control flow
• File I/O
• Modules
• Packages: Numpy
• ….

CSC120 Winter 2016 2

Arithmetic Expressions

Q: In which order does Python evaluate arithmetic
(and other) operators ?

CSC120 Winter 2016 3

Operator Precedence in Python

CSC120 Winter 2016 4

Arithmetic Operators -1

With 8 % 3 we get the remainder from “long division“

 How do we get the quotient?

CSC120 Winter 2016 5

Arithmetic Operators -2

• What happens if we try to evaluate expressions that
would not work (i.e., are undefined)?

CSC120 Winter 2016 6

Division by 0

CSC120 Winter 2016 7

Mathematical Functions
&

The Math module

• Not all mathematical functions (e.g., sin and cos) are built-in.
 to use them, we need to “import” them from the math

module using import math

CSC120 Winter 2016 8

Try it at home
• help(math)

• help(math.sin)

• math.sin(90)

• math.pi

• math.sin(math.pi / 2)

• math.degrees(math.pi)

• math.radians(90)

• math.cos(math.radians(180))

• math.fabs(-2)

• math.log(10)

• math.e

• math.log(math.e)

• math.log(10, 10)

CSC120 Winter 2016 9

Side Note: floating point error
• Consider the expression: math.sin(math.pi)

• What would we expect this to evaluate to? What does it actually
evaluate to?

• Rounding error: e.g., solving a question with a different number
of decimal points than a friend, and getting a slightly different
result.

• Cause: numbers are stored in the memory of computers in base
2 (binary), and sometimes the conversion into base 10 (decimal)
adds a numerical error to the number.
 This gets exacerbated when the number is used in calculations

further on. CSC120 Winter 2016 10

Python Types
• Every value has a type in Python

type(4.4) <class 'float'>

type(4) <class 'int'>

type(4.0) <class 'float'>

type("4") <class 'str'>

type(True) <class 'bool'>

type(4 > 6)<class 'bool'>

CSC120 Winter 2016 11

Python Casting
• There are also functions that take a value of one type and

convert it to another. This is called casting:

int(4.3)

int(4.4)

float(4)

int("8")

str(8.5)

int(True)

bool(1)

bool(3)

CSC120 Winter 2016 12

Variables
• A variable is a name that refers to a value.

• Variable assignment: creates new variables and also gives it a
value to refer to.

• Form of an assignment statement variable = expression

• How it is executed:
1. Evaluate the expression on the right-hand side.
2. Associate the result with the variable on the left-hand side.

CSC120 Winter 2016 13

Differences between Python variables and math
variables

 Python variables look like math variables.
This could be Python or math:

p = 5
q = p * 7

 There are important differences!

In mathematics, equations are descriptions that are
simultaneously true. In Python, assignment statements
look like equations but specify a sequence of steps

CSC120 Winter 2016 14

Changeability
• In math, the following are inconsistent:
p = 5
q = 7

p = q + 10

 p cannot be both 5 and 17 !

• In Python, and other programming languages, it makes
perfect sense.
P starts out referring to 5, then changes to refer to 17

You can change a variable's value as many times as you want,
and that may change its type too.

CSC120 Winter 2016 15

Equality vs Assignment
• In math, p = q + 10 states a fact about the value of p and that of q +

10
 that they are equal

• In Python, p = q+10 means something completely different!!!

• This is reasonable, and common, in programming
x = x + 1 (makes no sense in math!)

We say that x is assigned x + 1 or x gets the value of x + 1

• Programming languages usually have different symbols for
assignment and equality.
 in Python, the symbol for equality is ==CSC120 Winter 2016 16

Cannot tie two variables

Q: What does this do?
x = 37

y = x + 2 # y is now 39

x = 20 # Is y now 22?

• One cannot use assignment to tie the values
of two variables together permanently!!!

CSC120 Winter 2016 17

Assignment is not symmetric

Math Python
sum = a + b Legal Legal
a + b = sum Legal Illegal

CSC120 Winter 2016 18

Naming variables
 Rules about variable names:
- must start with a letter (or underscore): x,my_average
- can include letters, digits, and underscores, but nothing else
- case matters:

age = 11
aGe # Error! This is not defined.

 Conventions about choosing names:
- choose meaningful names, e.g., if you are adding something up,
Sum is better than X .

- for names that include multiple words, use underscore: e.g.,
average_grade

CSC120 Winter 2016 19

Expressions vs. Statements
• Expressions refer/evaluate to a value. Statements are a

command to do something.

• Example Python expressions: (x+3)%4, not True

• Example Python statements: print(x), x = 3

• In Python, you normally write statements that either produce
output or change the value of at least one variable. In the
shell, you can type \statements" that are really just
expressions; the shell prints the values of these expressions

CSC120 Winter 2016 20

Problems -1

• How can I make a variable named temp that has the value
22.3?

• How can I then cast temp into an integer?

• How can I make a variable named Mins_in_day that has
the value of how many minutes there are in a day?

CSC120 Winter 2016 21

Problems -2
• What will x be, if I enter this code?

x= float(math.log(2,2)) + int(math.fabs(-6.7))*(8%5)

• What are the values of p and x after this code?
x = 3

p = 2

x = p ** 3

p = x // 5

CSC120 Winter 2016 22

